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Introduction
INTRODUCTION

Quantum Mechanics (QM), also known as quantum physics, quantum theory, 
the wave mechanical model, matrix mechanics or quantum field theory, is a 
fundamental theory in physics which describes nature at the smallest scales 
of energy levels of atoms and subatomic particles. Principally, the quantum 
mechanics differs from classical physics in that energy, momentum, angular 
momentum and other quantities of a bound system are restricted to discrete 
values (quantization); objects have characteristics of both particles and waves 
(wave-particle duality); and there are limits to the precision with which 
quantities can be measured, uncertainty principle.

The foundations of quantum mechanics were established during the 
first half of the 20th century by Max Planck, Niels Bohr, Werner Heisenberg, 
Louis de Broglie, Arthur Compton, Albert Einstein, Erwin Schrödinger, 
Paul Dirac, David Hilbert, and others. The modern theory is formulated in 
various specially developed mathematical formalisms. In one of them, a 
mathematical function, the wave function, provides information about the 
probability amplitude of position, momentum, and other physical properties of 
a particle. The Schrödinger equation, applied to the free particle, predicts that 
the center of a wave packet will move through space at a constant velocity.  

This book, Quantum Mechanics-I, is divided into four blocks, which 
are further subdivided into fourteen units. The topics discussed include wave 
particle duality, uncertainty principle, postulates of quantum mechanics, 
Schrődinger equation (time dependent and time independent), Ehrenfest’s 
theorem, eigenfunction and eigenvectors, probability density, linear 
harmonic oscillator and tunnel effect, the free particle, particle in a box, 
three dimensional harmonic oscillator, rigid rotator, diatomic molecules, 
hydrogen atom, separation of variables, Dirac’s ket and bra vectors, harmonic 
oscillator, solution using ladder operator, Schrődinger, Heisenberg and 
interaction pictures, perturbation theory (first order), time independent, 
stark effect in hydrogen atom, variation method, ground state of helium 
atom and of deuteron, W.K.B approximation, time dependent perturbation 
theory, spontaneous emission and stimulated emission, Einstein’s A & B 
coefficients, semi-classical and quantum theory of radiation, Rayleigh and 
Raman scattering and selection rules.
The book follows the self-instructional mode wherein each unit begins with 
an ‘Introduction’ to the topic. The ‘Objectives’ are then outlined before 
going on to the presentation of the detailed content in a simple and structured 
format. ‘Check Your Progress’ questions are provided at regular intervals 
to test the student’s understanding of the subject. ‘Answers to Check Your 
Progress Questions’, a ‘Summary’, a list of ‘Key Words’, and a set of ‘Self-
Assessment Questions and Exercises’ are provided at the end of each unit 
for effective recapitulation.
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Postulates
BLOCK - I  

FOUNDATIONS 

UNIT 1	 POSTULATES
Structure 
	 1.0	 Introduction
	 1.1	 Objectives
	 1.2	 Origin and Scope of Quantum Physics

	 1.2.1	 Wave Nature of Microparticles: de-Broglie’s Hypothesis
	 1.3	 Wave Particle Duality 
	 1.4	 The Uncertainty Principle 

	 1.4.1	 Physical Origin of the Uncertainty Principle
	 1.5	 Postulates of Quantum Mechanics

	 1.5.1	 Basic Postulates of Quantum Mechanics
	 1.5.2	 Consequences of the Postulates

	 1.6	 Answers to Check Your Progress Questions
	 1.7	 Summary
	 1.8	 Key Words
	 1.9	 Self Assessment Questions and Exercises
	 1.10	 Further Readings

1.0	 INTRODUCTION

Quantum Mechanics (QM); also known as quantum physics, quantum theory, 
the wave mechanical model, or matrix mechanics, quantum field theory; is a 
fundamental theory in physics which describes nature at the smallest scales of 
energy levels of atoms and subatomic particles. In the mathematically rigorous 
formulation of quantum mechanics developed by Paul Dirac, David Hilbert, 
John von Neumann, and Hermann Weyl, the possible states of a quantum 
mechanical system are symbolized as unit vectors (called state vectors).

In order to understand the origin of quantum physics and the subsequent 
development of an altogether new and conceptually different mathematical 
theory of quantum mechanics, it is first of all necessary to understand 
the phenomena at micro-level that what was happening at the atomic and 
subatomic levels. The new aspects of nature and phenomena that were 
revealed at these levels are referred to as quantum phenomena, the word 
‘quantum’ referring to peculiar aspects of nature that go against common 
sense. The study of quantum phenomena has come to be known as quantum 
physics.
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Wave particle duality is the concept in quantum mechanics that every 
particle or quantum entity may be partly described in terms not only of 
particles, but also of waves. It expresses the inability of the classical concepts 
‘particle’ or ‘wave’ to fully describe the behaviour of quantum scale objects.

In this unit, you will study about the wave particle duality, uncertainty 
principle and postulates of quantum mechanics.

1.1	 OBJECTIVES

After going through this unit, you will be able to:
	 •	 Understand the significance of quantum mechanics
	 •	 Explain the wave particle duality 
	 •	 Evaluate uncertainty principle 
	 •	 Describe the various postulates of quantum mechanics

1.2	 ORIGIN AND SCOPE OF QUANTUM PHYSICS

In order to understand the origin of quantum physics and the subsequent 
development of an altogether new and conceptually different mathematical 
theory of quantum mechanics, it is first of all necessary to understand the 
background of the crisis in physics which was witnessed in the beginning 
of the 20th century.

Towards the end of the 19th century and the beginning of the 20th 
century many new discoveries took place. The discovery of X-rays in 
1895, the laws of radioactivity in 1896, electron in 1897, dependence of 
electron’s mass on its velocity, the laws of photoelectric effect, the laws 
of Compton effect are a few in a very imposing list of discoveries. Many 
new experiments, such as Franck and Hertz experiment, Davisson-Germer 
experiment, Thomson’s experiment were performed during the period. Many 
new aspects of nature were encountered while dealing with physical problems 
in the domain of small particles, namely atoms and subatomic particles. What 
was astonishing was that the new discoveries, the results of new experiments 
and the phenomena at atomic and subatomic levels could not be understood 
in terms of the then existing laws of classical physics. The phenomena at 
microlevel were found to be quite strange and one had to lose one’s common 
sense in order to perceive what was happening at the atomic and subatomic 
levels. The new aspects of nature and phenomena that were revealed at these 
levels are referred to as quantum phenomena, the word ‘quantum’ referring 
to peculiar aspects of nature that go against common sense.



NOTES

Self-Instructional
Material 	 3

PostulatesThe study of quantum phenomena has come to be known as quantum 
physics.

Like classical physics, quantum physics also has been provided with a 
mathematical apparatus. The entirely new conceptual structure for dynamics 
in particular and physics in general, has been evolved during the last century. 
The currently accepted structure developed by Schrödinger, Heisenberg, 
Max Born, Jordan, Dirac and many others to deal with problems in the 
microdomain, i.e., at atomic and subatomic levels is termed as quantum 
mechanics.

Scope of Quantum Mechanics

The laws of quantum physics that govern the elementary particles are, 
however, not unconcerned with the macroscopic world and instead represent 
generalization of classical laws including them as special cases. The laws 
of quantum physics have been found to be the most general laws of nature 
discovered so far.

We may note that just as theory of relativity extends the range of 
application of physical laws to the region of very high velocities and just 
as the universal constant of fundamental significance ‘c’ (speed of light in 
vacuum) characterizes relativity, so a universal constant of fundamental 
significance ‘h’ (Planck’s constant) characterizes quantum physics which 
includes classical physics as a special case.
It is often said that ‘revolution’ was brought about through the discovery of 
quantum mechanics. The word revolution suggests that something has been 
overturned completely. We may note that the discovery of quantum mechanics 
has not overturned the laws of classical physics in any way. The motion of 
a simple pendulum is described in the same way even today as it was done 
prior to the discovery of quantum mechanics. Classical ideas embodied in the 
laws of classical physics have their own limits of applicability. The classical 
theories of physics do not find universal validity in the sense that they are 
only good phenomenological laws and are unable to tell us everything even 
about macroscopic bodies. There exists no comprehensive classical theory 
of matter. Classical physics does not provide answers to:
	 ·	Why the densities of materials are what they are?
	 ·	Why the elastic constants have the values they have?
	 ·	Why a rod breaks if the tension in the rod exceeds a certain limit?
	 ·	Why copper melts at 1083°C?
	 ·	Why sodium vapour emits yellow light?
	 ·	Why copper conducts electricity but sulphur does not?
	 ·	Why uranium atom disintegrates spontaneously releasing energy?, etc.
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We find a host of observation for which classical physics has to tell us 
very little or nothing at all. Besides, the facts of chemistry are not understood 
in terms of classical laws.

With the advent of quantum mechanics our knowledge has expanded 
enormously about the laws of physics in the realm of small particles which 
has consequently enabled us to build, if not comprehensive, at least a good 
theory of matter.

The theory of quantum mechanics has explained all kinds of details, 
such as why an oxygen atom combines with two hydrogen atoms to make 
one molecule of water, and so on. Quantum mechanics thus supplies the 
theory behind chemistry. It has been realized that fundamental theoretical 
chemistry is based on the theory of quantum mechanics.

1.2.1	 Wave Nature of Microparticles: de-Broglie’s Hypothesis

Around 1923, Louis de-Broglie suggested that the idea of duality should be 
extended not only to radiation but also to all microparticles. He hypothesized 
that just as a quantum of radiation has a wave associated with it which governs 
its motion in space, so also a quantity of matter has a corresponding wave 
(which may be called matter wave) that governs its motion in space.

The universe is essentially composed of only two entities namely 
matter and radiation. de-Broglie agreed that since one of the entities, namely 
radiation, has dual nature, the other entity matter must also exhibit dual 
character. His hypothesis is consistent with the symmetry principle of nature.

De-Broglie proposed to associate, with every microparticle, corpuscular 
characteristics namely energy E and momentum p on the one hand, and wave 
characteristics namely frequency n and wavelength l on the other hand. 
According to de-Broglie, the mutual dependence between the characteristics 
of the two kinds was accomplished, through the Planck’s constant h as

		        E = hn  and  p = ​ hn ___ c ​ = ​ h __ 
l

 ​	 ...(1.1)

This relation is known as de-Broglie’s equation. 
The wavelength l of matter wave associated with a microparticle is 

called de-Broglie wavelength of the particle. De-Broglie’s hypothesis had 
profound importance from the fact that relation in Equation (1.1) was assumed 
to be satisfied not only for photons (zero rest mass), but for all microparticles, 
particularly for those which possess rest mass and which were associated 
with corpuscles. 

Confirmation of de-Broglie’s Hypothesis

Walter Elsasser, for the first time in 1926, pointed out that the wave nature 
of matter could be tested by allowing a beam of electrons of appropriate 
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Postulatesenergy to be incident on a crystalline solid in which periodic arrangement 
of atoms might serve as a three-dimensional array of diffracting centres for 
the electron wave (if it at all exists), when diffraction peaks in characteristic 
directions might he observed.

The above idea was confirmed experimentally by Clinton Davisson 
and Lester Germer in the United States and George Thomson in Scotland. 

Davisson and Germer’s Experiment 

The experimental arrangement used by Davisson and Germer is schematically 
shown in the Figure 1.1.

Fig. 1.1  Davisson and Germer Experiment

F is a filament which emits electrons when heated electrically.
The emitted electrons are accelerated through a potential V whose value 

can be adjusted as required by means of a potential divider arrangement. The 
accelerated electrons having kinetic energy E are then allowed to pass through 
a system of narrow slits so as to obtain a thin collimated beam of electrons. 
The beam of electrons thus obtained is then allowed to be incident normally 
on a single crystal C of nickel enclosed in a vacuum chamber. The crystal 
can be rotated about the incident beam as the axis. D is an electron detector 
which detects only elastically scattered electrons. The detector can be moved 
along an arc of a circle about the crystal so as to measure the intensity of 
elastic scattering in different directions in front of the crystal.

	 The intensities of the different beam at different angles f and for 
different values of the accelerating potential were determined. The results 
obtained are shown in the Figure 1.2 and Figure 1.3. A peak in the intensity 
was observed at f = 50° for V = 54 volts. Such an observation does not find 
explanation on the basis of particle motion. However, it finds explanation in 
terms of interference phenomenon which is characteristic of wave only.

	 The wavelength of electrons impinging the crystal are given by l = ​ h __ p , 
according to de-Broglie’s equation. We may assume Bragg reflections for 
electron wave to occur from certain families of atomic planes as in the case 
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of X-ray diffraction from crystals. Bragg reflection obeying Bragg’s equation 
is illustrated in the Figure 1.4. Bragg’s equation is given by:

		        2d sin q = ml;  m = 1, 2, 3	 ...(1.2)

 

	   Fig. 1.2	             Fig. 1.3	 Fig. 1.4

Using X-ray analysis on the crystal it is found that at f = 50°, a Bragg 
reflection occurs from atomic plane having interplanar spacing d = 0.91 Å 
and the corresponding Bragg angle of reflection or glancing angle is 65° (as 
indicated in the figure). Considering m = 1 we obtain

2 × (0.91 Å) sin 65° = l

or	 l = 1.65 Å	 ...(1.3)

For electrons having kinetic energy E = 54 eV, the de-Broglie 
wavelength is,

	                 	
​
 ​	 …(1.4)

Substituting h, m and E we obtain,

				    l = 1.65 Å.	 …(1.5) 

The existence of electron wave and the validity of de-Broglie equation 
are thus established.

We may note that in the above calculations the value m = 1 is used. If 
m = 2 or more, then there should occur intensity peaks for different values 
of f. However, no such peaks are observed experimentally. 

GP Thomson’s Experiment

Thomson’s experiment is analogous to Debye-Scherrer X-ray diffraction 
method.

The experimental arrangement consisted of a glass envelope in 
which electrons were emitted from a heated filament. The emitted electrons 
were suitably accelerated and collimated to give a uni-directional, thin, 
monoenergetic beam of electrons. The beam thus obtained was allowed 
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Postulatesto fall normally on a polycrystalline material as shawn in Figure 1.5. The 
scattered (diffracted) electrons were recorded on a photographic film placed 
perpendicular to the incident beam. 

Fig. 1.5  GP Thomson Experiment

On the photographic plate a set of concentric circles were observed. The 
pattern of circles obtained was found to be a characteristic of the crystal used.

On replacing the electron beam by a monochromatic X-ray beam a 
similar circular pattern was observed on the photographic plate. 

From the knowledge of the wavelength of the electron beam 

2
h h
p mE

Ê ˆ
l = =Á ˜Ë ¯  it was possible to determine the geometry of the crystal 

lattice which was found to be in complete agreement with that obtained using 
X-ray diffraction analysis of the crystal. It is thus clear that electron beam is 
diffracted by a crystal in the same way as X-rays.

It is important to note in the experiment of Davisson and Germer and 
of Thomson the following:

•	 In the process of acceleration, an electron behaves like a particle 
of charge – e and mass m.

•	 During the process of diffraction, the same electron behaves like a 
wave of wavelength l = ​ 

Thus, the electron which shows wave-like property in one part of the 
experiment exhibits particle-like properties in two other parts of the same 
experiment. Clearly, for a complete description both the particle aspect as 
well as the wave aspect become necessary.

Conclusion

The experiments of Davisson and Germer and Thomson give clear evidence 
of the existence of wave properties of electrons. Besides, the experiments 
confirm the validity of de-Broglie equation at least for the electron.

Experiments on diffraction of molecular beam of hydrogen and 
atomic beam of helium by the lithium fluoride crystal were performed by 
Estermann, Stern and Frisch. Hydrogen molecule and helium atom being 
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very much different from each other as well as from electron, their successful 
experiments led to the universality of matter waves.

Fermi, Marshall and Zinn performed interference and diffraction 
experiments with slow neutrons and obtained results confirming de-Broglie’s 
hypothesis. It is important to note that neutron diffraction is nowadays an 
important technique in crystal structure studies as a complement to X-ray 
and electron diffraction techniques.

1.3	 WAVE PARTICLE DUALITY 

In classical physics, energy is transported either by particles or by waves. 
Some macroscopic phenomena can be explained using a particle model while 
some other using a wave model. The radiation and matter of the observable 
universe exhibit both wave and particle characteristics. Radiation behaves as 
wave in its propagation but the same radiation exhibits particle behavior in 
its interaction with matter. Similarly entities of non-zero rest mass of which 
matter is made of requires wave model for understanding their diffraction 
effects. We are thus compelled to use both particle as well wave models for 
the same entity. Duality is thus established. We may, however, note that under 
given experimental conditions only one model is revealed.

Classical physics has acquainted us with two types of motion, namely 
corpuscular and wave. Localization of objects in space and definite path or 
trajectory of motion of objects in space are the two basic characteristics of 
corpuscular motion. The wave motion, on the other hand, is characterized 
by delocalization in space. The phenomena in the macroscopic world clearly 
distinguish the corpuscular motion and the wave motion. These classical 
concepts are, however, not revealed in the phenomena in the domain of 
microparticles. The motion of a microparticle shows both corpuscular as well 
as wave behaviours. If we consider corpuscular motion and wave motion as 
two separate cases of motion then microparticles occupy a place somewhere 
in between. They are neither purely corpuscular nor purely wave-like in 
the classical sense, instead, they are something qualitatively different. A 
microparticle to some extent is like a corpuscle and to some extent like a wave. 
The extents to which it is a corpuscle or a wave depends upon the conditions 
under which it is considered. In classical physics, corpuscle and wave are 
two mutually exclusive extremities, but at the level of microphenomena these 
extremities combine within the framework of a single microparticle. In this 
level we neither talk of particle nor of wave but only of microparticle. This 
is wave–particle duality.
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Check Your Progress

	 1.	What is quantum physics?
	 2.	Define how the theory of relativity characterizes quantum physics.
	 3.	Explain the Louis de-Broglie idea of duality.
	 4.	What is mutual dependence according to de-Broglie?
	 5.	What is the wavelength of electrons impinging the crystal according 

to de-Broglie’s equation?
	 6.	What does the radiation and matter of the observable universe exhibit?

1.4	 THE UNCERTAINTY PRINCIPLE 

Equations of motion in classical mechanics (Newton’s equation, Lagrange’s 
equations, Hamilton’s canonical equations) can be solved to find exactly 
the position and momentum (the two quantities that define the state of the 
system) of the system at all future and past instants of time from a knowledge 
of the position and momentum of the system at some given instant of time. 
This mechanics, as we know, is quite successful in the macroscopic world to 
predict future motion of objects in terms of their initial motion. 

An observation or a measurement on a system involves an inherent 
interaction between the observer or the measuring instrument and the system, 
thereby producing disturbance in the system. In the case of a macroscopic 
system which obeys the laws of classical physics, disturbances, so caused are 
usually ignorable or controllable and can be taken into account accurately 
ahead of time by suitable calculation. The basic laws of physics are thus 
deterministic and the position and velocity (or momentum) of an object can 
be determined simultaneously with unlimited accuracy.

Such determinism is, however, lost in quantum physics which deals with 
problems in the domain of atomic and sub-atomic particles. The disturbances 
caused due to inherent interaction in the observations or measurements 
no longer remain ignorable and controllable irrespective of the skill of 
the observer and the improvements in measuring technique. Precise and 
simultaneous measurement of position and velocity of matter or of radiation 
by actual experiment becomes fundamentally impossible.

Heisenberg, in 1927, stated the uncertainty principle (also called 
indeterminacy principle) in the following two parts:
	 (i)	Experiment cannot determine simultaneously the component of 

momentum say px of a particle and its corresponding coordinate position 
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x with unlimited accuracy; instead, the precision of measurement is 
inherently limited by the measurement process itself, such that 

				    	 …(1.6)
		  In the above, Dpx is the uncertainty within which the momentum px 

is known and the position x in the same experiment is known within 
an accuracy Dx. There are exactly similar relations for the other two 
components.

				    	 ...(1.7)

				    	 ...(1.8)
	 (ii)	The uncertainties involved in simultaneous measurement of energy 

and time are given by,

				    	 ...(1.9)

		  The above relation means that an energy determination that has 
an uncertainty DE must occupy at least a time interval . 

Alternatively, if a system is in a given state for not longer than Dt, the 
energy of the system in that state is uncertain, at least by an amount 

.

It is important to note that position–momentum uncertainty relation 
given by the Equations (1.6), (1.7) and (1.8) and the time energy uncertainty 
relation given by the Equation (1.9) are quite different because the position 
and momentum variables can be measured at a given time and they play 
symmetric roles, whereas energy and time play different roles, the energy 
being a variable and the time being a parameter.

1.4.1	 Physical Origin of the Uncertainty Principle

Bohr proposed a thought experiment which is aimed at measuring the position 
of an electron accurately by observing it through a microscope. For viewing, 
the electron needs to be illuminated by light. In the process of illumination, 
the electron recoils because of Compton effect in a way that cannot be 
determined completely. Hence, the electron gets disturbed from its position. 
The disturbance can be decreased by using light of very weak intensity. 
The weakest that can be used is to assume that the electron is observable if 
only one scattered photon enters the objective lens of the microscope. The 
momentum of the incident photon for the light of frequency n is,
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PostulatesIf 2 q be the angle subtended by the objective lens at the electron then the 
electron can be viewed provided a photon of the incident light gets scattered 
within the angular range 2 q as illustrated is the Figure 1.6.

Fig. 1.6

Clearly, the x-component of the momentum of the photon can have any 
value from – p sin q to + p sin q. After, scattering, the momentum becomes 
uncertain by an amount Dpx given by,

Dpx = p sin q – (– p sin q) = 2p sin q

or		  Dpx = ​ 2h ___ 
l

 ​ sin q	 ...(1.10) 

In the photon-electron collision, the linear momentum remains 
conserved and hence the electron receives a recoil momentum in the 
x-direction equal to the x-momentum change in the photon. Thus, the 
uncertainty of the x-component of the momentum of the electron is,

Dpx = 2 ​ h __ 
l

 ​ sin q.

It is possible to reduce Dpx by using light of longer wavelength and/or 
using microscope with an objective lens subtending a smaller angle at the 
electron.

We know that the image of a point object formed by a convex lens is 
not a point; instead, it is a diffraction pattern. It is the resolving power of 
the microscope which determines the accuracy with which the electron can 
be located. Thus, the uncertainty in the position of the electron is equal to 
the linear separation between two point objects just resolvable in the image 
which is given by,

				    Dx = ​  l _____ sin q ​	 ...(1.11)
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such that the one scattered photon at our disposal must originate 
somewhere within this range of the axis of the microscope.

Using the above results we get the product of the uncertainties in px 
and x to be given by,

		  	 ...(1.12)
If we use light of short wavelength, say gamma rays, to reduce Dx, we 
simultaneously increase the Compton recoil and hence increase the Dpx 
and conversely. Similarly, if we use a lens of small aperture to reduce q, 
Dpx is reduced but Dx increases and conversely. Thus it is not possible to 
simultaneously make Dpx and Dx as small as we may wish because the 
procedure that makes one small makes the other large.

Let us consider the electron to move freely along the x-axis, then its 
energy is given by,

				    	 ...(1.13)
If px is uncertain by D px, then the uncertainty in the energy is,

			   	 ...(1.14)

In the above,  is the recoil velocity of the electron along the 
x-axis which is illuminated with light. If Dt is the time interval required for 
the observation of the electron then the uncertainty in the portion of the 
electron is,

					     Dx = nx Dt	 ...(1.15)

From the above, we have

or		    Dpx Dx = DE Dt	 …(1.16)

Using  , we obtain

			   	 …(1.17)

Discussions

Heisenberg’s uncertainty relations have their roots in experiments.
If uncertainty principle is considered to be the fundamental principle 

of nature then wave particle duality of matter and radiation becomes obvious 
as can be understood from the following.
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information about momentum and energy while the wave description of the 
same entity provides information about place and time. From uncertainty 
principle of Heisenberg we find that every determination of exact position 
carries with it large uncertainty in the momentum and vice-versa. Similarly, 
every determination of exact time involves a large uncertainty in energy and 
vice-versa. Thus, an experiment that aims the radiation to reveal its wave 
character strongly suppresses its particle character. Similarly, an experiment 
aiming to reveal particle character of radiation, strongly suppresses the wave 
character. Thus experiments do not allow the wave and particle characters to 
come face to face under the same experimental situation which could make 
duality obvious.

We also see that the de-Broglie relation  and Einstein’s relation  
E = hn which hold for both matter and radiation when combined with 
properties universal to wave give the uncertainty relations of Heisenberg. 
We can thus say that Heisenberg’s uncertainty relations stem from wave–
particle duality.

1.5	 POSTULATES OF QUANTUM MECHANICS

The foundation of any physical theory rests on some hypotheses or postulates 
which are regarded as fundamental to the theory. The theory thus founded 
provides a logical as well as mathematical connection between the postulates 
and their observational consequences which are usually the predictions of 
the theory.

The basic elements (constructs) of the modern theory as developed 
by Schrödinger, Heisenberg, Jordan, Max Born, Dirac and many others, are 
(i) Physical System (ii) Observable (iii) Operator and (iv) State of Physical 
System.

Before we state and discuss the basic postulates of quantum theory 
in relation to these elements it is desirable to discuss these elements briefly.
	 (i)	Physical System: A physical system will be generally defined as an 

object of interest to the experimentalist. Thus, it may be an electron, a 
photon, a nucleus, or any combination of these which can be made the 
object of systematic study. The results of such systematic study will, 
in general, be represented by sets of real numbers which have been 
obtained from specific measurements or operations performed on the 
system.

	 (ii)	Observable: The operations will have been performed to determine 
certain properties of the system, such as its mass, size, energy, 
momentum, position or, in general, any function of the coordinates 
and momenta. Such properties of the system are called its observables. 
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In this sense, the observables of a physical system are actually more 
representative of certain operations which can be performed on the 
system rather than they are of the system itself.

	 (iii)	Operator: Operator are associated with each measurable parameter 
in a physical system and are termed as quantum mechanical operator. 

	 (iv)	The State of Physical System: It is possible to prepare systems in 
such a way that there will, in general, be one or more observables 
which yield identical results upon repeated measurements. For any 
particular method of preparation, the observable which exhibits this 
type of behaviour is said to have sharp values. The state of a physical 
system will then be defined in terms of the observables which are sharp, 
together with their particular values. The method of preparation of the 
system will determine which of its observables are sharp. Hence, the 
method of preparation determines the state of a physical system.

1.5.1	 Basic Postulates of Quantum Mechanics

The purpose of the basic postulates of the quantum theory is to correlate 
the constructs defined above in such a way that the result of the correlation 
becomes physically meaningful in terms of the results of experiments. Thus, 
the postulates should provide an explicit definition for the constructs of states, 
in a mathematically meaningful fashion.
Postulate 1: To every quantum mechanical state of a physical system of ‘s’ 
degree of freedom, there corresponds a function y, called the wave function. 
In general, y is a complex-valued function of generalized coordinates q1, 
q2, ......, qs and time ‘t’. The function y and its derivatives are single-valued, 
continuous and quadratically integrable over the entire domain of definition.

The representation in which the wave functions are functions 
of coordinates and time is called coordinate representation, while the 
representation in which the wave functions are functions of the momentum 
components and time is called the momentum representation. In order to 
extract physically meaningful information from wave functions, the second, 
third and fourth postulates have been made.
Postulate 2:  For every observable of a physical system, there corresponds 
a Hermitian operator.

In the Table 1.1 below are given classical representations and corresponding 
quantum mechanical operators for the observables of a single particle.

Table 1.1  Quantum Mechanical Operators

Observable Classical Representation Operator

x-Coordinate x x

y-Coordinate y y

z-Coordinate z z
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Postulate 3: The only possible result of a precise measurement of an 
observable A whose corresponding operator is Â are the eigenvalues an which 
are the solutions of the eigenvalue equation,
				    Âyn = anyn	

where {yn} forms a complete set of functions called eigenfuctions of 
Â. This means that any arbitrary state function can be expressed as a linear 
combination of the eigenfunctions. 
Postulate 4: When a system is in a state described by the wave function y, 
the expected mean or expectation value, of a series of measurement of an 
observable, say A, is

				    		

where Â is the operator corresponding to the observable A and the 
integration is carried over the entire domain of definition.

It is usual to consider any state function, namely the wave function y 
to be normalized, i.e.,

					     * dy y tÚ  = 1	
With normalized wave function, Eq. (ii) gives

				    	

To study the development of the state of a quantum system, a fifth 
postulate has been introduced.
Postulate 5: The state function  of a physical system are solutions of 
the differential equation
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where the operator Ĥ corresponds to the total energy of the physical 
system at time t. It is, in general, a function of the operators for  and time t.

1.5.2	 Consequences of the Postulates

The postulates stated in the last section have consequences which serve to 
establish the fundamental properties of the quantum theory. Besides, they 
tell us how these properties differ from those of classical theory. In the 
sub-sections which follow we discuss the general properties of the states of 
physical systems at a given instant of time (Quantum Statics).

Eigenstates

It is usual to assume any state function, say f, to be normalized. As such the 
expectation value of an observable A in that state is,

				    	 ...(1.18)

Let us now suppose that the state function f is an eigenfunction of Â , 
say yn, belonging to eigenvalue an. Equation can then be written as

				    	 ...(1.19)

	 But we have the eigenvalue equation,

Âyn = anyn

And hence

			   	 …(1.20)

Thus if the state of a system is an eigenfunction of the operator 
corresponding to a certain observable of the system then the expectation 
value of the observable is that eigenvalue of the operator which belongs to 
the given eigenfunction.

The observable then exhibits a sharp value. If a system exists in a 
state such that an observable exhibits a sharp value then that state is called 
an eigenstate of that observable. For example, if a physical system exists in 
a state such that repeated measurement of the total energy yields the same 
value W, then the system is considered to be in an eigenstate of energy, or in 
an energy eigenstate corresponding to the sharp value W, i.e., corresponding 
to the energy eigenvalue W.

Superposition States

Consider the system in a state described by the state function f in which the 
observable A dose not exhibit a sharp value. The repeated measurement of 
the observable A then results in a spectrum of values, However, the result of 
any one measurement remains unpredictable, except within certain limits. 



NOTES

Self-Instructional
Material 	 17

PostulatesTo illustrate this, let us suppose that the system is in an energy eigenstate, 
say f, and the observable to be measured be the linear momentum . Let 
the momentum operator have a complete set of momentum eigenfunctions 
say {yn}. We can then express f as the linear superposition,

				    	 ...(1.21)

The expectation value of the momentum of the system in state f is, 
by definition, 

    ...(1.22)

The above result needs interpretation.
According to Postulate 2, the only possible result of a measurement 

of the momentum is one of the eigenvalues of the momentum operator. Let 
a series of measurements of the momentum of the system yield the various 
eigenvalues pn with corresponding relative frequencies wn. The mean value 
of the momentum can then be expressed mathematically as,

				    	 ...(1.23)

In view of Equations (1.22) and (1.23) it is reasonable to assume that 
|an|

2 of Equation (1.22) are exactly the wn of Equation (1.23). Since f is 
normalized, we have,

Using Equation (1.21) the above gives,
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Whence we get

				    	

Thus, |an|
2 ≤ 1, for all n, as they should be, if the |an|

2 are equal to wn.
If an observable A of a system on measurement exhibits a range of 

values an together with a given frequency distribution wn, the system is said 
to be in a superposition of eigenstates of Â or simply in a superposition state 
of Â.

It is important to note that while f represents a superposition state 
relative to one operator, it is, in general, an eigenstate of some other operator.

Check Your Progress

	 7.	What will be the momentum of the incident photon for the light of 
frequency n?

	 8.	What is the uncertainty in the position of the electron for the linear 
separation?

	 9.	What are the basic elements (constructs) of the modern theory?
	 10.	  What are observables?
	 11.	What is the purpose of the basic postulates of the quantum theory?
	 12.	When an observable is called an eigenstate? 

1.6	 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS

	 1.	The study of quantum phenomena has come to be known as quantum 
physics.

	 2.	The theory of relativity extends the range of application of physical laws 
to the region of very high velocities and just as the universal constant 
of fundamental significance ‘c’ (speed of light in vacuum) characterizes 
relativity, so a universal constant of fundamental significance ‘h’ 
(Planck’s constant) characterizes quantum physics. 

	 3.	Louis de-Broglie suggested that the idea of duality should be extended 
not only to radiation but also to all microparticles. He hypothesized 
that just as a quantum of radiation has a wave associated with it 
which governs its motion in space, so also a quantity of matter has a 
corresponding wave (which may be called matter wave) that governs 
its motion in space. 
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and radiation. De-Broglie agreed that since one of the entities, namely 
radiation, has dual nature, the other entity matter must also exhibit dual 
character. His hypothesis is consistent with the symmetry principle of 
nature.

	 4.	De-Broglie proposed to associate, with every microparticle, corpuscular 
characteristics namely energy E and momentum p on the one hand, 
and wave characteristics namely frequency n and wavelength l on the 
other hand. According to de-Broglie, the mutual dependence between 
the characteristics of the two kinds was accomplished, through the 
Planck’s constant h as

		        E = hn  and  p = ​ hn ___ c ​ = ​ h __ 
l

 ​	
		  This relation is known as de-Broglie’s equation. 
		  The wavelength l of matter wave associated with a microparticle is 

called de-Broglie wavelength of the particle. 
	 5.	The wavelength of electrons impinging the crystal are given by l = ​ h __ p , 

according to de-Broglie’s equation.
	 6.	 The radiation and matter of the observable universe exhibit both 

wave and particle characteristics. Radiation behaves as wave in its 
propagation but the same radiation exhibits particle behavior in its 
interaction with matter.

	 7.	The momentum of the incident photon for the light of frequency n is,

		
		  If 2 q be the angle subtended by the objective lens at the electron then 

the electron can be viewed provided a photon of the incident light gets 
scattered within the angular range 2 q

	 8.	The uncertainty in the position of the electron is equal to the linear 
separation between two point objects just resolvable in the image which 
is given by,

				    Dx = ​  l _____ sin q ​	
		  such that the one scattered photon at our disposal must originate 

somewhere within this range of the axis of the microscope.
	 9.	The basic elements (constructs) of the modern theory as developed by 

Schrödinger, Heisenberg, Jordan, Max Born, Dirac and many others, 
are (i) Physical System (ii) Observable (iii) Operator and (iv) State of 
Physical System.

	 10.	 The operations will have been performed to determine certain properties 
of the system, such as its mass, size, energy, momentum, position or, in 
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general, any function of the coordinates and momenta. Such properties 
of the system are called its observables.

	 11.	The purpose of the basic postulates of the quantum theory is to correlate 
the constructs defined above in such a way that the result of the 
correlation becomes physically meaningful in terms of the results of 
experiments. Thus, the postulates should provide an explicit definition 
for the constructs of states, in a mathematically meaningful fashion.

	 12.	 If a system exists in a state such that an observable exhibits a sharp 
value then that state is called an eigenstate of that observable.

1.7	 SUMMARY

	 •	 The study of quantum phenomena has come to be known as quantum 
physics.

	 •	 Like classical physics, quantum physics also has been provided with a 
mathematical apparatus. The currently accepted structure developed by 
Schrödinger, Heisenberg, Max Born, Jordan, Dirac and many others to 
deal with problems in the microdomain, i.e., at atomic and subatomic 
levels is termed as quantum mechanics.

	 •	 The theory of relativity extends the range of application of physical laws 
to the region of very high velocities and just as the universal constant 
of fundamental significance ‘c’ (speed of light in vacuum) characterizes 
relativity, so a universal constant of fundamental significance ‘h’ 
(Planck’s constant) characterizes quantum physics which includes 
classical physics as a special case.

	 •	 Around 1923, Louis de-Broglie suggested that the idea of duality should 
be extended not only to radiation but also to all microparticles. He 
hypothesized that just as a quantum of radiation has a wave associated 
with it which governs its motion in space, so also a quantity of matter 
has a corresponding wave (which may be called matter wave) that 
governs its motion in space. 

	 •	 The universe is essentially composed of only two entities namely matter 
and radiation. De-Broglie agreed that since one of the entities, namely 
radiation, has dual nature, the other entity matter must also exhibit dual 
character. His hypothesis is consistent with the symmetry principle of 
nature.

	 •	De-Broglie proposed to associate, with every microparticle, corpuscular 
characteristics namely energy E and momentum p on the one hand, 
and wave characteristics namely frequency n and wavelength l on the 
other hand. According to de-Broglie, the mutual dependence between 
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Postulatesthe characteristics of the two kinds was accomplished, through the 
Planck’s constant h as

		        E = hn  and  p = ​ hn ___ c ​ = ​ h __ 
l

 ​	
		  This relation is known as de-Broglie’s equation. 
	 •	The wavelength l of matter wave associated with a microparticle is 

called de-Broglie wavelength of the particle. 
	 •	The wavelength of electrons impinging the crystal are given by l = ​ h __ p , 

according to de-Broglie’s equation.
	 •	 In the process of acceleration, an electron behaves like a particle of 

charge – e and mass m.
	 	During the process of diffraction, the same electron behaves like a 

wave of wavelength l = ​ 
	 •	 In classical physics, energy is transported either by particles or by 

waves. Some macroscopic phenomena can be explained using a particle 
model while some other using a wave model.

	 •	A microparticle to some extent is like a corpuscle and to some extent 
like a wave. The extents to which it is a corpuscle or a wave depends 
upon the conditions under which it is considered.

	 •	Equations of motion in classical mechanics (Newton’s equation, 
Lagrange’s equations, Hamilton’s canonical equations) can be solved to 
find exactly the position and momentum (the two quantities that define 
the state of the system) of the system at all future and past instants of 
time from a knowledge of the position and momentum of the system 
at some given instant of time.

	 •	Bohr proposed a thought experiment which is aimed at measuring the 
position of an electron accurately by observing it through a microscope.

	 •	 In the photon-electron collision, the linear momentum remains 
conserved and hence the electron receives a recoil momentum in the 
x-direction equal to the x-momentum change in the photon. 

	 •	The uncertainty in the position of the electron is equal to the linear 
separation between two point objects just resolvable in the image which 
is given by,

				    Dx = ​  l _____ sin q ​	
		  such that the one scattered photon at our disposal must originate 

somewhere within this range of the axis of the microscope.
	 •	The corpuscular description of an entity (matter or radiation) gives 

information about momentum and energy while the wave description 
of the same entity provides information about place and time. 
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	 •	 From uncertainty principle of Heisenberg we find that every 
determination of exact position carries with it large uncertainty in the 
momentum and vice-versa. 

	 •	The de-Broglie relation  and Einstein’s relation E = hn which hold 
for both matter and radiation when combined with properties universal 
to wave give the uncertainty relations of Heisenberg.

	 •	The foundation of any physical theory rests on some hypotheses or 
postulates which are regarded as fundamental to the theory. The theory 
thus founded provides a logical as well as mathematical connection 
between the postulates and their observational consequences which 
are usually the predictions of the theory.

	 •	The basic elements (constructs) of the modern theory as developed by 
Schrödinger, Heisenberg, Jordan, Max Born, Dirac and many others, 
are (i) Physical System (ii) Observable (iii) Operator and (iv) State of 
Physical System.

	 •	A physical system will be generally defined as an object of interest to 
the experimentalist. Thus, it may be an electron, a photon, a nucleus, or 
any combination of these which can be made the object of systematic 
study. 

	 •	The operations will have been performed to determine certain properties 
of the system, such as its mass, size, energy, momentum, position or, in 
general, any function of the coordinates and momenta. Such properties 
of the system are called its observables.

	 •	The purpose of the basic postulates of the quantum theory is to correlate 
the constructs defined above in such a way that the result of the 
correlation becomes physically meaningful in terms of the results of 
experiments. Thus, the postulates should provide an explicit definition 
for the constructs of states, in a mathematically meaningful fashion.

	 •	To every quantum mechanical state of a physical system of ‘s’ degree 
of freedom, there corresponds a function y, called the wave function.

	 •	 For every observable of a physical system, there corresponds a 
Hermitian operator.

	 •	 If the state of a system is an eigenfunction of the operator corresponding 
to a certain observable of the system then the expectation value of the 
observable is that eigenvalue of the operator which belongs to the given 
eigenfunction.

	 •	 If an observable A of a system on measurement exhibits a range of 
values an together with a given frequency distribution wn, the system 
is said to be in a superposition of eigenstates of Â or simply in a 
superposition state of Â.
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1.8	 KEY WORDS

	 •	Quantum physics: The study of quantum phenomena has come to be 
known as quantum physics.

	 •	Bohr thought experiment: It was proposed by Bohr which is aimed 
at measuring the position of an electron accurately by observing it 
through a microscope.

	 •	Uncertainty principle: It is considered to be the fundamental principle 
of nature then wave particle duality of matter and radiation becomes 
evident.

	 •	Physical system: It may be an electron, a photon, a nucleus, or any 
combination of these which can be made the object of systematic 
study, and the results of the study is generally represented by sets of 
real numbers which have been obtained from specific measurements 
or operations performed on the system.

	 •	Observable: The operations will have been performed to determine 
certain properties of the system, such as its mass, size, energy, 
momentum, position or, in general, any function of the coordinates and 
momenta. Such properties of the system are called its observables.

	 •	Operator: Operators in quantum mechanics are associated with each 
measurable parameter in a physical system and are also termed as the 
quantum mechanical operator.

	 •	Postulates: It provides an explicit definition for the constructs of states, 
in a mathematically meaningful fashion.

1.9	 SELF ASSESSMENT QUESTIONS AND 
EXERCISES

Short Answer Questions

	 1.	When was quantum mechanics developed?
	 2.	Name the areas where the quantum mechanics is used.
	 3.	What is wave particle duality?
	 4.	What dose GP Thomson’s experiment state?
	 5.	Define the term uncertainty principle.
	 6.	What are postulates in quantum mechanics?
	 7.	What are the basic elements (constructs) of the modern theory for 

postulates?
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Long Answer Questions

	 1.	Briefly discuss about the origin, history and significance of quantum 
mechanics.

	 2.	Discuss the wave nature of microparticles as stated by de-Broglie’s 
hypothesis.

	 3.	Briefly explain Davisson and Germer’s experiment with the help of a 
diagrams.

	 4.	Prove that the Thomson’s experiment is analogous to Debye-Scherrer 
X-ray diffraction method.

	 5.	Explain wave particle duality.
	 6.	Briefly explain the uncertainty principle. What is the Heisenberg 

explanations for the uncertainty principle?
	 7.	Discuss in detail about the physical origin of the uncertainty principle.
	 8.	Briefly explain the basic postulates of quantum mechanics. What is 

the purpose of these postulates?
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UNIT 2	 SCHRÖDINGER EQUATION
Structure 
	 2.0	 Introduction
	 2.1	 Objectives
	 2.2	 Schrödinger Equation

	 2.2.1	 Dynamical State of a Microparticle: Concept of Wave Function
	 2.2.2	 Concept of Wave Packet

	 2.3	 Time Dependent Schrödinger Equation 
	 2.3.1	 Operators Corresponding to Energy and Linear Momentum
	 2.3.2	 Time-Dependent Schrödinger Equation for a Particle Moving in a Force 

Field
	 2.3.3	 Stationary States

	 2.4	 Time Independent Schrödinger Equation 
	 2.5	 Ehrenfest’s Theorem
	 2.6	 Eigenfunctions and Eigen Vectors 

	 2.6.1	 Eigenfunctions and Eigenvalues of a Linear Operator 
	 2.6.2	 Eigenvalue Equation 
	 2.6.3	 Discrete and Continuous Spectra of Eigenvalues of Operators 
	 2.6.4	 Hermitian Operator 
	 2.6.5	 Important Theorems on Operators 

	 2.7	 Probability Density
	 2.7.1	 Normalized Wave Function
	 2.7.2	 Probability Current Density
	 2.7.3	 Normalization Integral, a Constant of Motion 
	 2.7.4	 Expectation Value of a Physical Quantity
	 2.7.5	 Acceptable Wave Functions for a Physical System

	 2.8	 Answers to Check Your Progress Questions
	 2.9	 Summary
	 2.10	 Key Words
	 2.11	 Self Assessment Questions and Exercises
	 2.12	 Further Readings

2.0	 INTRODUCTION

In physics, the Schrödinger equation is a linear partial differential equation 
that describes the wave function or state function of a quantum-mechanical 
system. It is a key result in quantum mechanics, and its discovery was a 
significant landmark in the development of the subject. The equation is named 
after Erwin Schrödinger, who derived the equation in 1925, and published 
it in 1926, forming the basis for the work that resulted in his Nobel Prize in 
Physics in 1933. Schrödinger’s equation can be derived from the fact that the 
time-evolution operator must be unitary, and must therefore be generated by 
the exponential of a self-adjoint operator, which is the quantum Hamiltonian.
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The theory of Schrödinger equation was based on de-Broglie’s concept 
of matter-wave. The theory aims at setting up a differential equation (wave 
equation) for a wavefunction that can describe the detailed behaviour of 
matter wave. The theory provides a quantitative formulation of some of the 
basic principles of quantum mechanics, shows how a wave theory of matter 
works out in practice, tells how physical quantities, for systems for which 
the laws of classical mechanics are not applicable, can be actually computed 
within the framework of the theory.

The Schrödinger equation for a free non-relativistic particle may be 
arrived at by making straightforward uses of the new concepts that have 
been obtained in the domain of microscopic particles. Schrödinger’s time-
independent equation can be solved analytically for a number of simple 
systems. The time-dependant equation is of the first order in time but of the 
second order with respect to the co-ordinates, hence it is not consistent with 
relativity. 

Max Born and Jordan in 1926 gave a probabilistic interpretation of the 
wave function which is characteristic of and fundamental to the Schrödinger 
theory. This interpretation of the wavefunction is found to be both convenient 
and physically transparent enabling us to make precise computations 
regarding the behaviour of the particle. According to Max Born and Jordan, 
the wavefunction describes the probability distribution of the particle in 
space and time.

In this unit, you will study about the Schrödinger equation, wave packet, 
group velocity and wave packet, time dependent Schrödinger equation, time 
independent Schrödinger equation, Ehrenfest’s theorem, eigenfunction and 
eigen vectors, Hermitian operator and probability density.

2.1	 OBJECTIVES

After going through this unit, you will be able to:
	 •	Understand and use the Schrödinger equations
	 •	Explain about the wave packet and group velocity
	 •	 Interpret time dependent Schrödinger equation
	 •	Explain time independent Schrödinger equation
	 •	Define Ehrenfest’s theorem
	 •	Calculate the eigenfunction and eigen vectors
	 •	Evaluate Hermitian operator 
	 •	Understand the probability density for the Schrödinger wavefunction
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2.2	 SCHRODINGER EQUATION

The theory of Schrödinger equation was formulated by Erwin Schrödinger 
in the year 1926. His formulation is based on de-Broglie’s concept of matter 
wave. The theory aims at setting up a differential equation (wave equation) 
for a wavefunction that can describe the detailed behaviour of matter wave.
The main assumptions made in the theory of Schrödinger equation are:
	 (i)	Creation and destruction of material particles do not take place.
	 (ii)	All material particles move with small velocities so that they can be 

treated non-relativistically.
Inspite of the above assumptions, the theory has proved to be immensely 

successful when applied to atoms and molecules. The theory provides 
a quantitative formulation of some of the basic principles of quantum 
mechanics, shows how a wave theory of matter works out in practice, tells how 
physical quantities, for systems for which the laws of classical mechanics are 
not applicable, can be actually computed within the framework of the theory.

The Schrödinger equation for a free non-relativistic particle may be 
arrived at by making straightforward uses of the new concepts that have been 
obtained in the domain of microscopic particles.

2.2.1  Dynamical State of a Microparticle: Concept of Wave 
Function

The trajectory of a particle becomes known if the coordinate and momentum 
of the particle are known at every moment of time. In other words, the 
trajectory is known if x and  are known at all time t.

According to Heisenberg’s uncertainty relation, a microparticle cannot 
simultaneously possess a definite coordinate, say, x and a definite projection 
of momentum px. Thus, the concept of trajectory of a microparticle, strictly 
speaking, is not applicable.

The rejection of trajectory concept is related to the existence of wave 
properties in microparticles which do not permit us to consider a microparticle 
as a classical corpuscle. The motion of a microparticle along the x-axis cannot 
be associated with the differentiable function x(t) which is so widely used 
in dealing with the motion of classical objects. From a known value of x of 
the microparticle at an instant of time t, it is impossible to predict the value 
of x at the time t + dt. A microparticle is fundamentally different form a 
classical corpuscle primarily because (i) it does not have a trajectory which 
is an essential attribute of a classical corpuscle, (ii) the use of coordinate, 
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momentum, angular momentum, energy when considering microparticle 
become restricted to the framework of uncertainty relations.

Wave concepts are radically different from corpuscular concepts. Hence 
it is not surprising that the striking contrast between classical corpuscles and 
microparticle is explained by the existence of wave properties in the latter. 
It is the wave properties which account for the uncertainty relations and all 
the consequences resulting from them. We must, however, note that while 
a microparticle is not a classical corpuscle on one hand, it is not a classical 
wave on the other hand.

Thus, certain questions, unknown to classical physics, arise about the 
state and the method of describing the state of a microparticle in a new light.

We know that a classical wave possesses a characteristic frequency (n), 
a wavelength (l) and the phase velocity (vp) related according to,

				    vp = nl (= w/k)	 ...(2.1)

Besides, any wave motion is described by a quantity which is a 
continuous function of position in space and of time. For example, an 
electromagnetic wave propagating along the x-axis is described by electric 
and magnetic fields varying with position and time, such as,

				    E = E0 sin (wt – kx)
				    B = B0 sin (wt – kx)	 ...(2.2)
Similarly, a sound wave passing through an extended medium is 

described by the variation of pressure in the medium with position and 
time. By analogy, the wave belonging to a microparticle may be described 
by some entity which varies with position in space and time. This variable 
entity (function) is usually denoted as y(​​

_
 › r ​, t) and is called wave displacement 

function or wave function. For generality, unlike for a classical wave motion, 
the wave function which may be used to describe the wave character and the 
state of a microparticle is taken as a complex valued function of position of 
space and time.

The wave associated with a microparticle is of infinite extent because 
according to Heisenberg’s uncertainty principle, the position of the particle 
becomes completely unknown if its momentum is taken to be well defined. 

The infinite plane wave corresponding to a microparticle of mass ‘m’ 
moving freely along the x-axis with a well defined momentum px can be 
described by the wave function y(x, t) given by,

			   y(x, t) = Aei (kx – wt)	 ...(2.3)
Where A is the constant amplitude,

			   k = 22 x xp p
h
pp = =

l �
	 ...(2.4)
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And		  w = 2pn = 2 E E

h
p =

�
	 ...(2.5)

	 In the above, E is the energy of the particle. Writing E = mc2, according 
to Einstein’s mass–energy relation, we obtain,

				    w = 
2mc
�

	 ...(2.6)

The velocity u of the de-Broglie wave is thus,

			   u = nl = 
2 2

2
h mc c

mv mv v
w = ¥ =
p

�
�

	 ...(2.7)

Since c is the maximum speed that can be attained by any material 
particle according to Einstein’s special theory of relativity, we must have v 
< c so that the speed of the de-Broglie wave u is greater than c and hence 
greater than v. The de-Broglie wave associated with the particle thus travels 
faster than the particle itself which is a contradictory result. We thus find that 
a microparticle cannot be described by a single wave train.

2.2.2  Concept of Wave Packet

An important question that arises and that needs to be settled is about a 
mathematical description of a microparticle which jointly displays particle 
as well as wave characteristics. The mathematical scheme must embody the 
two features simultaneously.

In classical physics, a particle is well localized in space by which 
we mean that the position and velocity (momentum) of the particle can 
be simultaneously determined with unlimited accuracy. As seen earlier, a 
microparticle is described by a wave function corresponding to the matter 
wave associated with it. A wave function, however, depends on the whole 
space and hence cannot be localized. A wave function may, however, describe 
the dynamical state of the particle if it vanishes everywhere except in the 
immediate neighbourhood of the particle or the neighbourhood of the classical 
trajectory. In other words, a particle which is localized within a certain region 
of space can be described by a matter wave function whose amplitude is large 
in that region and zero outside it. Such matter wave will then be localized 
around the region of space within which the particle is confined.

A localized wave function is called a wave packet. A wave packet 
representing a particle is formed as a result of superposition of a group of 
waves each having slightly different velocities and wavelengths, the phases 
and amplitudes of waves at any instant of time being so chosen that they 
interfere constructively over that small region where the particle is most likely 
to be located at that instant and destructively elsewhere so that the amplitude 
reduces to zero. This has been illustrated in Figure (2.1).
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Wave packets find application in describing isolated particles 
which are confined in a certain region. The concept of wave function is a 
mathematical representation of particle-like as well as wave-like behaviours 
of microparticles and hence provides a link between quantum mechanics and 
classical mechanics.

vg (Group velocity)

Phase velocity

Amplitude

x

Fig. 2.1  Group and Phase Velocity

A one-dimensional wave packet which may describe a classical particle 
confined to a one-dimensional region, say, a particle moving along the x-axis 
can be mathematically constructed by superposing an infinite number of plane 
waves with slightly different wave number k, all moving along the x-axis, by 
means of Fourier transforms. The wave, packet thus obtained is represented 
by the wave function y(x, t) given by

			   y(x, t) = [ – ]

–

1 ( )
2

i kx tk e dk
+•

w

•

f
p Ú 	 ...(2.8)

Where f(k) is the amplitude and the frequency w is a function of k,

				    w = w(k)	 ...(2.9)

Group Velocity of a Wave Packet

Since our interest lies with localized particles, we need such superposition 
which leads to a wave group travelling without change of shape. This becomes 
possible if f(k) is zero for all values of k excepting those within a small range 
Dk given by,

	     0 0 0– ,
2 2
k kk k k k kD DÊ ˆ Ê ˆ< < + D <<Á ˜ Á ˜Ë ¯ Ë ¯

            ...(2.10)
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Schrödinger EquationIt is then possible to expand w(k) as a power series in (k – k0) about k0 as,

w(k) = 
=

wÊ ˆw + +Á ˜Ë ¯
0

0 0( ) ( – ) ... smaller terms
k k

dk k k
dk

or	            w(k) = w0 + (k – k0) 
d
dk
w                   ...(2.11)

Where we have written, 
	 w(k0) = w0	 ...(2.12)

And	
0k k

d d
dk dk=

w wÊ ˆ =Á ˜Ë ¯
	 ...(2.13)

	 We then obtain,

		  y(x, t) = 0 0– – ( – )

–

1 ( )
2

dikx i i k k t
dkk e dk

+• ww

•

f
p Ú

		  = 0 0 0 0– – – ( – )

–

1 ( )
2

dikx ik x ik x i t i k k t
dkk e dk

+• w+ w

•

f
p Ú

		  = 

D+
w

w

D

f
p Ú

0

0 0
0 0

0

2 ( – ) – ( – )( – )

–
2

1 ( )
2

kk
di k k x i k k ti k x t dk

kk

k e e dk

or		  y(x, t) = ​e​i(k0x – w0t)​ F(x, t)	 ...(2.14)	

Where	 F(x, t) = 
wÈ ˘

Í ˙Î ˚f
p Ú

0( – ) –1 ( )
2

di k k x t
dkk e dk 	 ...(2.15)

y(x, t) given by Equation (2.14) which represents the wave packet is a 
plane wave having propagation constant k0, angular frequency w0, propagating 
along the x-axis with amplitude F(x, t) which varies with position x and time 

t through the term – .dx t
dk

È ˘wÊ ˆ
Í Á ˜ ˙Ë ¯Î ˚

 Clearly the wave packet propagates with a 

velocity called the group velocity given by,

				    vg = d
dk
w 	 ...(2.16)

We may note that while the wave packet as a whole moves with group 
velocity vg, the individual waves, whose superposition makes the wave packet, 
travel with velocity called phase velocity or wave velocity.
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Equality of Group Velocity and Particle Velocity

The group velocity is given by,

	 vg = d
dk
w

or	 vg = d dp
dp dk
w 	 ...(2.17)

Using  E = w  and  p = k  we get

	 w = andE dp
dk

= �
�

	 ...(2.18)

So that vg becomes

	 vg = d E dE
dp dp

Ê ˆ =Á ˜Ë ¯
�

�
	 ...(2.19)

Let the wavepacket under consideration represent a freely moving 
particle of mass m moving with a non-relativistic velocity v. We then have,

	 E = 
2

2
p
m

	 ...(2.20)

So that	 dE p v
dp m

= = 	 ...(2.21)

We find form Equations (2.19) and (2.21),

	 vg = v	 ...(2.22)

Let us now consider a relativistic particle of rest mass m0 moving with 
momentum p. We then have the energy E of the particle given by,

	 E 2 = ​m​0​ 
2​ c4 + c2 p2	 ...(23)

On differentiation with respect to p, the above gives

	 22 2dEE c p
dp

=

or	

2 0
2

2 2

2
2

0 2

1 –

/ 1 –

m
c v

v
dE c p c
dp E vm c

c

= =

or	 dE
dp

 = v	 ...(2.24)
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Schrödinger EquationIn view of Equations (2.19) and (2.24) we find that the wave packets 
corresponding to both relativistic as well as non-relativistic particles have 
group velocity equal to particle velocity.

2.3	 TIME DEPENDENT SCHRODINGER EQUATION 

The wavelength l of the de-Broglie wave associated with a free particle of 
mass m moving along the x-axis with momentum px is given by,

	 l = 
x

h
p

	 ...(2.25)

The wave-vector k is related to the wavelength l as, 

	 k = 2p
l

	 ...(2.26)

From the above two equations, we get,

	 px = 
2

h hk k= =
l p

� 	 ...(2.27)

The kinetic energy E of the particle is related to the angular frequency 
w of the wave associated with it as,

	 E = w	 ...(2.28)
Further, we have,

	 E = 
2

2
px

m 	 ...(2.29)

So that Equations (2.27), (2.28) and (2.29) yield,

	 w = 
2 2 2 2

2 2 2
xpE k k
m m m

= = =� �
� � �

	 ...(2.30)

The wave function y(x, t) which describes the free particle localized 
in the region of the x-axis [refer to Equation (2.8)] is given by,

	 y(x, t) = ( – )

–

( ) i kx tA k e dk
+•

w

•
Ú 	 ...(2.31)

Using w given by Equation (2.30), the above becomes,

	 y(x, t) = 
2

–
2

–

( )
ki kx t
mA k e dk

È ˘+• Í ˙
Í ˙Î ˚

•
Ú

�

	 ...(2.32)

Differentiating Equation (2.32) with respect to time t, we get,
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È ˘
Í ˙
Í ˙Î ˚∂y =

∂ Ú
�

�
2

–
22( , ) – ( )

2

ki kx t
mx t i k A k e dk

t m
	 ...(2.33)

Further, differentiation of Equation (2.32) with respect to x gives,

	

2
–

2

–

( , ) ( )
ki kx t
mx t i k A k e dk

x

È ˘+a Í ˙
Í ˙Î ˚

a

∂y =
∂ Ú

�

The above on differentiation with respect to x gives,

	
È ˘+a Í ˙
Í ˙Î ˚

a

∂ y =
∂ Ú

� 2
2 –

22
2

–

( , ) – ( )
ki kx t
mx t k A k e dk

x
	 ...(2.34)

Multiplying Equation (2.33) by i  we obtain,

	
È ˘+a Í ˙
Í ˙Î ˚

a

∂y =
∂ Ú

�
�

�

2
2 –

22

–

( , ) ( )
2

ki kx t
mx ti k A k e dk

t m
	 ...(2.35)

In view of Equations (2.34) and (2.35) we obtain,

	
2 2

2
( , ) ( , )–

2
x t x ti
t m t

∂y ∂ y=
∂ ∂

�
� 	 ...(2.36)

Equation (2.36) is the one-dimensional time-dependent Schrödinger 
equation for a particle of mass m localized in the region of the x-axis and 
described by the wavefunction y(x, t).

Equation (2.36) can be extended to three dimensions in a straightforward 
manner. In three dimensions the wavefunction that describes the state of the 
particle is a function of position  in space and time t. It is obtained by 
generalizing Equation (2.8), whence we get,

	 y(​​
_
 › r ​, t) = 

È ˘
◊Í ˙

Í ˙Î ˚ÚÚÚ
� � � 2

–
2( )
ki k r t
m

x y zA k e dk dk dk

	 = 
È ˘+ + + +Í ˙Î ˚ÚÚÚ

� 2 2 2– ( )
2( )

x y z x y zi k x k y k z k k k t
m

x y zA k e dk dk dk 	...(2.37)

Differentiating Equation (2.37) with respect to t we obtain,

È ˘+ + + +Í ˙Î ˚∂y =
∂ ÚÚÚ

��
� 2 2 2– ( )

2 2( , ) – ( )
2

x y z x y zi k x k y k z k k k t
m

x y z
r t i k A k e dk dk dk
t m

The above gives, 
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∂ ÚÚÚ

��
�

�
2 2 22 – ( )

2 2( , ) ( )
2

x y z x y zi k x k y k z k k k t
m

x y z
r ti k A k e dk dk dk
t m

	 ...(2.38)

Differentiating Equation (2.37) with respect to x we get,

	

2 2 2– ( )
2( , ) ( )

x y z x y zi k x k y k z k k k t
m

x x y z
r t i A k k e dk dk dk
x

È ˘+ + + +Í ˙Î ˚∂y =
∂ ÚÚÚ

��

The above gives on differentiating with respect to x,

	
È ˘+ + + +Í ˙Î ˚∂ y =

∂ ÚÚÚ
�� 2 2 22 – ( )

2 2
2

( , ) – ( )
x y z x y zi k x k y k z k k k t

m
x x y z

r t k A k e dk dk dk
x

	...(2.39)

We similarly obtain,
È ˘+ + +Í ˙Î ˚∂ y =

∂ ÚÚÚ
�� 2 2 22 – ( )

2 2
2

( , ) – ( )
x y z x y zi k x k yk z k k k t

m
y x y z

r t k A k e dk dk dk
y

	 ...(2.40)

And
È ˘+ + + +Í ˙Î ˚∂ y =

∂ ÚÚÚ
�� 2 2 22 – ( )

2 2
2

( , ) – ( )
x y z x y zi k x k y k z k k k t

m
z x y z

r t k A k e dk dk dk
z

	 ...(2.41)

Adding Equations (2.39), (2.40) and (2.41), we get,

—2y(r, t) = 
È ˘+ + + +Í ˙Î ˚ÚÚÚ

� 2 2 2– ( )
2 2– ( )

x y z x y zi k x k y k z k k k t
m

x y zk A k e dk dk dk 	 ...(2.42)

Equations (2.38) and (2.42) give,

	
2

2( , ) – ( , )
2

r ti r t
t m

∂y = — y
∂

�
� �

� 	 ...(2.43)

Equation (2.43) is the three-dimensional time-dependent Schrödinger 
equation for a free particle described by the wavefunction y( , t). Equations 
(2.36) and (2.43) give the causal development or the time evolution of the 
wavefunctions describing the states of one-dimensional and three-dimensional 
motions of a free particle, respectively, undisturbed by any measurement.

2.3.1  Operators Corresponding to Energy and Linear Momentum

It is possible to write the one-dimensional Schrödinger equation for a free 
particle given by Equation (2.36) as,

	 1( , ) – – ( , )
2

i x t i i x t
t m x x

∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆy = yÁ ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂
� � � 	 ...(2.44)
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The energy E of the free particle is related to the momentum component 
px as,

	 E = 21 1 ( ) ( )
2 2x x xp p p

m m
= 	 ...(2.45)

Comparison of Equations (2.44) and (2.45) allows us to associate 
differential operators with the energy E and the momentum component px, 
which operate on the wavefunction y(x, t), as,

	 (E)op = Ê i
t

∂Æ
∂
� 	 ...(2.46)

And

	 (px)op = ˆ –xp i
x

∂Æ
∂
� 	 ...(2.47)

Extending the above for the three-dimensional case the operators 
associated with the momentum components px, py, pz are given as,

				  

ˆ –

–ˆ

–ˆ

x

y

z

p i
x

p i
y

p i
z

¸∂Æ Ô∂ Ô
Ô∂Æ ˝

∂ Ô
Ô∂Æ Ǫ̂∂

�

�

�

		  ...(2.48)

In view of the above, the operator corresponding to the linear 
momentum vector p� is,

ˆ ˆˆ ˆˆ ˆ ˆx y zp ip jp kp= + +�

i.e.,		
	                     ˆ –p iÆ —

��
� 	 ...(2.49)

	 ˆˆ ˆi j k
x y z

Ê ˆ∂ ∂ ∂— = + +Á ˜∂ ∂ ∂Ë ¯

�
.

2.3.2  Time-Dependent Schrödinger Equation for a Particle Moving 
in a Force Field

Let us now consider the particle to be moving in space under the influence 
of a force field and not freely. Under such a case, the particle possesses 
potential energy besides kinetic energy. Let us consider the potential energy 
of the particle to be a function of position ​​  and time t. Denoting the potential 
energy as V( , t), we may write the total energy of the particle,

	 E = 
2

( , )
2
p V r t
m

+ � 	 ...(2.50)
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Schrödinger EquationAccording to Schrödinger, the operators for ​​
_
 › r ​ and t are, respectively,

		 r̂ r=� � 	 ...(2.51)

And	 t̂  = t	 ...(2.52)
Replacing E, p, r and t by their respective operators given by Equations 

(2.46), (2.49), (2.50) and (2.51) in Equation (2.50) we obtain,

	
2

2– ( , )
2

i V r t
t m

∂ Æ — +
∂

� �
� 	 ...(2.53)

Allowing the operator Equation (2.53) to operate on the wave function 
y(​​

_
 › r ​, t) describing the state of the particle, we get,

	
2

2( , ) – ( , ) ( , )
2

r ti V r t r t
t m

È ˘∂y = — + yÍ ˙∂ Î ˚

�
� � �

� 	 ...(2.54)

Equation (2.54) is the time-dependent Schrödinger equation for a 
particle of mass m moving in space in a force field described by the potential 
energy function V( , t).

The operator 
2

2– ( , )
2

V r t
m

È ˘
— +Í ˙

Î ˚

� �  is the operator corresponding to the 

total energy of the particle or the Hamiltonion of the particle. It is usual to 
denote this operator as Ĥ  so that the Schrödinger Equation (2.54) can be 
written in its usual form as,

	 ( , ) ˆ ( , )r ti H r t
t

∂y = y
∂

�
�

� 	 ...(2.55) 

2.3.3  Stationary States

The time-dependent states of a quantum system are the solutions of the general 
time-dependent Schrödinger equation,

	
2

2( , ) – ( , ) ( , )
2

r ti V r t r t
t m

È ˘∂y = — + yÍ ˙∂ Î ˚

�
� � �

�

	 = Ĥ y( , t)	 ...(2.56) 

the operator Ĥ being the Hamiltonian for the system. The solution of the above 
equation when Ĥ is explicitly dependent on time is generally a difficult task 
and is treated most commonly by approximate methods. For the moment, it 
will suffice to consider conservative systems, that is, systems for which Ĥ 
does not depend explicitly on time. If such is the case, the above equation 
becomes,
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2

2( , ) – ( ) ( , )]
2

r ti V r r t
t m

È ˘∂y = — + yÍ ˙∂ Î ˚

�
� � �

� 		  ...(2.57) 

Since the operator i
t

∂Ê ˆ
Á ˜Ë ¯∂
�  on the left is independent of coordinates 

while the operator 
2

2– ( )
2

v r
m

È ˘
— +Í ˙

Î ˚

� �  on the right is independent of time, it is 

reasonable to use, as a trial solution of Equation (2.57), one in the separated 

form:

			   y(​​
_
 › r ​, t) = y( )T (t)	 ...(2.58) 

Substituting Equation (2.56) in Equation (2.57) we get, 

	
2

2( ) –( ) ( ) ( ) ( ) ( )
2

dT tr i r V r r T t
dt m

È ˘
y = — y + yÍ ˙

Î ˚

�� � � �
�

Dividing throughout by y( )T (t), we get 

	
2

21 ( ) 1 – ( ) ( ) ( )
( ) ( ) 2

dT ti r V r r
T t dt r m

È ˘
= — y + yÍ ˙y Î ˚

� � � �
� � 	 ...(2.59)

The left hand side of the above equation is a function of only time 
while the right hand side is a function of only coordinates. Hence for the 
above equation to hold, each side must be equal to some constant. Taking 
this constant as equal to E we obtain,

	 (a) ( )
( )
i dT t

T t dt
�  = E	 or ( )dT ti

dt
�  = ET(t)	 ...(2.60)

	 (b) 
2

21 – ( ) ( ) ( )
( ) 2

r V r r
r m

È ˘
— y + yÍ ˙y Î ˚

� � � �
�  = E

	 or             
2

2– ( ) ( )
2

V r r
m

È ˘
— yÍ ˙

Î ˚

� � �  = E y(r)	 ...(2.61)

Solution of Equation (2.60) is given by, 

	 T(t) = 
– i Et

e � 	 ...(2.62) 
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Schrödinger EquationUsing Equation (2.62) in Equation (2.58) we may write the solution 
of the Schrödinger Equation (2.57) as,

	 y( , t) = y( )
– i Et

e � 	 ...(2.63)

Equation (2.61) can be written as,

	 Ĥ y(​​ ) = Ey( )	 ...(2.64)
 
Where	 Ĥ = 

2 2
2 ˆ– ( ) ( )

2 2
pV r V r

m m
— + = +� � � 	 ...(2.65)

i.e.,		  Ĥ  = �Operator corresponding to kinetic energy + operator corresponding 
to potential energy. 

or	Ĥ  = �Operator corresponding to the total energy of the system. 

Equation (2.64) is the energy eigenvalue equation and the constant is 
thus identified as the energy eigenvalue. In general, Equation (2.64) has a 
complete set of solutions yn( ) such that, 

	 Ĥ yn( ) = Enyn( )	 ...(2.66) 

	En represent the possible results of energy measurement performed on 
the system. Including the time-dependent part, we have the wavefunction of 
the system, 

	 yn(​
​_

 › r ​, t) = yn(​
​_
 › r ​)

–
n

i E t
e � 	 ...(2.67)

	 Equation (2.67) gives the time-dependent states of the system.

The probability density, i.e., the probability of finding the particle, with 
energy eigenvalue En within unit volume about the position  at the instant 
t is given by, 

	     Pn( , t) = |yn( , t)|2

		 = 
–

* *( ) ( )n n
i iE t E t

n nr e r ey y� �� �

		 = |yn( )|2		 ...(2.68) 

We find that Pn( , t) = constant in time.		  ...(2.69) 
The states described by wavefunction such as yn( , t) given by Equation 

(2.67) for which the probability density is constant in time are called stationary 
or steady states of the system.
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Let us now consider an observable A for the system whose operator Â 
does not depend on time explicitly. By definition, the expectation value of 
A in the stationary state described by the wavefunction yn( , t) is given by,

= 
–

* 3

–

ˆ( , ) ( ) ( )
iEn iEnt t

n nr t e A r e d r
+•

•

y yÚ � �� � �

= * 3

–

ˆ( ) ( ) ( )n nr A r d r
+•

•

y yÚ � �  = Constant in time	 ...(2.70) 

We find that the expectation value of an observable, which is not an 
explicit function of time, in any stationary state is constant in time. 

We know that the equation of continuity for probability is given by 

	 ( , ) . ( , )P r t J r t
t

∂ + —
∂

� � � �  = 0	 ...(2.71) 

For stationary states, probability density P( , t) is independent of time 

so that ( , )P r t
t

∂
∂

�
 = 0. Clearly, for stationary states, the current density ( , t), 

according to Equation (2.71), satisfies

	
or 

	 	 ...(2.72)

Bound States

Under many physical situations, we come across states of a quantum system 
called the bound states. These are essentially stationary states which are 
described by wavefunctions which vanish at infinity. Clearly, for bound 
states, the probability density also vanishes at infinity. 

Superposition States 

As we have seen, the particular solutions of Equation (2.57) are of the form, 

	 yn(​
​_
 › r ​, t) = yn(​

​_
 › r ​) 

– niE
t

e � 	 ...(2.73) 

The general solutions of Equation (2.57) are of the form, 

	 yn(​
​_
 › r ​, t) = 

–

( , ) ( )y = yÂ Â �� � niE t
n n n n

n

a r t a r e 	...(2.74) 
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state of the system described by the wavefunction y( , t) [Equation (2.74)] 
is called a superposition state.

The probability density corresponding to the superposition state is 
given by, 

	 P(​​
_
 › r ​, t) = 

2–
2| ( , )| ( )y = yÂ �� � niE t

n n
n

r t a r e

	 = 
( – )

* *
ˆ ( ) ( )y yÂ Â �� � m ni E E t

m n m n
m n

a a r r e 	 ...(2.75) 

Clearly, P( , t) is not independent of time in a superposition state. 
Further, the expectation value of an observable A in a superposition state is 
given by, 

	

          = 
( – )

* * 3ˆ( ) ( ) ( )
m ni E E t

m n m n
m n

a a e r A r d ry yÂ Â Ú� � � � 	 ...(2.76)

As we have seen earlier yn’s are the energy eigenfunctions, i.e., the 
eigenfunctions of the Hamiltonian operator Ĥ .

If Â commuters with Ĥ , then yn’s are also the eigenfunctions of Â . In 
such a case we may write, 

	 = 
( – )

* dÂÂ �
m ni E E t

m n n mn
m n

a a e A

Where  dmn = * 3( ) ( ) ( )m nr r d ry yÚ � � �  = 1,  if m = n

          = 0,  if m π n
Hence, we obtain, 

	 	 ...(2.77)

Clearly  is constant in time in a superposition state provided Â 
commutes with Ĥ . If Â does not commute with Ĥ , (Â ) is time-dependent in 
general as indicated by Equation (2.76).
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2.4	 TIME INDEPENDENT SCHRODINGER 
EQUATION 

Consider a particle of mans m moving freely in space. Let y( , t) or y(x, y, z, t)  
be the wavefunction for the de-Broglie wave associated with the particle at 
the location ​​  or (x, y, z) at the instant of time t.

In analogy with classical mechanics, the differential equation for the 
wavefunction can be written as, 

2 2 2 2

2 2 2 2 2
( , , , ) ( , , , ) ( , , , ) 1 ( , , , )x y z t x y z t x y z t x y z t

x y z u t
∂ y ∂ y ∂ y ∂ y+ + =

∂ ∂ ∂ ∂

where u in the wave velocity of the de-Broglie wave. The above 
equation can also be written as, 

	 —2 y(x, y, z, t) = 
2

2 2
1 ( , , , )x y z t
u t

∂ y
∂

or	 —2 y (​​
_
 › r ​, t) = 

2

2 2
1 ( , )r t
u t

∂ y
∂

�
	 ...(2.78)

The solution of Equation (2.78) in its most general form is given by, 

	  y ( , t) = y ( ) e– i w t	 ...(2.79)

Where	 w = 2pn	 ...(2.80)

n being the frequency of the wave and y( ) is a time-independent 
function and represents the amplitude of the wave at the location ​​ .

We get from Equation (2.79) an differentiation with respect to time t, 

				  
–( , ) – ( ) i tr t i r e

t
w∂y = w y

∂

�
�

Differentiating the above equation with respect to time t we get, 

			 
2

2 –
2

( , ) – ( ) i tr t r e
t

w∂ y = w y
∂

�
� 	 ...(2.81)

Using Equation (2.81) in Equation (2.78) we get, 

			 
2

2
2( , ) – ( , )r t r t

u
w— y = y� �

	 ...(2.82)
We have, 

			   w = 2pn = 2p u
l

	 ...(2.83)
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Schrödinger EquationWhere l is the wavelength of the de-Broglie wave. Equation (2.83) 
gives, 

				    2
u
w p=

l
	 ...(2.84) 

Use of Equation (2.84) in Equation (2.82) gives, 

			 
2

2
2

4( , ) – ( , )r t r tp— y = y
l

� �

or		
2

2
2

4( , ) ( , ) 0r t r tp— y + y =
l

� �

or 		
2

2 – –
2

4[ ( ) ] ( ) 0i t i tr e r ew wp— y + y =
l

� �

or		
2

2
2

4( ) ( ) 0r rp— y + y =
l

� � 	 ...(2.85)

It v the velocity of the particle, we have, 

			   l = h
mv

Substituting the above in Equation (2.85) we obtain,

			 
2 2 2

2
2

4( ) ( ) 0m vr r
h

p— y + y =� � 	

or		  2 2
2

2( ) ( ) 0m vr r— y + y =�
�

	 ...(2.86)

If E be the total energy of the particle and V be its potential energy then 
we have the kinetic energy of the particle, 

			​    1 __ 2 ​ mv2 = E – V

So that

			   m2v2 = 2m (E – V)	 ...(2.87) 

Substituting Equation (2.87) in Equation (2.86) we obtain, 

			   2
2

2( ) ( – ) ( ) 0mr E V r— y + y =� �
�

	 ...(2.88)

Equation (2.88) is the time-independent Schrödinger equation for a 
particle of mass m, total energy E moving in a force field described by the 
potential energy function V.
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For a freely moving particle in space, V = 0, so that Equation (2.88) 
reduces to, 

			   2
2

2( ) ( ) 0mr E r— y + y =� �
�

	 ...(2.89)

For one-dimensional motion localized in the region along the x-axis, 
Equation (2.88) gives, 

			 
2

2 2
( ) 2 ( ) 0d x m E x

dx
y + y =

�
	 ...(2.90) 

Check Your Progress

	 1.	Define the theory of Schrödinger equation.
	 2.	What are the main assumptions made in the theory of Schrödinger 

equation?
	 3.	When the trajectory of a particle becomes known?
	 4.	Give the equation for classical wave.
	 5.	What is a wave packet?
	 6.	Give equation for group velocity.
	 7.	What is the kinetic energy E of the particle?
	 8.	Explain the time-dependent states of a quantum system.
	 9.	According to classical mechanics, give the differential equation for 

the wavefunction.

2.5	 EHRENFEST’S THEOREM

P. Ehrenfest in 1927 stated, in regard to the correspondence between the 
motion of a classical particle and the motion of a wave packet representing 
the particle, the following theorem.

The averages or the expectation values of the quantum mechanical 
variables satisfy the same equations of motion as the corresponding classical 
variables in the corresponding classical description. Specifically the theorem 
states that, 

	 x
d lx p
dt m

· Ò = · Ò 	
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	 ( )–x

d dV xp
dt dx

· Ò = 	

provided that the wavefunction y(x, t) with respect to which averages 
are computed satisfies the time-dependent Schrödinger equation,

			 
2 2

2
( , ) ( ) ( , )

2
x ti V x x t
t m x

È ˘∂y ∂= + yÍ ˙∂ ∂Î ˚

�
�

or 

	 ( , ) ˆ ( , )x ti H x t
t

∂y = y
∂

� 	

Proof of Ehrenfest’s Theorem 

Consider a particle of mass m moving along the x-axis under the action of a 
force-field described by the potential energy V(x) for the particle. If y(x, t) be 
the wave function describing the state of the particle at the instant t we have 
the expectation value of the coordinate x of the particle in the state given by,

	 	  

The time derivative of  is, 

	
–

* ( , ) ( , )d x x t x x t dx
dt t

+ •

•

· Ò ∂= y y
∂ Ú 	 ...(2.91)

The Schrödinger equation satisfied by y(x, t) is, 

	
2 2

2
( , ) – ( ) * ( , )

2
x ti V x x t
t m x

È ˘∂y ∂= + yÍ ˙∂ ∂Î ˚

�
� 	 ...(2.92)

The above gives, 

	
2 2

2
( , ) – – ( ) * ( , )

2
x t i V x x t
t m x

È ˘∂y ∂= + yÍ ˙∂ ∂Î ˚

�
�

	 ...(2.93)

Taking complex conjugate of Equation (2.93), we get, 

	
2 2

2
* ( , ) – ( ) * ( , )

2
x t i V x x t

t m x
È ˘∂y ∂= + yÍ ˙∂ ∂Î ˚

�
�

	 ...(2.94) 

Equation (2.91) gives, 

	
– –

* ( , ) ( , )( , ) * ( , )d x x t x tx x t dx x t x dx
dt t t

+ • + • +•

• •

· Ò ∂y ∂y= y + y
∂ ∂Ú Ú



Schrödinger Equation

NOTES

	 Self-Instructional 
46	 Material

Using Equations (2.93) and (2.94) in the above, we get, 

	

2 2

2
–

– ( ) * ( , ) ( , )
2

d x i V x x t x x t dx
dt m x

+ •

•

È ˘· Ò ∂= + y yÍ ˙
∂Î ˚

Ú �
�

	

2 2

2
–

– –* ( , ) ( ) ( , )
2

ix t x V x x t dx
m x

+ •

•

È ˘∂Ê ˆ+ y + yÍ ˙Á ˜Ë ¯ ∂Î ˚
Ú �

�

Simplifying, we get, 

	
2 2

2 2
–

( , ) * ( , )* ( , ) – ( , )
2

d x i x t x tx x t x x t dx
dt m x x

+ •

•

È ˘· Ò ∂ y ∂ y= y yÍ ˙
∂ ∂Î ˚

Ú� 	 ...(2.95) 

Let, 

	 I = 
2

2
–

* ( , )( , ) x tx x t dx
x

+ •

•

∂ yy
∂Ú

Integrating by parts, we get, 

	 I = –
– –

* ( , ) * ( , )( , ) – [ ( , )]x t x tx x t x x t dx
x xx

+ •+ •

•
• •

∂y ∂y ∂Ï ¸y yÌ ˝∂ ∂∂Ó ˛ Ú 	 ...(2.96)

For a localized wave packet we have the boundary conditions, 

	
( , ) 0 as

( , ) * ( , )and 0 as

x t x
x t x t x
x x

y Æ Æ ± •¸
Ô

∂y ∂y ˝Æ Æ ± • Ô∂ ∂ ˛
	 ...(2.97) 

Use of conditions given by Equation (2.97) in Equation (2.96), we 
obtain, 

	 I = 
–

* ( , )– [ ( , )] x tx x t
x x

+ •

•

∂ ∂yy
∂ ∂Ú

Integrating once again by parts, we get 

	I = 
2

2
–– –

– [ ( , )] * ( , ) * ( , ) [ ( , )]x x t x t x t x x t dx
x x

+ • + •+ •

•• •

∂ ∂Ï ¸y y + y yÌ ˝∂ ∂Ó ˛Ú Ú
Using condition given by Equation (2.97), the above becomes,

	 I = 
2

2
–

* ( , ) [ ( , )]x t x x t dx
x

+ •

•

∂y y
∂Ú

	 = 
–

( , )* ( , ) ( , ) x tx t x t x dx
x x

+ •

•

∂ ∂yÈ ˘y y +Í ˙∂ ∂Î ˚Ú
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	 = 
2

2
–

( , ) ( , ) ( , )* ( , ) x t x t x tx t x dx
x xx

+ •

•

È ˘∂y ∂ y ∂yy + +Í ˙∂ ∂∂Î ˚
Ú

or 

	 I = 
2

2
–

( , ) ( , )* ( , ) 2 x t x tx t x dx
x x

+ •

•

È ˘∂y ∂ yy +Í ˙∂ ∂Î ˚
Ú 	 ...(2.98)

Using Equation (2.98) in Equation (2.95) we obtain, 

2 2

2 2
–

,
( , ) ( , ) ( , )* ( , ) – 2 * ( ) – * ( , )

2
t

d x i x t x t x tx x t x x t x dx
dt m xx x

+ •

•

È ˘· Ò ∂ y ∂y ∂ y= y y yÍ ˙∂∂ ∂Î ˚
Ú�

or

	
–

( , )–2 * ( , )
2

d x i x tx t dx
dt m x

+ •

•

· Ò ∂y= y
∂Ú�

or

	
–

1 * ( , ) – ( , )d x x t i x t dx
dt m x

+ •

•

· Ò ∂Ê ˆ= y yÁ ˜Ë ¯∂Ú �

or

	
–

ˆ, since * ( , ) ( , )x
x x

pd x p x t p x t dx
dt m

+ •

•

· Ò· Ò = · Ò = y yÚ
or

	 x
d xp m
dt
· Ò· Ò = 	 ...(2.99)

In the limiting case if the wave packet reduces to a point, i.e., the 
particle becomes completely localized, we get, 

	 	 ...(2.100) 

so that Equation (2.96) reduces to the classical definition, 

	 px = m dx
dt

	 ...(2.101)

We have the expectation value of px in the state described by the 
wavefunction y(x, t) given by, 

	
–

* ( , ) – ( , )xp x t i x t dx
x

+ •

•

∂Ê ˆ· Ò = y yÁ ˜Ë ¯∂Ú �

Taking time derivative of the above we obtain, 
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–

* ( , ) – ( , )xd p
x t i x t dx

dt t x

+ •

•

· Ò ∂ ∂Ê ˆ= y yÁ ˜Ë ¯∂ ∂Ú �

or

	
–

* ( , ) ( , )–xd p x t x ti dx
dt t x

+ •

•

· Ò ∂y ∂y=
∂ ∂Ú�

	
–

( , )– * ( , ) x ti x t dx
x t

+ •

•

∂ ∂yÊ ˆy Á ˜Ë ¯∂ ∂Ú�

Substituting for  * ( , ) ( , )andx t x t
t t

∂y ∂y
∂ ∂

 from Equations (2.94) and (2.93) 
in the above we obtain, 

	
2 2

2
–

. – ( , )– ( ) * ( , )
2

xd p i x ti V x x t dx
dt m xx

+ •

•

È ˘· Ò ∂ ∂y= + yÍ ˙ ∂∂Î ˚
Ú �
�

�

	
2 2

2
–

– –– *( , ) ( ) ( , )
2

ii x t V x x t dx
x m x

+ •

•

È ˘∂ ∂Ê ˆy + yÍ ˙Á ˜Ë ¯ ∂ ∂Î ˚
Ú �
�

�

	 = 
2 2

2
–

– ( , )( ) * ( , )
2

x tV x x t dx
m xx

+ •

•

È ˘∂ ∂y+ yÍ ˙ ∂∂Î ˚
Ú�

	
2 2

2
–

* ( , ) ( ) ( , )
2

x t V x x t dx
m x x

+ •

•

È ˘∂ ∂+ y + yÍ ˙∂ ∂Î ˚
Ú�

	= 
2 2

2
– –

* ( , ) ( , ) ( , )( ) * ( , )
2

x t x t x tdx V x x t dx
m x xx

+ • + •

• •

∂ y ∂y ∂y+ y
∂ ∂∂Ú Ú�  

	
2 2

2
– –

( , )* ( , ) – * ( , ) [ ( ) ( , )]
2

x tx t dx x t V x x t dx
m x xx

+ • + •

• •

Ê ˆ∂ ∂ y ∂+ y y yÁ ˜∂ ∂∂Ë ¯Ú Ú�

	
2 2 2

2 2 2
–

( , ) * ( , ) ( , )* ( , ) –
2

x t x t x tx t dx
m x x x x

+ •

•

È ˘Ê ˆ∂ ∂ y ∂ y ∂y= yÍ ˙Á ˜∂ ∂ ∂ ∂Ë ¯Í ˙Î ˚
Ú�

	+ 
–

( , )( ) * ( , ) – * ( , ) [ ( ) ( , )]x tV x x t x t V x x t dx
x x

+ •

•

∂y ∂È y y yÍ ∂ ∂ÎÚ

=
2 2 2 2 2

2 2 2 2
–

( , ) * ( , ) ( , ) * ( , ) ( , )* ( , ) – –
2

x t x t x t x t x tx t dx
m x xx x x x

+ •

•

È ˘Ê ˆ∂ ∂ y ∂y ∂ y ∂ y ∂ yyÍ ˙Á ˜∂ ∂∂ ∂ ∂ ∂Ë ¯Í ˙Î ˚
Ú�

	 + 
–

– ( )* ( , ) ( , )V xx t x t dx
x

+ •

•

∂È ˘y yÍ ˙∂Î ˚Ú
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	= 
2 2

2
–

– ( , ) * ( , ) ( , )* ( , ) –
2

x t x t x tx t dx
m x x x xx

+ •

•

È Ê ˆ∂ ∂ y ∂ ∂y ∂yÈ ˘yÍ Á ˜ Í ˙∂ ∂ ∂ ∂∂Ë ¯ Î ˚ÍÎ
Ú�  + – V

x
∂
∂

Using the condition given by Equation (2.97) in the above we find the 
first term in the above equation to vanish to yield,

	 – ( )xd p V x
dt x
· Ò ∂=

∂
	

The force Fx corresponding to the potential energy function V(x) is, 

	 Fx = – V
x

∂
∂

	

The above two equations give, 

	 x
x

d p
F

dt
· Ò

= · Ò 	 ...(2.102) 

In the limiting case of the wave packet reducing to a point, i.e., the 
particle being completely localized we get, 

and Equation (2.102) in that case takes the form,

	 Fx = xdp
dt

	

Which is Newton’s second law of motion.

2.6	 EIGENFUNCTIONS AND EIGEN VECTORS 

A particular class of operators is of primary interest in the mathematical 
formulation of quantum theory. These are the so-called linear operators.

Consider an operator Â defined in a certain domain of definition. Let y1 
and y2 be any two arbitrary functions defined in the domain of definition of Â.

If on operating on the sum of the functions y1 and y2 the operator 
Â yields the same result as the sum of the operations on the two functions 
separately, then Â is said to be linear operator. Thus, for the operator Â to be 
linear we must have, 

	 Â(y1 + y2) = Â y1 + Â y2	 ...(2.103)

For linearity of Â we must also have 

	 Â(cy1) = cÂ y1 
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	 Â (cy2) = cÂy2	 ...(2.104)

Where c is a number.
The properties of linear operator expressed by the Equations (2.103) 

and (2.104) will be useful in later developments of quantum mechanics.

2.6.1  Eigenfunctions and Eigenvalues of a Linear Operator 

Consider a linear operator Â defined in a certain domain of definition. If y 
is any function defined in the domain of the definition of Â, then in general, 
we have, 

	 Â y = f	 ...(2.105)

However, for every linear operator Â , there exists a set of functions 
ψ1, ψ2,..., ψn, such that,

	 Â y1 = a1y1

	 Ây2 = a2y2	 ...(2.106)

		                  

	 Âyn = anyn 
where a1, a2, ..., an are constants with respect to the variables of which 

yi’ s (i = 1, ..., n) are functions. The set of functions y1, y2, ..., yn are called 
eigenfunctions of the operator Â and the constant a1, a2, ..., an are called the 
eigenvalues belonging to the eigenfunctions y1, y2, ..., yn, respectively. 

2.6.2  Eigenvalue Equation 

The equation, 

              Âyi = aiyi	    (i = 1, 2, ..., n)	 ...(2.107)

is called the eigenvalue equation for the operator Â.

2.6.3 Discrete and Continuous Spectra of Eigenvalues of Operators 

Consider the differential equation, 

	 i ( )d x
dx
y  = ly(x)	 ...(2.108)

where y(x) is an arbitrary function of x, l is a constant (independent 
of x) real number and .
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	 Ây(x) = ay(x)	 ...(2.109)
where Â is an operator and a is a real number. The general solutions 

of Equation (2.108) are,

	 y(x) = yl(x) = cle
– ilx	 ...(2.110)

with cl as an arbitrary constant. There exists a function yl (x) for each 
value of l and each satisfies Equation (2.108).

In a sense then, the set of functions, yl(x) characterizes the operator, 

and are the eigenfunctions or characteristic functions of the operator. 
In general, from Equation (2.109), one obtains a set of such characteristic 
functions yi for any operator such that, 

	 Âyi = aiyi	 ...(2.111)
We thus find that, in general, an operator possesses a set of eigenfunctions, 

each of which is characterized by a number ai through Equation (2.111). As 
has been mentioned in the beginning, the numbers ai are the eigenvalues or 
characteristic values of the operator Â. The totality of these numbers for a 
given operator is called the eigenvalue spectrum of the operator. 

The spectrum of eigenvalues of an operator can be discrete, continuous 
or discrete-continuous, depending on the form of the operator and possibly on 
certain other requirements which may have to be made on the eigenfunctions 
for physical reasons. 
Example of an Operator with a Continuous Spectrum of Eigenvalues

Consider the operator used in Equation (2.108) Â ∫ i d
dx

The eigenfunctions, as we have seen earlier in the section, are 

	 yl = cle – ilx	 ...(2.112)
Equation (2.112) defines one eigenfunction for each value of l which 

may vary continuously from a minimum to a maximum value. The spectrum 
of l is evidently continuous.
Example of an operator with discrete spectrum of eigenvalues:

Let us consider the second order differential equation,

	
2

2
( )d x

dx
y  + ly(x) = a(x)	 ...(2.113)

Subject to conditions, 
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	 a(x) = 0  for 0 < x < a	 ...(2.114)

	 = 
In Equation (2.113), y(x) is some arbitrary function of the variable x 

and l is a constant real number.
In view of the condition a(x) = ∞ for x ≤ 0 and x ≥ a, we obtain the 

solution of Equation (2.113) in these two regions to be,

y(x) = 0 
Clearly,

	
And 

In the region 0 ≤ x ≤ a, Equation (2.113) becomes, 

	
2

2
( )d x

dx
y  + ly(x) = 0

or 

	
2

2
( )– d x

dx
y  = ly(x)	 ...(2.115)

The above equation can be identified as the eigenvalue equation,

	 Ây(x) = ly(x)	 ...(2.116)
Where Â is the differential operator,

	 Â ∫ 
2

2– d
dx

	 ...(2.117)

And l is the eigenvalue of Â corresponding to the eigenfunction y(x).
The most general solution of Equation (2.115) is, 

	 	 ...(2.118)
Where Â and B̂ are constants. 
Boundary condition given by Equation (2.116) requires,

y(x) = 0  at x = 0
	 The above when used in Equation (2.118) yields, 

B = 0
	 So that the solution given by Equation (2.118) becomes, 

	 	 ...(2.119)
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y(x) = 0  at x = a
which when used in Equation (2.119) gives, 

The possible values of l from the above equation are given as, 

	 0, 
2 2 2

2 2 2
4 9, , ,

a a a
p p p

 etc.	 ...(2.120)

We find the eigenvalues to be discrete. The eigenfunctions belonging 
to the possible eigenvalues are, 

	 y(x) = A sin ​÷ 
__

 l ​x = A sin  n x
a
pÊ ˆ

Á ˜Ë ¯
	 ...(2.121)

2.6.4  Hermitian Operator 

The operators which play important role in quantum mechanics can be further 
specialized. They are not only linear, they are Hermitian.

Before we define Hermitian operator, we need to define the complex 
conjugate of a linear operator Â. Let us suppose, 

	 Ây = f	 ...(2.122) 
The operator denoted by Â* is called the complex conjugate of the 

operator Â if, by the action of Â* on the function y*(complex conjugate 
of the function y), we get the function f* (complex conjugate of the  
function f), i.e., we get, 

	 Â*y* = f*	 ...(2.123) 
In the domain of definition V in which the operator Â is defined, let u 

and v be two functions subject to identical boundary conditions.
The operator Â is said to be Hermitian operator if it satisfies the 

condition,

	 * * * *ˆ ˆ ˆ( )
V V V

u Avd Au vdt A u vdt = = tÚ Ú Ú 	 ...(2.124) 
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Alternatively, the Hermitian character of the linear operator Â is made 
through the definition of transpose of the operator Â. The transpose of the 
operator Â is denoted by Â

~
 and is defined according to the relation, 

	 ˆ ˆ( ) ( )
v v

v Au d u Av dt = tÚ Ú � 	 ...(2.125) 

The transposed operator  for the operator  is, according to Equation 
(2.125), given by, 

	 **ˆ ˆ( ) ( )v A u d u A v dt = tÚ Ú � 	 ...(2.126)

It is usual to denote  as  (read as A-dagger) and is said to be the 
Conjugate to the operator Â . Now the operator Â is called Hermitian or 
self adjoint if, 

	 Â = Â†	 ...(2.127)
We may note that in mathematics the terms adjoint, conjugate and 

associate operator are used for Â†.

Properties of Hermitian Operator 

Eigenfunctions and eigenvalues of Hermitian operator possess certain very 
general and useful properties.

(i) Eigenvalues of Hermitian Operators are Real Numbers

Proof:
Consider a Hermitian operator Â. Let yn be an eigenfunction of Â belonging 
to the eigenvalue an. We then have the eigenvalue equation, 

	 Âyn = anyn	 ...(2.128)
Taking complex conjugate of Equation (2.128), we get 

	 Â*​y​ n​  *​ = ​a​ n​  *​​y​ n​  *​	 ...(2.129)
Multiplying Equation (2.128) by ​y​ n​  *​ from the left and integrating over 

the entire domain of definition we obtain, 

	 	 ...(2.130) 
Since Â is Hermitian we may write Equation (2.130) as, 

	 	 ...(2.131)
Multiplying Equation (2.129) by yn from the right and integrating over 

the entire domain of definition we obtain, 

	 Ú 	 ...(2.132)
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we get, 

or		

Since , the above gives,

	 an – an
* = 0

or	 an = an
*	 ...(2.133) 

Thus, the eigenvalues of the Hermitian operator Â are real.
(ii) �Any Two Eigenfunctions of a Hermitian Operator that belong to 

Different Eigenvalues are Orthogonal.
Proof:
Two arbitrary functions u and v defined in the same domain of definition are 
said to be orthogonal to each other if,

	 	 ...(2.134)
where * indicates complex conjugate and the integration is carried over 

the entire domain of definition.
Consider a Hermitian operator Â. Let yn and ym be two eigenfunctions 

of Â belonging to eigenvalues an and am, respectively. We then have,

	 Âyn = anyn	 ...(2.135)
	 Âym = amym	 ...(2.136)
Multiplying Equation (2.135) by ym

* from the left and integrating over 
the entire domain of definition, we get,

	 Ú 	 ...(2.137)
Taking complex conjugate of Equation (2.136), we obtain,

        Â *ym
* = am

* ym
* = amym

*      [since am is real]	 ...(2.138)
Multiplying Equation (2.138) by ym from the right and integrating over 

the entire domain of definition, we obtain, 

	 	 ...(2.139) 
Since Â is Hermitian, Equation (2.139) can be rewritten as,

	 	 ...(2.140)
From Equations (2.137) and (2.140), we get, 
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or 

	 	 ...(2.141)
Since an and am are two different eigenvalues, 

	 (an – am) π 0

and hence Equation (2.141) yields, 

	 	 ...(2.142)
In view of Equation (2.134), we thus find that eigenfunctions of the 

Hermitian operator Â belonging to different eigenvalues are orthogonal to 
each other. 

2.6.5  Important Theorems on Operators 

(i) If two operators have simultaneous eigenfunctions, i.e., if all the 
eigenfunctions of two operators are common, then the operators commute 
with each other. 
Proof:
Consider two operators Â and B̂  which have simultaneous eigenfunctions. 
Let yn be one such eigenfunction of both Â and B̂  belonging to eigenvalues 
an and bn respectively. We then have

	 Âyn = anyn	 ...(2.143)
and 
	 B̂ yn = bnyn	 ...(2.144)
Operating Equation (2.143) by the operator B̂  from the left, we get

	 B̂ (Âyn) = B̂ (an yn) = an B̂
 yn

Using Equation (2.144) the above becomes,

	 B̂ Âyn = anbnyn	 ...(2.145)
Operating Equation (2.144) by the operator Â from the left, we get, 

	 Â (B̂ yn) = Â(bnyn) = bn Âyn 
Using Equation (2.143) in the above we get,

	 ÂB̂  yn = bnanyn	 ...(2.145)
Combining Equations (2.145) and (2.146) we obtain,

	 (Â B̂  – B̂ Â)yn = 0 
and hence we have, 
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	 Thus the operators Â and B̂  commute with each other. 

(ii) Commuting operators have common set of eigenfunctions. 
Proof:
Consider two operators Â and B̂  which commute with each other, i.e., consider 

	 ÂB̂  = B̂ Â	 ...(2.148)
Let yi be an eigenfunction of Â belonging to eigenvalue ai. We then 

have the eigenvalue equation for Â,

	 Âyi = aiyi	 ...(2.149)
Operating Equation (2.149) by B̂  from the left we get,

	 B̂ Âyi = B̂ (aiyi) = ai B̂
 yi

In view of Equation (2.148) the above can be written as,

	 Â(B̂ yi) = ai (B̂
 yi)	 ...(2.150) 

We find B̂ yi to be an eigenfunction of Â with the same eigenvalue 
ai. If Â has only nondegenerate eigenvalue, B̂ yi differs from yi only by a 
multiplicative constant, say bi, i.e.,

	 B̂ yi = bi yi	 ...(2.151)
Clearly, yi is also an eigenfunction of Â. In other words, yi is a 

simultaneous eigenfunction of both Â as well as B̂. 
(iii) �If Â and B̂ are two Hermitian operators, then their product operator 

Â B̂ is Hermitian if and only if Â and B̂ commute with each other.
Proof:
Consider two operators Â and B̂ defined in a certain domain of definition. 
Consider two arbitrary functions y and f in the domain in which Â and B̂ are 
defined. Using the definition of transposed operator we can write,

          	 ...(2.152)
We also have,
	 Ú 	 ...(2.153)
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Comparing Equations (2.152) and (2.153) we get, 

Ú	
The above gives, 

	 �̂̂AB  = B̂
~

Â ~	 ...(2.154)
Taking complex conjugate of Equation (2.154), we obtain 

		 ( �̂̂AB )* = (B̂
~

)* (Â ~)* 

or		 (ÂB̂ )† = B̂  † Â†	 ...(2.155)
Since Â and B̂ are Hermitian we have,

	 Â† = Â  and  B̂ † = B̂ 

and Equation (2.155) thus becomes, 

	 (ÂB̂ )† = B̂  Â	 ...(2.156)
	 For the operator ÂB̂  to be Hermitian the condition that must be 

satisfied is,

	 (ÂB̂ )† = ÂB̂ 	 ...(2.157)
In view of Equations (2.156) and (2.157) we find that the product ÂB̂  

is Hermitian if, 

		 ÂB̂  = B̂ Â

or		 ÂB̂  – B̂ Â = 0 

or		 [Â, B̂ ] = 0
(iv) �If Â and B̂  are two non-commuting Hermitian operators then i(ÂB̂  

– B̂ Â) is Hermitian. 
Consider two Hermitian operators defined in some domain of definition. We 
then have, 

	 Â † = Â

	 B̂ † = B̂ 	 ...(2.158)
Consider the operator Ĉ = i(ÂB̂  – B̂ Â). Taking transpose, we obtain, 

	 Ĉ
~

 = i(�̂̂AB  – �̂̂BA ) = i �̂̂AB  – i �̂̂BA

            = i B̂
~

Â ~ – iÂ ~B̂
~

 	 ...(2.159)
Taking complex conjugate of Equation (2.159), we get 

	 (Ĉ
~

)* = – i(B̂
~

)* (Â ~)* + i(Â
~

)* (B̂
~

i)*

              = – iB̂ †Â† + iÂ† B̂ †
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Schrödinger Equationor          Ĉ† = – iB̂ †Â† + iÂ† B̂ †	 ...(2.160)
Using Equation (2.158) in Equation (2.160), we get 

	 Ĉ † = – iB̂  Â + iÂB̂  = i(ÂB̂  – B̂ Â)	 ...(2.161) 
In view of Equations (2.159) and (2.161), we find 

Ĉ † = Ĉ

Clearly, Ĉ = i(ÂB̂  – B̂ Â) is Hermitian. 
(v) �The eigenvalues of the operator ( f̂  )p are equal to the pth power of the 

eigenvalues of  f̂ , p being any positive integer. 
Let yn be an eigenfunction of f̂  belonging to the eigenvalue fn. We then have 
the eigenvalue equation, 

	 f̂  yn = fnyn	 ...(2.162)
Operating Equation (2.162) by f̂   from the left we obtain,

	 f̂  (f̂  yn) = f̂ ( fnyn) = fn  f̂
 yn

or

                f̂  2 yn = fn
2yn    [using Equation (2.162)]	...(2.163)

Operating Equation (2.163) by f̂  from the left we get,

	 f̂ ( f̂  2yn) = f̂ fn
2yn = fn

2 f̂  yn

or

                f̂  3yn = fn
3yn  [using Equation (2.162)]	...(2.164)

Generalizing the above procedure we obtain, 

	 f̂  pyn = fn
pyn

Example 1: Find the eigenvalues of the inverse of an operator.
Solution: Let Â be an operator and Â –1 be the inverse of the operator Â . We 
then have, 

	 Â –1Â = 1	 ...(i)
Let y be an eigenfunction of Â belonging to the eigenvalue a. We then 

have, 
	 Ây = ay	 ...(ii)
Operating Equation (ii) by Â–1 from the left we get,

	 Â –1Â y = a Â –1y	 ...(iii) 
Using Equation (i) we get, 

		 Â –1Ây = y	 ...(iv)
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In view of Equations (iii) and (iv) we obtain, 

	 a Â–1 y = y

or
	 Â–1 y = ​ 1 __ a ​ y

Clearly, the eigenvalue of Â–1 is ​ 1 __ a ​ which is the reciprocal of the 
eigenvalue of Â.

2.7	 PROBABILITY DENSITY

Schrödinger wavefunction y(x, t) or y( , t) is the amplitude of the de-Broglie 
wave for a particle. A rough interpretation of the wavefunction is that the 
particle is most likely to be found in those regions of space in which y(x, t) 
(in one dimension) or y( , t) (in three-dimensions) is large.

The wavefunction y(x, t) or y( , t) being a complex valued function of 
position and time cannot as such have any physical existence. However, the 
wavefunction must, in some way, be related to the presence of the particle 
at the position x or  at the instant of time t. Furthermore, the behaviour of 
the particle should become completely known if the wavefunction is known 
at all possible positions at all possible instants of time.

(a) Max Born and Jordan’s Probabilistic Interpretation. Max Born 
and Jordan in 1926 gave a probabilistic interpretation of the wave function 
which is characteristic of and fundamental to the Schrödinger theory. This 
interpretation of the wavefunction is found to be both convenient and 
physically transparent enabling us to make precise computations regarding 
the behaviour of the particle. According to Max Born and Jordan, the 
wavefunction describes the probability distribution of the particle in space and 
time as follows. If we try to locate the particle through a measurement of its 
position at a given instant of time t, the probability of finding the particle in a 
small region of volume d3( ) containing the position  in space is given by, 

	 P( , t) d3( ) = y*( , t) y( , t) d3( )

	 = |y ( , t)|2 d3 ( )	 ...(2.165)
where y*( , t) is the complex conjugate of y( , t).
The probability density is thus proportional to the square modulus of 

the wavefunction.
(b) The Schrödinger Wavefunction: It is a complex valued function 

of position and time which satisfies the linear Schrödinger equation [Equation 
(2.117) in one dimension and Equation (2.123) in three-dimensions].
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particle.

It is important to note that if y( , t) is a possible wavefunction then 
y¢( , t) = eiq y( , t) is also a possible wavefunction if q is an arbitrary real 
constant. The probability distribution defined by y and y¢ are exactly identical 
[  |y¢( , t)|2 d3( ) = |eiq y( , t)|2 d3( ) = |y( , t)|2 d3(​​ )]. This means that two 
wavefunctions y and y¢ describe the same state of motion of the particle.
From the above we find:

to every wavefunction there corresponds a unique state of motion of 
the particle. However, a given state of motion of the particle does not 
correspond to a unique wavefunction. The wavefunction corresponding 
to a given state is known only to within a constant complex factor 
(phase factor) of modulus unity.

2.7.1  Normalized Wave Function

If the motion of the particle takes place in a space of finite extent then the 
total probability P of finding the particle in that space is unity, i.e.,

	 P = 1

or	 3( , ) ( ) 1P r t d r =Ú � �

or	 3* ( , ) ( , ) ( ) 1r t r t d ry y =Ú � � �  

or	 2 3| ( , ) | ( ) 1r t d ry =Ú � � 	 ....(2.166)
The wave functions which satisfy Equation (2.166) are called 

normalized wavefunctions. Equation (2.166) is usually referred to as the 
normalization integral. 

Normalization of wavefunction can be understood from the following:
The Schrödinger equation given by Equation (2.123) is linear and 

homogeneous in the wavefunction y( , t) and its derivatives. Hence, if the 
solution of Equation (2.123) is multiplied by a constant the resulting function 
is also a solution. Let y¢( , t) be a solution of the Schrödinger equation. We 
know from the discussions in the earlier section that |y¢( , t)|2 is a positive 
real number and hence its integral over the entire space is also a real positive 
number. We may hence write, 

	 2 3 2| ( , ) | ( )r t d r Ny¢ =Ú � � 	 ...(2.167) 
The number N2 is called the norm of the wavefunction y¢( , t).
Let us define, 

		 y( , t) = ​ 1 __ N ​ y¢( , t)	 ...(2.168)
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Since y( , t) is different from y¢( , t) only by the multiplicative 

constant  it is also a possible function which satisfies the Schrödinger 
equation. 

We get,

	
2 3 2 3

2
1| ( , ) | ( ) | ( , ) | ( )r t d r r t d r

N
y = y¢Ú Ú� � � �

 

In view of Equation (2.167), the above gives,

	 2 3| ( , ) | ( ) 1r t d ry =Ú � � 	 ...(2.169) 

The wave function y( , t) satisfies Equation (2.166) and is hence a 
normalized wavefunction. Comparing Equation (2.169) with Equation (2.167) 
we find that the norm of the wavefunction y( , t) is unity.

We can thus define a normalized wavefunction as one which has unit 
norm. 

In Equation (2.168), through which normalized wavefunction is defined, 
N must be finite. In other words, normalizable wavefunctions must have finite 
norms. For N and hence N 2 to be finite we get according to Equation (2.167), 

or	 	 ...(2.170)

Equation (2.170) is the boundary condition that must be satisfied by 
normalizable wavefunctions. 

2.7.2  Probability Current Density

The wave function y( , t) which describes the state of motion of a particle of 
mass m moving under a force field described by the potential energy function 
V( , t) [assumed real] satisfies the time dependent Schrödinger equation,

	
2

2( , ) – ( , ) ( , )
2

r ti V r t r t
t m

È ˘∂y = — + yÍ ˙∂ Î ˚

�
� � �

� 	 ...(2.171)

Taking complex conjugate of Equation (2.171) we get 

	
2

2* ( , ) – *– ( , ) ( , )
2

r ti V r t r t
t m

È ˘∂y = — + yÍ ˙∂ Î ˚

�
� � �

� 	 ...(2.172) 

Multiplying Equation (2.171) by y*(, t) from the left, and Equation 
(2.172) by y( , t) from the left and subtracting we obtain, 

	

2
2 2* – *** [ – ]

2
i

t t m
∂y ∂yÈ ˘y + y = y — y y— yÍ ˙∂ ∂Î ˚

�
�
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or	

2
2 2–*[ ] [ * – *]

2
i

t m
∂ y y = y — y y — y
∂

�
�

or	 2 2*[ ] [ * – *]
2
i

t m
∂ y y = y — y y — y
∂

� 	 ...(2.173)

Writing the Laplacian operator —D2 in terms of derivatives we get 
according to Equation (2.173),

2 2 2 2 2 2

2 2 2 2 2 2

** ** **[ ] * – – –
2
i

t m x y z x y z
È ˘∂ ∂ y ∂ y ∂ y ∂ y ∂ y ∂ yy y = y + y + y y y yÍ ˙∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚

�

or	 * *
*[ ] – – * – – *

2 2
* *– –

2

i i
t m x x x m y y y

i
m z z z

È ˘∂ ∂ ∂y ∂y ∂ ∂y ∂yÈ ˘y y = y y y yÍ ˙Í ˙∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚ Î ˚
∂ ∂y ∂yÈ ˘y yÍ ˙∂ ∂ ∂Î ˚

� �

�

	

...(2.174)

Let us define, 

	 Jx = 
*

*–
2
i
m x x

∂y ∂yÈ ˘y yÍ ˙∂ ∂Î ˚
� 	 ...(2.175)

	 Jy = 
*

*–
2
i
m y y

È ˘∂y ∂yy yÍ ˙∂ ∂Î ˚

� 	 ...(2.176)

	 Jz = 
*

*–
2
i
m z z

∂y ∂yÈ ˘y yÍ ˙∂ ∂Î ˚
� 	 ...(2.177)

Then using Equations (2.175), (2.176) and (2.177) in Equation (2.174) 
we obtain, 

	 *[ ] 0y zx J JJ
t x y z

∂È ˘∂∂∂ y y + + + =Í ˙∂ ∂ ∂ ∂Î ˚
	 ...(2.178)

Equation (2.178) can alternatively be expressed as,

	 [ ( , )] ( , ) 0r t J r t
t

∂ r + —◊ =
∂

� �� � 	 ...(2.179)

Where	 * *( , ) [ – ]
2
iJ r t
m

= y—y y —y
� �� �� 	 ...(2.180)

	 r(​​
_
 › r ​, t) = y*y	 ...(2.181)

We have the well known equation of continuity in fluid dynamics,

	 0J
t

∂r + —◊ =
∂

� �
	 ...(2.182)

Where 
	 r	 = Number of fluid particles per unit volume or particle density
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	 	 = The number of fluid particles that cross unit area in unit time in 
a direction perpendicular to the area, and is called the current 
density.

Comparing Equation (2.179) with Equation (2.182) we may interpret 
r( , t) = y * y as the position probability density so that y * y d 3 ( ) is the 
probability of finding the particle in the volume element d3 ( ) about the 
point  at the instant t.

and 

		   = Probability current density. 

2.7.3  Normalization Integral, a Constant of Motion 

Integrating Equation (2.173) over the entire volume of space we get,

	

3 2 2 3

– –

* **( ) [ – ] ( )
2
id r d r

t m

+• +•

• •

∂ y y = y — y y— y
∂ Ú Ú�� �

or	 3 3

–

* * *( ) ( – ) ( )
2
id r d r

t m

+•

•

∂ y y = —◊ y —y y—y
∂ Ú Ú

� � ��� �

or	 3
–

* * *( ) –
2

{ }id r
t m

+•
•

∂ y y = y —y y—y
∂ Ú

� ��� 	 ...(2.183)

In most of the physical problems, the wave packet representing a 
particle is localized so that we get, (as seen earlier, Equation (2.174)), 

Using the above result in Equation (2.183) we obtain, 

3* ( ) 0d r
t

∂ y y =
∂ Ú �

 
Which gives,

		  3* ( )d ry yÚ �  = Constant in time, i.e., constant of motion.
The above result is referred to as the conservation of probability. The 

result holds as long as the particle under consideration is stable and does not 
undergo any kind of decay or does not annihilate or disappear due to some 
reason.

2.7.4  Expectation Value of a Physical Quantity

Let us consider a particle in a definite state described by the normalized 
wavefunction y( , t). Let us make a large number of observations 
(measurement) of the position vector ​​

_
 › r ​ of the particle. We know that each 

observation causes the wave function to undergo some change. Let us suppose 
that we have at our disposal some technique to bring the wavefunction to the 
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Schrödinger Equationoriginal form before any observation is made. Even if we ensure that before 
any measurement the wavefunction is restored to its original form, we do not 
get the same result each time. The average of the values obtained in these 
measurements is called the measured value or the expectation value and is 
denoted as . Since y*( , t) y( , t) represents the probability with which 
the value  occurs in the measurement we get,

	 	 ...(2.184) 
If the wave function y( , t) is not normalized the expectation value 

of  is given by, 

	 	 ...(2.185)
Generalizing, the expectation value of any quantity f ( ), which is a 

function of ​​ , in the state described by the normalized wavefunction y( , t) 
may be written as,

	
3( ) ( , ) ( ) ( )f r P r t f r d r· Ò = Ú� � � �

or	 3*( ) ( , ) ( ) ( , ) ( )f r r t f r r t d r· Ò = y yÚ� � � � � 	 ...(2.186)

Expectation Value of Total Energy E of a Particle 

Consider a particle of mass m moving in space under the action of a force 
field described by the potential energy function V ( , t). Let y( , t) be the 
normalized wavefunction that describes the state of the particle. The time 
evolution of the wavefunction is given by the Schrödinger equation, 

	

2
2( , ) – ( , ) ( , )

2
r ti V r t r t
t m

È ˘∂y = — + yÍ ˙∂ Î ˚

�
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�
 

Multiplying the above by y*( , t) from the left and integrating over 
the entire space we get, 

	

2
3 2 3( , ) –* ( , ) ( ) * ( , ) ( , ) ( , ) ( )

2
r tr t i d r r t V r t r t d r
t m
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or	
2

3 2 3–* ( , ) ( , ) ( ) * ( , ) ( , ) ( )
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r t i r t d r r t r t d r
t m
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Ú Ú �� � � � � �

�

3* ( , ) ( , ) ( , ) ( )r t V r t r t d r+ y yÚ � � � �

Using the definition of expectation value given above we obtain,

	
2

2– ( , )
2

i V r t
t m

∂ = — + · Ò
∂

� �
� 	 ...(2.187)
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In view of Equation (2.126) and Equation (2.129), Equation (2.187) 
gives,

	
2

2
pE V
m

· Ò = + · Ò .	 ...(2.188)

Classically, the total energy is, 

E = Kinetic energy + Potential energy 
2

2
p
m

 + V	
Equation (2.188) tells that the expectation value of the total energy is the 

sum of the expectation values of the kinetic energy and the potential energy. 

General Result

From the above discussions, we get the following important recipe for the 
calculation of expectation values of physical quantities for a system in a state 
described by a known wave function.

	 Let A be any dynamical variable of a quantum system. Let the system 
be in a given state described by normalized wave function y( , t). If Â be 
operator corresponding to the quantity Â in the domain of definition of the 
wave function then the expectation values of A is 

	
* 3ˆ( , ) ( , ) ( )A r t A r t d r· Ò = y yÚ � � �

	
Since the above integration in carried over the entire space,  is, in 

general, a function of time only.

2.7.5  Acceptable Wave Functions for a Physical System

The dynamical state of a physical system, say, a particle moving in space, is 
defined by the wavefunction y( , t) which is a complex valued function of 
position  in space and time t.

The quantity y*(r, t) y( , t)d 3 ( ), i.e., the quantity ​| y( , t) |​2 d 3 ( ) 
gives the probability of finding the particle within a volume element d3( ) 
about the position . In other words, ​| y( , t) |​2 is the probability density, i.e., 
the probality of finding the particle within a unit volume about the position  
at the time t. This probabilistic interpretation of the wavefunction necessitates 
some conditions that must be satisfied by it for its physical acceptability. 
These conditions are:
	 (i)	Wavefunction must be finite at all positions at all instants of time. This 

requirement stems from the fact that ​| y( , t) |​2 d 3 ( ) must lie between 
0 and 1.

	 (ii)	Wavefunction must be single valued at any position at all instants of 
time. This requirement of single valuedness arises from the fact that 
at any given position, the wavefunction must be unique so that the 
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Schrödinger Equationprobability density at the position be uniquely defined at all instants 
of time. 

	 (iii)	Wavefunction y( , t) must be a continuous function of position  and 
time t. Further, the gradient of the wavefunction ​y( , t) should be 
continuous at all points in space. These requirements follow from the 
fact that the probability current density ( , t), which is intimately 
related to the probabilistic interpretation, is defined through y( , t) 
and y( , t). The Schrödinger equation satisfied by the wavefunction 
contains the term —2y which can exist provided y is a continuous 
function at all points in space. 

	 (iv)	The wavefunction must be quadratically integrable, i.e., we must have, 

	 3

–

* ( , ) ( , ) ( )r t r t d r
+ •

•

y yÚ � � �  = a finite quantity

If the above condition is satisfied then we may define a normalized 
wavefunction that corresponds to a total probability equal to unity.

Check Your Progress

	 10.	What are the averages or the expectation values of the quantum 
mechanical variables that satisfy the same equations of motion as 
the corresponding classical variables?

	 11.	What is linear operator?
	 12.	  What are the eigenfunctions and eigenvalues of a linear operator?
	 13.	  Explain the spectrum of eigenvalues of an operator.
	 14.	  When the operator Â is said to be Hermitian operator?
	 15.	  Define the Schrödinger wavefunction as the amplitude of the de-

Broglie wave for a particle.
	 16.	  Explain the wavefunction that describes the probability distribution 

according to Max Born and Jordan.
	 17.	What is normalized wave function?

2.8	 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS

	 1. 	The theory of Schrödinger equation was formulated by Erwin 
Schrödinger in the year 1926. His formulation is based on de-Broglie’s 
concept of matter-wave. The theory aims at setting up a differential 
equation (wave equation) for a wavefunction that can describe the 
detailed behaviour of matter wave.



Schrödinger Equation

NOTES

	 Self-Instructional 
68	 Material

	 2. 	The main assumptions made in the theory of Schrödinger equation are: 
	 (i) 	Creation and destruction of material particles do not take place. 
	 (ii) 	All material particles move with small velocities so that they can 

be treated non-relativistically.
	 3.		 The trajectory of a particle becomes known if the coordinate and 

momentum of the particle are known at every moment of time. In other 
words, the trajectory is known if x and  are known at all time t.

	 4.		 a classical wave possesses a characteristic frequency (n), a wavelength 
(l) and the phase velocity (vp) related according to,

				   vp = nl (= w/k)

	 5. 	A localized wave function is called a wave packet. A wave packet 
representing a particle is formed as a result of superposition of a group 
of waves each having slightly different velocities and wavelengths, 
the phases and amplitudes of waves at any instant of time being so 
chosen that they interfere constructively over that small region where 
the particle is most likely to be located at that instant and destructively 
elsewhere so that the amplitude reduces to zero.

	 6.		 The group velocity is given by,

			  vg = d
dk
w

		 or		  vg = d dp
dp dk
w

	 7.		 The kinetic energy E of the particle is related to the angular frequency 
w of the wave associated with it as,

				   E = w

	 8.		 The time-dependent states of a quantum system are the solutions of 
the general time-dependent Schrödinger equation,

			
2

2( , ) – ( , ) ( , )
2

r ti V r t r t
t m

È ˘∂y = — + yÍ ˙∂ Î ˚

�
� � �

�

			  = Ĥ y( , t)

		 the operator Ĥ being the Hamiltonian for the system. 
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wavefunction can be written as, 

			

2 2 2 2

2 2 2 2 2
( , , , ) ( , , , ) ( , , , ) 1 ( , , , )x y z t x y z t x y z t x y z t

x y z u t
∂ y ∂ y ∂ y ∂ y+ + =

∂ ∂ ∂ ∂

				   where u in the wave velocity of the de-Broglie wave.
	 10.		 The averages or the expectation values of the quantum mechanical 

variables satisfy the same equations of motion as the corresponding 
classical variables in the corresponding classical description. 
Specifically the theorem states that, 

				   x
d lx p
dt m

· Ò = · Ò 	

				   ( )–x
d dV xp
dt dx

· Ò = 	

		 provided that the wavefunction y(x, t) with respect to which averages 
are computed satisfies the time-dependent Schrödinger equation,

				 
2 2

2
( , ) ( ) ( , )

2
x ti V x x t
t m x

È ˘∂y ∂= + yÍ ˙∂ ∂Î ˚

�
�

	 11.		 If on operating on the sum of the functions y1 and y2 the operator Â 
yields the same result as the sum of the operations on the two functions 
separately, then Â is said to be linear operator. 

	 12.		 Consider a linear operator Â defined in a certain domain of definition. 
If y is any function defined in the domain of the definition of Â, then 
in general, we have, 

				   Â y = f	

		 However, for every linear operator Â , there exists a set of functions ψ1, 
ψ2,..., ψn, such that,

				   Â y1 = a1y1

				   Ây2 = a2y2	

		                 

				   Âyn = anyn 
			  where a1, a2, ..., an are constants with respect to the variables of which 

yi’ s (i = 1, ..., n) are functions. The set of functions y1, y2, ..., yn are 
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called eigenfunctions of the operator Â and the constant a1, a2, ..., an 
are called the eigenvalues belonging to the eigenfunctions y1, y2, ..., 
yn, respectively.

	 13.	The spectrum of eigenvalues of an operator can be discrete, continuous 
or discrete-continuous, depending on the form of the operator and 
possibly on certain other requirements which may have to be made on 
the eigenfunctions for physical reasons.

	 14.	The operator Â is said to be Hermitian operator if it satisfies the 
condition,

			   * * * *ˆ ˆ ˆ( )
V V V

u Avd Au vdt A u vdt = = tÚ Ú Ú
	 15.	Schrödinger wavefunction y(x, t) or y( , t) is the amplitude of the de-

Broglie wave for a particle. A rough interpretation of the wavefunction 
is that the particle is most likely to be found in those regions of space 
in which y(x, t) (in one dimension) or y( , t) (in three-dimensions) is 
large.

	 16.	 According to Max Born and Jordan, the wavefunction describes the 
probability distribution of the particle in space and time as follows. If 
we try to locate the particle through a measurement of its position at a 
given instant of time t, the probability of finding the particle in a small 
region of volume d3( ) containing the position  in space is given by, 

			   P( , t) d3( ) = y*( , t) y( , t) d3( )
			   = |y ( , t)|2 d3 ( )	
		 where y*( , t) is the complex conjugate of y( , t).
	 17.	 If the motion of the particle takes place in a space of finite extent then 

the total probability P of finding the particle in that space is unity, i.e.,
			   P = 1

2.9	 SUMMARY

	 •	The theory of Schrödinger equation was formulated by Erwin 
Schrödinger in the year 1926. His formulation is based on de-Broglie’s 
concept of matter wave. The theory aims at setting up a differential 
equation (wave equation) for a wavefunction that can describe the 
detailed behaviour of matter wave.

	 •	The main assumptions made in the theory of Schrödinger equation are: 
	 (i) 	Creation and destruction of material particles do not take place. 
	 (ii) 	All material particles move with small velocities so that they can 

be  treated non-relativistically.
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Schrödinger Equation	 •	 The Schrödinger equation for a free non-relativistic particle may be 
arrived at by making straightforward uses of the new concepts that 
have been obtained in the domain of microscopic particles.

	 •	The trajectory of a particle becomes known if the coordinate and 
momentum of the particle are known at every moment of time. In 
other words, the trajectory is known if x and  are known at all  
time t.

	 •	According to Heisenberg’s uncertainty relation, a microparticle cannot 
simultaneously possess a definite coordinate, say, x and a definite 
projection of momentum px. Thus, the concept of trajectory of a 
microparticle, strictly speaking, is not applicable.

	 •	 A microparticle is fundamentally different form a classical corpuscle 
primarily because (i) it does not have a trajectory which is an essential 
attribute of a classical corpuscle, (ii) the use of coordinate, momentum, 
angular momentum, energy when considering microparticle become 
restricted to the framework of uncertainty relations.

	 •	A classical wave possesses a characteristic frequency (n), a wavelength 
(l) and the phase velocity (vp) related according to,

				    vp = nl (= w/k)

	 •	 The wave associated with a microparticle is of infinite extent because 
according to Heisenberg’s uncertainty principle, the position of the 
particle becomes completely unknown if its momentum is taken to be 
well defined. 

	 •	 In classical physics, a particle is well localized in space by which we 
mean that the position and velocity (momentum) of the particle can 
be simultaneously determined with unlimited accuracy.

	 •	A localized wave function is called a wave packet. A wave packet 
representing a particle is formed as a result of superposition of a group 
of waves each having slightly different velocities and wavelengths, 
the phases and amplitudes of waves at any instant of time being so 
chosen that they interfere constructively over that small region where 
the particle is most likely to be located at that instant and destructively 
elsewhere so that the amplitude reduces to zero.

	 •	A one-dimensional wave packet which may describe a classical particle 
confined to a one-dimensional region, say, a particle moving along the 
x-axis can be mathematically constructed by superposing an infinite 
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number of plane waves with slightly different wave number k, all 
moving along the x-axis, by means of Fourier transforms.

	 •	The wavelength l of the de-Broglie wave associated with a free particle 
of mass m moving along the x-axis with momentum px is given by,

			   l = 
x

h
p

	 •	The operators which play important role in quantum mechanics can 
be further specialized. They are not only linear, they are Hermitian.

	 •	Two arbitrary functions u and v defined in the same domain of definition 
are said to be orthogonal to each other if,

			  	

		  where * indicates complex conjugate and the integration is carried over 
the entire domain of definition.

	 (i) 	If two operators have simultaneous eigenfunctions, i.e., if all the 
eigenfunctions of two operators are common, then the operators 
commute with each other. 

	 •	Consider two operators Â and B̂  which have simultaneous 
eigenfunctions. Let yn be one such eigenfunction of both Â and B̂  
belonging to eigenvalues an and bn respectively.

	 •	 If Â and B̂ are two Hermitian operators, then their product operator Â B̂ 
is Hermitian if and only if Â and B̂ commute with each other.

	 •	 If Â and B̂  are two non-commuting Hermitian operators then i(ÂB̂  – 
B̂ Â) is Hermitian. 

	 •	The eigenvalues of the operator ( f̂  )p are equal to the pth power of the 
eigenvalues of  f̂ , p being any positive integer. 

	 •	 Schrödinger wavefunction y(x, t) or y( , t) is the amplitude of the de-
Broglie wave for a particle. A rough interpretation of the wavefunction 
is that the particle is most likely to be found in those regions of space 
in which y(x, t) (in one dimension) or y( , t) (in three-dimensions) is 
large.

	 •	 The wavefunction y(x, t) or y( , t) being a complex valued function of 
position and time cannot as such have any physical existence. However, 
the wavefunction must, in some way, be related to the presence of the 
particle at the position x or  at the instant of time t. 
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Schrödinger Equation	 •	 Max Born and Jordan in 1926 gave a probabilistic interpretation of 
the wave function which is characteristic of and fundamental to the 
Schrödinger theory.

	 •	 According to Max Born and Jordan, the wavefunction describes the 
probability distribution of the particle in space and time as follows. If 
we try to locate the particle through a measurement of its position at a 
given instant of time t, the probability of finding the particle in a small 
region of volume d3( ) containing the position  in space is given by, 

			   P( , t) d3( ) = y*( , t) y( , t) d3( )

			   = |y ( , t)|2 d3 ( )	

		 where y*( , t) is the complex conjugate of y( , t).

	 •	 The probability density is thus proportional to the square modulus of 
the wavefunction.

	 •	 Every definite wavefunction describes a definite state of motion of the 
particle.

	 •	 If y( , t) is a possible wavefunction then y¢( , t) = eiq y( , t) is 
also a possible wavefunction if q is an arbitrary real constant. The 
probability distribution defined by y and y¢  are exactly identical  
[  |y¢( , t)|2 d3( ) = |eiq y( , t)|2 d3( ) = |y( , t)|2 d3(​​ )]. This means 
that two wavefunctions y and y¢ describe the same state of motion 
of the particle.

	 •	 If the motion of the particle takes place in a space of finite extent then 
the total probability P of finding the particle in that space is unity, i.e.,

			   P = 1

	 •	The wave function y( , t) which describes the state of motion of a 
particle of mass m moving under a force field described by the potential 
energy function V( , t) [assumed real] satisfies the time dependent 
Schrödinger equation,

			 
2

2( , ) – ( , ) ( , )
2

r ti V r t r t
t m

È ˘∂y = — + yÍ ˙∂ Î ˚

�
� � �

�

	 •	The dynamical state of a physical system, say, a particle moving in 
space, is defined by the wavefunction y( , t) which is a complex valued 
function of position  in space and time t.

	
•	 The quantity y*(r, t) y( , t)d 3 ( ), i.e., the quantity ​| y( , t) |​2 d 3 ( ) 

gives the probability of finding the particle within a volume element 
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d3( ) about the position . In other words, ​| y( , t) |​2 is the probability 
density, i.e., the probality of finding the particle within a unit volume 
about the position  at the time t.

	 •	Wavefunction must be finite at all positions at all instants of time. This 
requirement stems from the fact that ​| y( , t) |​2 d 3 ( ) must lie between 
0 and 1.

	 •	Wavefunction must be single valued at any position at all instants of 
time. This requirement of single valuedness arises from the fact that 
at any given position, the wavefunction must be unique so that the 
probability density at the position be uniquely defined at all instants 
of time. 

	 •	Wavefunction y( , t) must be a continuous function of position  and 
time t. Further, the gradient of the wavefunction ​y( , t) should be 
continuous at all points in space. 

	 •	The wavefunction must be quadratically integrable, i.e., we must have, 

	 		  3

–

* ( , ) ( , ) ( )r t r t d r
+ •

•

y yÚ � � �  = a finite quantity

	 •	 If the above condition is satisfied then we may define a normalized 
wavefunction that corresponds to a total probability equal to unity.

2.10	 KEY WORDS

	 •	 Schrödinger equation: The theory of Schrödinger equation was 
formulated by Erwin Schrödinger in the year 1926, the formulation is 
based on de-Broglie’s concept of matter wave. 

	 •	 Wave packet: A localized wave function is called a wave packet. 
	 •	 Bound states: The probability density vanishes at infinity.
	 •	 Probability density: For Schrödinger wavefunction the probability 

density is proportional to the square modulus of the wavefunction.
	 •	 Schrödinger wavefunction: It is a complex valued function of 

position and time which satisfies the linear Schrödinger equation in 
one dimension.
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2.11	 SELF ASSESSMENT QUESTIONS AND 

EXERCISES

Short Answer Questions

	 1.	What is Schrödinger equation?
	 2.	Define the term wave packet and group velocity.
	 3.	Explain the term dependent Schrödinger equation.
	 4.	What is linear momentum?
	 5.	Define about independent Schrödinger equation.
	 6.	What dose Ehrenfest’s theorem state?
	 7.	Explain the terms eigenfunction and eigen vectors.
	 8.	What is Hermitian operator?
	 9.	Explain probability density function.
	 10.	What is normalized wave function?
	 11.	What is the expectation value of a physical quantity?

Long Answer Questions

	 1.	Briefly discuss the theory of Schrödinger equation giving the 
assumptions.

	 2.	Explain the dynamical state of a microparticle concept of wave function.
	 3.	Discuss wave packet with reference to classical physics. Also explain 

about the group velocity for wave packet.
	 4.	Explain the time dependent Schrödinger equation giving relevant 

equations.
	 5.	Explain the operators that correspond to energy and linear momentum.
	 6.	Derive the time-dependent Schrödinger equation for a particle moving 

in a force field.
	 7.	What is the significance of time independent Schrödinger equation?
	 8.	Explain and prove the Ehrenfest’s theorem.
	 9.	Discuss the properties and characteristic equations for eigenfunction 

and eigen vectors.
	 10.	Prove that the linear operators are of prime interest in the mathematical 

formulation of quantum theory. Justify your answer.
	 11.	Explain the significance of Hermitian operator.
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	 12.	Briefly explain the probability density for the Schrödinger wavefunction.
	 13.	Explain the Max Born and Jordan’s probabilistic interpretation of the 

wave function for the Schrödinger theory.
	 14.	Give the standard equations for calculating the probability current 

density that satisfies the time dependent Schrödinger equation.
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One Dimensional Problem

UNIT 3	 ONE DIMENSIONAL 
PROBLEM

Structure 
	 3.0	 Introduction
	 3.1	 Objectives
	 3.2	 One Dimensional Motion
	 3.3	 Linear Harmonic Oscillator and Tunnel Effect

	 3.3.1	 Time-Independent Schrödinger Equation for An Oscillator
	 3.3.2	 Solution of the Wave Equation
	 3.3.3	 Energy Eigenvalues of the Oscillator
	 3.3.4	 Energy Eigenfunctions of the Oscillator
	 3.3.5	 Alternative Approach for Linear Harmonic Oscillator Problem
	 3.3.6	 Potential Barrier Problem 
	 3.3.7	 Alpha-Particle Emission 

	 3.4	 Answers to Check Your Progress Questions
	 3.5	 Summary
	 3.6	 Key Words
	 3.7	 Self Assessment Questions and Exercises
	 3.8	 Further Readings

3.0	 INTRODUCTION

Oscillations are found throughout nature as electromagnetic waves, vibrating 
molecules, and the gentle back-and-forth sway of a tree branch. A simple 
harmonic oscillator is a particle or system that undergoes harmonic motion 
about an equilibrium position, such as an object with mass vibrating on a 
spring. 

A linear harmonic oscillator is a particle which is bound to an 
equilibrium position by a force which is proportional to the displacement from 
that position. The quantum harmonic oscillator is the quantum-mechanical 
analog of the classical harmonic oscillator. Because an arbitrary potential can 
usually be approximated as a harmonic potential at the vicinity of a stable 
equilibrium point, it is one of the most important model systems in quantum 
mechanics. The allowed energy in quantum mechanics is not continuous but 
discrete (step-like). Such discrete energies are called the eigenvalues and the 
corresponding states are called the eigenstates.  

In this unit, you will study about the oscillating systems using quantum 
mechanics, one dimensional problems, linear harmonic oscillator and tunnel 
effect.
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3.1	 OBJECTIVES

After going through this unit, you will be able to:
	 •	Understand the oscillating systems using quantum mechanics
	 •	Calculate one dimensional problems
	 •	Explain linear harmonic oscillator and tunnel effect

3.2	 ONE DIMENSIONAL MOTION

Consider a particle of mass m having a total energy E moving in a one-
dimensional potential V(x). The state of the particle described by the 
wavefunction y(x) satisfies the time-independent Schrödinger equation, 

	
2

2 2
( ) 2 [ ( )] ( ) 0d x m E V x x

dx
y + - y =

�
 	 …(3.1)

The solutions of the above equation give the energy eigenfunctions 
yn(x) belonging to different energy eigenvalues En for the particle.

Equation (3.1) can be solved exactly only when (i) the potential function 
V(x) is stated explicitly and (ii) the boundary conditions imposed on the 
system, i.e., on the wavefunction y(x) are known exactly.

The nature of the states of the particle is determined completely by 
the energy of the particle and the nature of the potential function V(x). We 
encounter the following results with respect to the energy eigenvalues and 
states:
	 (i)	The eigenvalues form a discrete-spectrum corresponding to bound 

states.
	 (ii)	The eigenvalues form a continuous spectrum corresponding to unbound 

states.
	 (iii)	The eigenvalues form a mixed spectrum consisting of a discrete 

spectrum for some range of energy E and a continuous spectrum outside 
that range.

In the sections to follow we shall illustrate the above results by considering 
some important problems of one-dimensional motion. 
The important properties of one-dimensional motion that we find are:
	 (i)	 In case of bound states, the energy spectrum is not only discrete but is 

non-degenerate also.
	 (ii)	The eignfunction yn(x) for a bound state has ‘n’ number of nodes if 

the ground state corresponds to n = 0 and (n – 1) number of nodes if 
the ground state corresponds to n = 1.
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3.3	 LINEAR HARMONIC OSCILLATOR AND 

TUNNEL EFFECT

Consider a particle of mass m undergoing simple harmonic oscillation along 
the x-axis with a frequency n0 (angular frequency w0 = 2pn0). If x0 is the 
amplitude of the oscillator, its displacement x from the mean or the equilibrium 
position varies with time according to,

	 x = x0 sin w0t	 ...(3.2)
The force constant k (restoring force acting on the particle per unit 

displacement) is related to the frequency w0 as
	 k = m ​w​0​ 2​	 ...(3.3)
The kinetic energy of the oscillator is,

		  T = 
2

2 2 2
0 0 0

1 1 cos
2 2

dxm m x t
dt

Ê ˆ = w wÁ ˜Ë ¯

	 = 2 2 2
0 0 0

1 (1 – sin )
2

m x tw w

or	 T = 2 2 2
0 0

1 ( – )
2

m x xw 	 ...(3.4)
The potential energy of the oscillator is,

	 V(x) = 2 2 2
0

1 1
2 2

kx m x= w 	 ...(3.5) 

We may note that the potential energy of the oscillator is not a constant 
and instead varies parabolically with the displacement x of the oscillator.

The total energy E of the oscillator is,
E = T + V

Using the expressions for T and V given respectively by Equations 
(3.4) and (3.5) we obtain,

	 E = 2 2
0 0

1
2

m xw 	 ...(3.6)

We find for an oscillator of given frequency and given amplitude the 
total energy to be a constant.

3.3.1 Time-Independent Schrödinger Equation for An Oscillator

Let y(x) represent the time-independent wave function which describes the 
state of the oscillator at some given instant of time. y(x) then satisfies the 
time-independent Schrödinger equation,

	
2

2 2
( ) 2m [ – ( )] ( ) 0d x E V x x

dx
y + y =

�
	 ...(3.7)
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Using the expression for V(x) given by Equation (3.5), Equation  (3.6) 
becomes,

	
2

2 2
02 2

( ) 2m 1– ( ) 0
2

d x E m x x
dx
y È ˘+ w y =Í ˙Î ˚�

	 ...(3.8)

For the convenience of solving Equation (3.8), we define a new variable 
y and a new parameter l as,

	 y = 
1
20m xwÊ ˆ

Á ˜Ë ¯�
	 ...(3.9)

and 

	 l = 
0

2E
w�

	 ...(3.10)

In view of the definition of the variable y in terms of the variable x, we 
may consider the wave function for the oscillator to be a function of y and 
write the wave function as y(y).

Now,

	
1/2

0( ) ( ) ( )md x d y dy d y
dx dy dx dy

wy y yÊ ˆ= = Á ˜Ë ¯�
	

		  [using Equation (3.9)]
and

	

1/22
0

2
( ) ( ) ( )md x d d x d d y

dx dx dx dydx

È ˘wy y yÊ ˆ= = Í ˙Á ˜Ë ¯Í ˙Î ˚�

	 = 
1
20 ( )m d d y dy

dx dy dx
Ê ˆw yÊ ˆ

Á ˜ Á ˜Ë ¯ Ë ¯�

or	
2 2

0
2 2
( ) ( )md x d y

dx dy
wy y=
�

	 ...(3.11)

Using Equations (3.9), (3.10) and (3.11) in Equation (3.8) we get,

	

2
2 20
02 2 2

0

( ) 2 2 1– ( ) 0
2

m d y m mE m y y
mdy

È ˘w y + ¥ w y =Í ˙wÎ ˚

�
� � �

or	
2

2
2

0

( ) 2 – ( ) 0d y E y y
dy

È ˘y + y =Í ˙wÎ ˚�

or	
2

2
2
( ) [ – ] ( ) 0d y y y

dy
y + l y = 	 ...(3.12)

Equation (3.12) is the time independent Schrödinger equation for the 
oscillator.

The solution of Equation (3.12) yields y(y) and hence the wave function 
y(x) for the oscillator.
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Asymptotic Solution

Asymptotic solution of the wave equation is the solution of Equation (3.12) 
in the limit y → ∞ or x → ∞. In this limit,

	 l – y2 Æ – y2 
so that Equation (3.12) reduces to

	
2

2
( )d y

dy
y  – y2 y(y) = 0

or	
2

2
( )d y

dy
y  = y2 y(y)	 ...(3.13)

The general solution of Equation (3.13) may be taken as,

	 y(y) = 
2

2
y

e
+

 and y(y) = 
2

2
y

e
-

 
i.e., as

	 y(y) = 
2

2
y

e
±

	 ...(3.14)
	 The above can be easily seen. We get from Equation (3.14),

	

2 2 22
2 2 22 2 2

2
( ) ( ), ( 1) ( )

y y yd y d yy e y e y e y y
dy dy

± ± ±y y= ± = + = = y

because y is being considered large tending to infinity. One of the 

asymptotic solutions namely y(y) = 
2

2
y

e
+

 is not physically acceptable because 
it diverges as |y| and hence |x| → ∞. We thus have the asymptotic solution 
for the oscillator,

	 y(y) = 
2

–
2
y

e 	 ...(3.15)
In terms of the variable x, the asymptotic solution can be expressed as,

	 y(x) = 
20–

2
m x

e
w
� 	 ...(3.16)

Exact Solution: Recursion Formula

In view of the asymptotic solution given by Equation (3.15), we may express 
the exact solution of the wave equation for the oscillator given by Eq. (3.12) as

	 y(y) = 
2

–
2
y

e  H(y)	 ...(3.17)

where H(y) is a function of y such that the product 
2

–
2
y

e  H(y) tends to 
zero as |y| → ∞ or |∞| as is required by the asymptotic solutions given by 
Equation (3.15) or Equation (3.16).
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From Equation (3.17) we obtain

	

2 2– –
2 2( ) ( ) – ( )
y yd y dH ye y e H y

dy dy
y =

	 = 
2–

2( ) – ( )
ydH y y H y e

dy
È ˘
Í ˙
Î ˚and 

2 2 2 2 2– – – – –2 2
22 2 2 2 2

2 2
( ) ( ) ( ) ( )– ( ) – – ( )

y y y y yd y d H y dH y dH ye y e y H y e y e H y e
dy dydy dy

y = +

or	
2–2 2

2 2
2 2
( ) ( ) ( )– 2 ( – 1) ( )

yd y d H y dH yy y H y e
dydy dy

È ˘y = +Í ˙
Î ˚

	 ...(3.18)

Substituting Equations (3.17) and (3.18) in Equation (3.12) we get

	

2 2– –2
2 22 2

2
( ) ( )– 2 ( – 1) ( ) ( – ) ( ) 0

y yd H y dH yy y H y e y H y e
dydy

È ˘
+ + l =Í ˙

Î ˚

or	
2

2
( ) ( )– 2 ( – 1) ( ) 0d H y dH yy H y

dydy
+ l = 	 ...(3.19)

We find that the function H(y) in the exact solution of the Schrödinger 
equation for the oscillator given by Equation (3.17) satisfies the Hermite 
differential equation.

Power Series Solution

We now assume a power series solution of Equation (3.17) of the type

	 H(y) = 
0

s r
r

r

a y
•

+

=
Â 	 ...(3.20)

Where r takes integral values including zero. Equation (3.20) gives

	 –1

0

( ) ( ) s r
r

r

dH y a s r y
dy

•
+

=

= +Â 	 ...(3.21)
and 

	
2

–2
2

0

( ) ( ) ( – 1) s r
r

r

d H y a s r s r y
dy

•
+

=

= + +Â 	 ...(3.22)

Substituting Equations (3.20), (3.21) and (3.22) in Equation (3.19) 
we obtain,

	

–2

0 0 0

( ) ( – 1) – 2 ( ) ( – 1) 0s r s r s r
r r r

r r r

a s r s r y a s r y a y
• • •

+ + +

= = =

+ + + + l =Â Â Â

Dividing throughout by ys – 2, the above becomes,
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2

0 0

( ) ( – 1) – (2 2 – 1) 0r r
r r

r r

a s r s r y a s r y
• •

+

= =

+ + + l + =Â Â

or	� a0 s(s – 1) y0 + a1 s(s + 1) y1 + 
2r

•

=
Â  [ar (s + r) (s + r – 1) – ar – 2  

(2s + 2r – 3 – l)] yr = 0
...(3.23)

For Equation (3.23) to hold for all values of y, it is necessary that the 
coefficients of different powers of y must separately be equal to zero. We 
hence obtain

		  a0 s (s – 1) = 0	 ...(3.24(a))
		  a1 s (s + 1) = 0	 ...(3.24(b))
		  ar (s + r) (s + r – 1) – ar – 2 (2s + 2r – 3 – l) = 0	

...(3.25)
Equation (3.25) gives

	 ar = –2
2 2 – 3 – ; ( 2)

( ) ( – 1) r
s r a r

s r s r
+ l ≥

+ + 	 ...(3.26)

Equation (3.26) is called the recurrence relation.
As a0 π 0, we have according to Equation (3.24(a))
		  s = 0  or  s = 1	

	 According to Equation (3.24(b)) we may have,
		  a1 = 0  or  s = 0  or  s = – 1	 ...(3.27)

Since s ≠ – 1 we get either a1 = 0  or  s = 0 or both.
The recurrence relation given by Equation (3.26) allows us to calculate 

all the even coefficients in terms of a0 and all odd coefficients in terms of 
a1. Equation (3.20) will have only odd coefficients if a0 = 0 and only even 
coefficients if a1 = 0. We thus have two independent solutions of Equation 
(3.20). A linear combination of these two solutions gives the most general 
solution of Equation (3.26).

Considering the root s = 0, Equation (3.26) gives,

		  ar = –2
2 – 3 – ( 2)

( – 1) r
r a r
r r

l ≥ 	 ...(3.28)

The above equation yields the even coefficients as,

		

2 0 0

04 2

1 – 1 –
2 1 21
5 – (5 – ) (1 – )
4 3 4!

a a a

aa a

l l ¸= = Ô¥ Ô
˝

l l l Ô= = Ô¥ ˛
etc.	 ...(3.29)
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and the odd coefficients as,

		

3 1 1

1 15 3

3 – 3 –
3 2 3!

(7 – ) (3 – )7 – (7 – ) (3 – )
5!5 4 5 4 3!

a a a

a aa a

l l ¸= = Ô¥ Ô
˝l ll l l Ô== = Ô¥ ¥ ¥ ˛

 etc. 	
...(3.30)

With s = 0, the solution given by Equation (3.20) becomes

H(y) = 
0

r
r

r

a y
•

=
Â

The above can be written conveniently as 

		  H(y) = (a0 + a2 y
2 + a4 y

4 + ...) + (a1 y + a3 y
3 + a5 y

5 + ...)

Using the results given by Equations (3.29) and (3.30), the above gives

H(y) = 2 4 3 5
0 1

1 – (5 – ) (1 – ) 3 – (7 – ) (3 – )1 ... ...
2! 4! 3! 5!

a y y a y y yl l l l l lÈ ˘ È ˘+ + + + + + +Í ˙ Í ˙Î ˚ Î ˚
	

...(3.31)

An inspection of Equation (3.31) shows the following:
	 (1)	For l = 1, 5, 9, etc., the first series in Equation (3.31) becomes a 

polynomial while the second series remains an infinite series.
	 (ii)	For l = 3, 7, 11, etc., while the first series is an infinite series, the 

second one reduces to a polynomial. From the above we can conclude 
that when,
		  l = (2n + 1),  n = 0, 1, 2, ...	 ...(3.32)

one of the solutions is a polynomial.

3.3.3 Energy Eigenvalues of the Oscillator

Equation (3.28) gives for large r

		  ar = –2 –22
2 – 3 – 2

( – 1) r r
r ra a
r r r

l Æ

or		
–2

2r

r

a
a r

Æ 	 ...(3.33)

From the above we obtain

			 
– 2

Lt 0r
r r

a
aÆ•

= 	 ...(3.34)
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series in Equation (3.31) converage for all values of y.

We have the Taylor series expansion of ​e​y2​ as

	 ​e ​y2​ = 
4 6

21 ...
2! 3!
y yy+ + + +

	 = 
0,2,4...

1
( /2)!

r

r

y
r=

Â
Writing 

	 br = 1 ...
( /2)!r

	 ...(3.35)
we get

		  ​e ​y2​ = 
0,24,...

r
r

r

b y
=
Â 	 ...(3.36)

The ratio of the coefficients of the successive terms in Equation (3.36) is

		
–2

1 – 1 !
22( / 2)!

1
!

2– 1 !
2

r

r

r
b r

rb r
r

Ê ˆ
Á ˜Ë ¯

= = =
Ê ˆ
Á ˜Ê ˆ Ë ¯

Á ˜Ë ¯

	 ...(3.37)

In view of Equation (3.33) and (3.37) we may write

		        
–2 –2

r r

r r

a b
a b

=  (for large r)	 ...(3.38)

We find that for large values of r, the wave function y(y) = ​e​– y2/2​ H(y) 
will behave like ​e ​y2/2​ if H(y) is given by the first (or even) series in Equation 
(3.31) while it will behave like y ​e​y2/2​ if H(y) is given by the second (or odd) 
series in Equation (3.31). This is not physically acceptable. This unrealistic 
situation is resolved if the infinite series in Equation (3.20) terminates after 
a certain number of terms so that y(y) → 0 as y → ±  ∞ because of the factor ​
E ​– y2/2​. Thus for the wave function of the oscillator to satisfy the boundary 
condition, the infinite series must be terminated by selecting l in such a 
way that (2r + 1 – l) vanishes for r = n. Thus one of the series becomes a 
polynomial and the other can be eliminated by setting the first coefficient to 
zero. Thus, we obtain

	 2n + 1 – l = 0
or	 l = 2n + 1,			

		  n = 0, 1, 2, ...	 ...(3.39)
Using l given by Equation (3.10) in Equation (3.39) we get

	
0

2E
w�

 = 2n + 1
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or		  E = 0 0
2 1 1

2 2
n n+ Ê ˆw = + wÁ ˜Ë ¯

� � 	 ...(3.40)

We observe that integral values of n including 0 value leads to a discrete 
set of energy values for the oscillator. It is important to note that the oscillator 
possesses equi-spaced energy levels, the spacing between successive energy 
levels being w0.

3.3.4 Energy Eigenfunctions of the Oscillator

For the wave function of the oscillator to satisfy the boundary conditions 
(y(y) → 0 as y → ± ∞), the parameter l should take the value (2n + 1) where 
n is a positive integer including zero.

When l = (2n + 1), H(y) in Equation (3.19) can be conveniently 
replaced by Hn(y) to get,

	

2

2
( ) ( )– 2 (2 1 – 1) ( ) 0n n

n
d H y dH yy n H y

dydy
+ + =

or	
2

2
( ) ( )– 2 2 ( ) 0n n

n
d H y dH yy n H y

dydy
+ = 	 ...(3.41)

The solution of Equation (3.41) is the well known Hermite polynomial 
of degree n given by,

	 Hn(y) = (– 1)n ​e​y2​ 
n

n
d
dy

 (​e​– y2​)	 ...(3.42)
We may note the following recurrence relation that holds between 

Hn – 1(y), Hn(y) and Hn + 1(y)

	 Hn + 1(y) = 2y Hn(y) – 2n Hn – 1(y)	 ...(3.43)
Hermite polynomials of different degrees may be obtained from 

Equation (3.42)
	 n = 0, H0(y) = 1
	 n = 1,  H1(y) = 2y
	 n = 2,  H2(y) = 4y2 – 2
	 n = 3,  H3(y) = 8y3 – 12y,  etc.	 ...(3.44)
We may obtain the Hermite polynomials of higher degrees using 

Equation (3.44) and the Equation (3.43).
The energy eigenfunctions of the oscillator given by Equation (3.15) 

can now be expressed in the most general form as,
	 yn(y) = Nn Hn(y) ​e​– y2/2​	 ...(3.45)
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or	 yn(x) = 
20–

02
m x

n n
mN e H x

w Ê ˆw
Á ˜Ë ¯

�

�
	 ...(3.46)

In the above, Nn is the normalization constant which can be evaluated 
from the normalization condition,

		  *

–

( ) ( ) 1n nx x dx
+•

•

y y =Ú

or		
1/2

2

0–

| ( ) | 1n y dy
m

+•

•

Ê ˆ
y =Á ˜wË ¯Ú �

Using Equation (3.45) in the above we get 

		  2
1/2

2 2 –

0 –

| | ( ) 1y
n nN H y e dy

m

+•

•

Ê ˆ
=Á ˜wË ¯ Ú�

or		
1/2

2 1/2

0
| | 2 ( !) 1n

nN n
m

Ê ˆ
p =Á ˜wË ¯

�

The above gives

		  Nn = 

1
1 2
20 1

2 ( !)n
m

n

È ˘
wÊ ˆÍ ˙

Á ˜Í ˙Ë ¯p
Í ˙Î ˚
�

	 ...(3.47)

Using Nn given by Equation (3.47) in Equation (3.48), we obtain the 
normalized energy eigenfunctions of the oscillator to be given as,

	 yn(x) = 
20

1/21/2 –
0 021

2 ( !)

m x
nn

m me H x
n

wÈ ˘ Ê ˆw wÊ ˆÍ ˙Á ˜ Á ˜Ë ¯p Ë ¯Í ˙Î ˚
�

� �
	 ...(3.48)

In the following Table are given the energy eigenfunctions, representing 
the quantized states of the oscillator and the corresponding energy eigenvalues.

Table 3.1  Energy Eigenfunctions and Energy Eigenvalues

State Energy eigenfunctions Energy eigenvalue

Ground state
y0(x) = 

w
wÊ ˆ

Á ˜Ë ¯p
�

�

20
1 –
40 2

m
xm

e
w� 0

1
2

First excited 
state y1(x) = 

wÈ ˘w
Í ˙

pÍ ˙Î ˚
�

�

201/4 –2 2
0 2

2
4

m
xm

x e
w� 0

3
2

Second ex-
cited state

y2(x) 
- w

w wÈ ˘ Ê ˆ= Í ˙ Á ˜Ë ¯pÎ ˚
�

� �

20 0
1
4 20 0 2

3/2
41 – 2

2

m
xm m

x e w� 0
5
2

, etc.
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Some of the energy eigenfunctions yn(x), the corresponding energy 
eigenvalues En, the potential energy function V(x) are shown in the Figure (3.1).

n = 3

n = 2

n = 1

n = 0

En Yn( )x
V x( )

�w0
7
2

�w0
5
2

�w0
3
2

�w0
1
2

0 x

Fig. 3.1  Normalized Wave Functions yn(x) for n = 0, 1, 2, 3 
Energy Eigenvalues En for n = 0, 1, 2, 3 

The Potential Energy Function V(x)

The probability of finding the oscillating particle between x and  
x + dx when the oscillator is in the nth state described by the wavefunction 
yn(x) and according to the definition is given by,

		  Pn(x) dx = y*
n (x) yn (x) dx = |yn (x)|2 dx	 ...(3.49)

Using Equation (3.48) in Equation (3.49) we can find the probability 
Pn(x). The plots of probability density [yn (x)2] for some of the states along 
with that of the potential energy function are shown in Figure (3.2).

n = 3

n = 2

n = 1

n = 0

| ( )|yn x
2

V x( )

0 x

Fig. 3.2  Probability Density |yn(x)2| for n = 0, 1, 2, 3. 
Potential Energy Function v(x)
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Fig. 3.3  Probability Curve

Discussions

From the wave mechanical treatment of linear harmonic oscillator presented 
in the preceeding sections we observe the following:
	 (i)	While a harmonic oscillator treated classically possesses constant 

total energy depending upon the frequency and the amplitude, a wave 
mechanical treatment of the oscillator yields a discrete set of equispaced 
energy eigenvalues given by,

			   En = 0 , 2, ...
1 , 0, 1
2

n nÊ ˆ+ w =Á ˜Ë ¯
� 	 ...(3.50)

		  In the lowest or the ground state, which corresponds to n = 0, the 
oscillator has the finite energy,

			   E0 = 0
1
2

w� 	 ...(3.51)

		  Which is called the zero-point energy.
		  According to old quantum theory, the energy values of the oscillator 

are given by, 
				    En = n  w0,  n = 0, 1, 2, ...	 ...(3.52)
		  A comparison of the result given by Equation (3.52) with that given 

by Equation (3.50) shows that each of the equispaced energy levels 
obtained in the old quantum theory are raised by an amount equal to 
half the energy gap between the successive energy levels, i.e., by an 
amount equal to the zero point energy to give the energy levels of 
the oscillator in wave mechanical treatment. According to classical 
mechanics and old quantum theory, while the harmonic oscillator 
possesses zero energy in the lowest state corresponding to the state 
at absolute zero (0K), the oscillator when treated wave mechanically 

possesses the energy 0
1
2

w�  even at absolute zero.
		  The existence of zero point energy is in agreement with experiments 

and is found to be consistent with the uncertainty principle also.
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	 (ii)	The function ​e​– y2/2​ is always an even function, Hn(y) is an even function 
for n even and an odd function for n odd, we find the oscillator energy 
eigenfunctions given by Eq. (49) are even function for n even and odd 
functions for n odd.

	 (iii)	Since the oscillator energy eigenfunctions yn(x) do not become zero at 
the classical turning points x = ± x0, the oscillator can be found outside 

the parabolic potential barrier 21
2

V kxÊ ˆ=Á ˜Ë ¯
. The oscillator in all its 

quantum state is thus able to penetrate the potential barrier. This fact 
becomes evident form Figure (3.4).

	 (iv)	The total energy of the oscillator at the position corresponding to the 
displacement ± x from the mean position is,

				    E = 2 21 1
2 2

mv kx+

		  We obtain form the above, the velocity of the oscillator at the position 
± x to be,

				    v = 
1/222 –E kx

m
È ˘
Í ˙
Î ˚

	 ...(3.53)

		

| ( )|yn x
2

xo

Fig. 3.4  Solid Curve Represents the Variation of |y10(x)|2 with x.

Dotted curve represents the probability density of a classical oscillator 
of the same total energy.
		  Classically, the probability of finding the oscillator at the position ± x 

is inversely proportional to the velocity, i.e.,

					     Pcl (x) µ 22 –
m

E kx
	 ...(3.54)

		  We find the probability to be the minimum at the mean position  

(x = 0) and maximum at the two extreme positions 0
2Ex
k

Ê ˆ
= ±Á ˜Ë ¯

. This 

is shown by the dotted curve in Figure 3.3. Quantum mechanically, 
for the ground state of the oscillator (n = 0), the probability density 
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One Dimensional Problemgiven by |y0(x)|2 is maximum at x = 0 and becomes zero at positions 
outside the classical turning points (x = ± x0). This result is shown by 
full line curve in Figure (3.3). Figure (3.2) shows the plot of |yn(x)|2 
against x for different values of n corresponding to different quantum 
states of the oscillator.

	 (v)	As we move towards higher and higher excited states (n increasing), 
the maximum value of probability density moves towards the extreme 
positions as illustrated in the Figure (3.4) by the full line curve. The 
dotted curve in this figure shows the variation of classical probability 
density with position for the same energy.

It is important to remark that though the classical and quantum 
mechanical probability distributions become closer and closer for larger and 
larger n, the theory of oscillator described above cannot take account of the 
rapid oscillations of |yn(x)|2.

3.3.5 Alternative Approach for Linear Harmonic Oscillator Problem

Abstract Operator Method

The Schrödinger method for solving the energy eigenvalue problem of linear 
harmonic oscillator as presented in the previous sections consists in replacing 
the position x and the linear momentum p in the expression for total energy 

by the corresponding Hermitian operator x̂  ∫ x and p̂  = – di
dx
� , respectively, 

to obtain the Hamiltonian operator Ĥ  for the oscillator and then to solve for 
the energy eigenvalue equation,

Ĥ y = Ey

We may, however, note that one of the fundamental features of quantum 
mechanics is that operators x̂  = x and p̂  satisfy the commutation relation,

				    [ x̂ , p̂ ] = i 	 ...(3.55)

There exist many problems which can be exactly and elegantly solved 
using the method of abstract operator algebra, i.e., using the commutation 
relations between operators without considering specific forms for the 
operators.

In the following, we use this method to solve the energy eigenvalue 
problem for linear harmonic oscillator. As we shall see, the method allows 
us to find, with simplicity not only the expectation values of various physical 
quantities for the oscillator but also the energy eigenfunctions of the oscillator.

The Hamiltonian operator of a harmonic oscillator of mass m oscillating 
along the x-axis under a force constant k is,

			 
2

2ˆ 1ˆ
2 2
pH k x
m

= + 	 ...(3.56) 
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Let us introduce two operators â  and â † according to,

		  â  = 0

0

1 ˆ
2 2

m x i p
m

w
+

w� �
	 ...(3.57)

And

		  â † = 0

0

1 ˆ–
2 2

m x i p
m

w
w� �

	 ...(3.58) 

In the above â † is the Hermitian adjoint of â  and w0 is the natural 
angular frequency of the oscillator. From Equations (3.57) and (3.58) we 
obtain

	 ˆ ˆaa † = 0 0

0 0

1 1ˆ ˆ–
2 2 2 2

m m
x i p x i p

m m
Ê ˆ Ê ˆw w

+Á ˜ Á ˜w wË ¯ Ë ¯� � � �

= 2 20

0

1 ˆ ˆ ˆ( – )
2 2 2

m ix p px xp
m

w
+ +

w� � �

Using Equation (3.55) in the above we obtain

		  ˆ ˆaa† = 2 20

0

1 ˆ (– )
2 2 2

m ix p i
m

w
+ +

w
�

� � �

or		  ˆ ˆaa † = 
2

2 2
0

0

ˆ1 1 1
2 2 2
p m x
m

È ˘
+ w +Í ˙w Î ˚�

or		  ˆ ˆaa† = 
0

ˆ 1
2

H +
w�

  [using Equation (3.56)]	
...(3.59)

Similarly, we obtain

		  â † â  = 
0

ˆ 1–
2

H
w�

	 ...(3.60)

Adding Equations (3.59) and (3.60) we obtain,

		
0

ˆ
2 H

w�
 = ˆ ˆaa † + â † â

or
		

† †
0

1ˆ ˆ ˆ ˆ ˆ( )
2

H aa a a= w +�
	 ...(3.61)

Subtracting Equation (3.60) from Equation (3.59) we get,
			   ˆ ˆaa † – â † â  = 1

Clearly, the operators â and â† satisfy the commutation relation,
			   [ â , â†] = 1	 ...(3.62)
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One Dimensional ProblemWe may also express the Hamiltonian operator Ĥ  as,

			   Ĥ  = †
0

1ˆ ˆ
2

a aÊ ˆw +Á ˜Ë ¯
� 	 ...(3.63)

We observe that the Hamiltonian operator Ĥ  and the operator â† â  are 
related to each other by numbers only. Clearly, the eignvalues Ĥ and that of 
â† â  bear the same relationship.

Eigenvalues of â† â

We have
		  [ â† â , a] = â† ˆ ˆaa  – ˆ ˆaa † â = ( â† â – ˆ ˆaa†) â = – ( ˆ ˆaa † – â† â) â  

Using the result given by Equation (3.62) in the above we obtain
			   [ â† â, â] = – â 	 ...(3.64)

Also we have
		  [ â† â , â†] = â† ˆ ˆaa † – â† â† â = â† ( ˆ ˆaa † – â† â) = â†	

...(3.65)

Let y be an eigenfunction of the operator â† â belonging to eigenvalue 
l, i.e.,

			   â† ây = ly	 ...(3.66)

We now have

      ( â† â) ( ây) = ( ˆ ˆaa † – 1) ( ây)        [using Equation (3.62)]

	 = ˆ ˆaa † ây – ây

	 = âly – ây      [using Equation (3.66)]

or		  ( â† â) ( ây) = (l – 1) ây	 ...(3.67)

Similarly, we get

			   ( â† â) ( â†y) = (l + 1) â†y	 ...(3.68)
Equations (3.67) and (3.68) show:
	 (i)	 ây is an eigenfunction of â† â belonging to the eigenvalue (l – 1).
	 (ii)	 â†y is an eigenfunction of â† â belonging to the eigenvalue (l + 1).

From the above, we find that given the eigenfunction y of â† â it is 
possible to construct eigenfunctions â†y, ( â†)2 y, ( â†)3 y, etc., belonging 
respectively to eigenvalues (l + 1), (l + 2), (l + 3), etc. Similarly, we can 
construct eigenfunctions ây, ( â)2 y, ( â)3 y, etc. belonging to eigenvalues 
(l – 1), (l – 2), (l – 3), etc.

Now â† â is self-adjoint irrespective of whether â is self-adjoint or 
not. The expectation value of â† â is positive in all states, i.e., the operator 
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does not possess negative eigenvalues. Hence the sequence of eigenvalues 
(l – 1), (l – 2), ... must terminate before the negative value is reached and 
also the sequence ây, â2y, ... must terminate.

Denoting the limiting eigenfunction (the last of the eigenfunctions) in 
the sequence as y0 we obtain,

				    ây0 = 0	 ...(3.69)
The above gives,
				    â† ây0 = 0 = 0 × y0	 ...(3.70)

indicating that y0 is an eigenfunction of the operator â† â belonging 
to the eigenvalue 0.

In view of Equation (3.68) we then obtain 
		  â+ â ( â†y0) = 1 × ( â†y0)

		  â† â [( â†)2 y0] = 2 × ( â†)2 y0

		  â† â [( â†)3 y0] = 3( â†)3 y0,  etc.	 ...(3.71)
or generalizing, we get
		  â† â [( â†)n y0] = n( â†)n y0	 ...(3.72)

We observe that the eigenvalue spectrum of the operator â† â  consists 
of a set of positive integers n. Equation (3.72) when applied to Equation 
(3.63) gives

		  Ĥ [( â†)n y0] = † † †
0 0 0 0

1 1ˆ ˆ ˆ ˆ( ) ( )
2 2

n na a a n aÊ ˆ Ê ˆÈ ˘w + y = w + yÁ ˜ Á ˜Î ˚Ë ¯ Ë ¯
� � 	

...(3.73)

Thus the energy eigenvalues of the oscillator are

		  En = 0
1 ,
2

nÊ ˆ+ wÁ ˜Ë ¯
�   n = 0, 1, 2, ...	 ...(3.74)

The operator â† and â  are, respectively, called the raising and lowering 
operators. Further, since the eigenvalues of â† â are positive integers it is 
usual to call the operator â† â as the number operator. The lowest energy 
eigenvalue is, 

				    E0 = 0
1
2

w�

Which is the zero point energy of the oscillator.

Replacing p̂  by – i  d
dx

 in Equation (3.57) and (3.58) we obtain

		  â = 01/2
0

1
(2 )

dm x
dxm

Ê ˆw +Á ˜Ë ¯w
�

�
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		  â† = 01/2

0

1 –
(2 )

dm x
dxm

Ê ˆwÁ ˜Ë ¯w
�

�

Using the above in Equation (3.69) we obtain,

		
0 01/2

0

1 0
(2 )

dm x
dxm

Ê ˆw + y =Á ˜Ë ¯w
�

�

or		  mw0x y0 + 0 0d
dx
y

=�

or		  0 0

0

–d m x dxy w
=

y �

Integrating we obtain,

		  y0 = N0 
2

0–
2

m x

e
w
� ,  N0 = A constant.	 ...(3.75)

The above is the energy eigenfunction of the oscillator belonging to 

the lowest energy eigenvalue 0
1
2

w� . The eigenfunction corresponding to the 

first excited state belonging to energy eigenvalue 0
3
2

w�  is, 

		  y1 = â†y0 = 
2

0–
2

0 01/2
0

1 –
(2 )

m xdm x N e
dnm

wÊ ˆwÁ ˜Ë ¯w
��

�

or		  y1 = 
2

0–
0 2

01/2
0

–
(2 )

m xN dm x e
dxm

wÊ ˆwÁ ˜Ë ¯w
��

�

	 = 
2

0–
2

1 0 –
m xdN m x e

dx

wÊ ˆwÁ ˜Ë ¯
��  	 ...(3.76)

The eigenfunction corresponding to the second excited state belonging 
to the energy eigenvalue 0

5
2

w�  is,

		  y2 = â†y1 = 
2

02 –
1 2

01/2
0

–
(2 )

m xN dm x e
dxm

wÊ ˆwÁ ˜Ë ¯w
��

�

or	 	 y2 = 
2

02 –
2

2 0 –
m xdN m x e

dx

wÊ ˆwÁ ˜Ë ¯
��

Repeating the operation by â † from the left we get the energy 

eigenfunction belonging to energy eigenvalue 0
1
2

nÊ ˆ+ wÁ ˜Ë ¯
�  as,

		  yn = 
2

0–
2

0 –
n m x

n
dN m x e
dx

wÊ ˆwÁ ˜Ë ¯
�� 	 ...(3.77)
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yn given by Equation (3.77) is the same as the eigenfunction for the 
oscillator obtained using the previous method.

3.3.6 Potential Barrier Problem 

A one-dimensional potential barrier of height V0 and width a is defined by 
potential function V(x) given by,

	 V(x) = 0	 for  x < 0

	 = V0	 for  0 < x < a

	 = 0	 for  x > a 

The above potential function is shown in the Figure (3.5).

Fig. 3.5  Potential Function

Let us consider a particle of mass m moving from the left, encounter 
the barrier at x = 0 with energy E. We limit our discussion to energies of the 
particles such that E < V0, that is, energies such that no penetration of the 
barrier would occur according to classical physics.

In the Region I (x < 0) the Schrödinger equation is, 

			 

2
1

12 2
( ) 2 ( ) 0d x m E x

dx
y + y =

�

or		
2

21
12 2

( ) 2( ) 0,
d x mk x k E

dx
y

y = =
�

	 ...(3.78)

In the Region II, i.e., inside the barrier we have the equation, 

			 

2
2

0 22 2
( ) 2 ( – ) ( ) 0d x m E V x

dx
y + y =

�

	 Putting

			   02
2 ( – )m V E = a
�

 (A positive quantity)	
...(3.79)

The above equation becomes, 

			 
2

22
22

( ) – ( ) 0d x x
dx
y a y = 	 ...(3.80)
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2

23
32

( ) ( ) 0d x k x
dx
y

+ y = 	 ...(3.81)

The general solutions of Equation (3.78), (3.80) and (3.81) are given 
respectively by,

			   y1(x) = A1 e
ikx + B1 e

– ikx	 ...(3.82) 

			   y2(x) = A2 e
ax + B2 e

– ax	 ...(3.83) 

			   y3(x) = A3 e
ikx + B3 e

– ikx	 ...(3.84) 
In the above A1, A2, A3, B1, B2, B3 are constants.
The first term in Equation (3.82) which represents a plane wave 

travelling along the positive x-axis in Region I can be considered as the 
wave incident an the barrier at x = 0. The second term representing a wave 
travelling along the negative x-axis in the region can be interpreted as the 
wave reflected from the barrier at x = 0. 

The first and second terms in Equation (3.83) can similarly be 
interpreted as the wave transmitted into the barrier at x = 0 and the wave 
reflected from the barrier at x = a. In Equation (3.84) the first term can be 
interpreted as the wave transmitted into the region III from the barrier at 
x = a. In this region the only wave that can exist is a wave travelling along the 
positive x-axis. Hence, the coefficient B3 in the second term of the Equation 
(3.85) is identically zero.

Considering the amplitude of the incident wave as unity we may write 
the solutions in the three regions as,

			   y1(x) = eikx + B1 e
– ikx	 ...(3.85) 

			   y2(x) = A2 e
ax + B2 e

– ax	 ...(3.86) 

			   y3(x) = A3 e
ikx	 ...(3.87)

	 Single valuedness and continuity of the wavefunctions at the 
boundaries at x = 0 and at x = a give the following boundary conditions:

	...(3.88)
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Using these boundary conditions we obtain,

			   I + B1 = A2 + B2	 ...(3.89)

			   ik (I – B1) = a (A2 – B2)	 ...(3.90)

			   A2 e
aa + B2 e

– aa = A3 e
ika	 ...(3.91)

			   a [A2 e
aa – B2 e

– aa] = ik A3 e
ika	 ...(3.92)

Solving the simultaneous Equations [(3.89) to (3.92)] we obtain,

		  A3 = 
–

2 2
2

( – ) sin ( ) – 2 cos ( )

ikaik e
k h a i k h a

a
a a a a

	 …(3.93)

A3 being the amplitude of wave transmitted into the Region III. We get 
the transmission coefficient under the condition E < V0 as,

		  T = A3 A*
3 = |A3|

2 = 
–

2 2

2 2

2
( – ) sin ( ) – 2 cos ( )

– 2
( – ) sin ( ) 2 cos ( )

ika

ika

ik e
k h a i k h a

ik e
k h a i k h a

a
a a a a

a¥
a a + a a

	
	

or		  T = 
2 2

2 2 2 2 2 2 2
4

( – ) sin ( ) 4 cos ( )
k

k h a k h a
a

a a + a a
	

...(3.94)

Since both k as well as a are real quantities, the transmission coefficient 
has a finite value.

When E Æ  0, k  0 and hence T  0.
As the energy E of the incident particle increases, remaining less than 

V0, both k as well as a increase and the transmission coefficient increases.
Under the condition E < V0, a Æ 0, we obtain from Equation (3.94)

		  T = 
2 2

4 2 2 2 2 2
4 1

4
1

2

k
k a k ka

a =
a + a Ê ˆ+ Á ˜Ë ¯

 	 …(3.95)

Under the condition of the barrier height V0 large and the barrier width 
a also large we get aa large, so that 

			   sin h (aa) = 1
2

aea

			   cos h (aa) = 1
2

aea
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			   T = 
2 2

– 2
2 2 2 2

16
( – ) 4

ak e
k k

aa
a + a

or		  T = 
2 2

– 2
2 2 2

16
( )

ak e
k

aa
a +

 

Using the values of k and a in the above we obtain for such a barrier, 

		  T = 
1/2

02
2– 2 ( – )

0
2

0

16 ( – )
m V E aE V E e

V

È ˘
Í ˙Î ˚� 	 ...(3.96)

We observe that transmission does occur even though the energy lies 
below the top of the barrier. This is a wave phenomenon and in quantum 
mechanics it is also one exihibited by the particle. This tunneling of a particle 
through a barrier is frequently encountered. We note that when aa is large, 
the ratio of the transmitted flux to incident flux is, 

			 
2

– 4
2 2
2 akT e

k
aÊ ˆaª Á ˜a +Ë ¯

	 ...(3.97)

We find the flux ratio to be an extremely sensitive function of the width 
a of the barrier, and of the amount by which the barrier height V0 exceeds 
the incident energy.

The phenomenon of particle tunneling is quite common in atomic and 
nuclear physics. Some examples are thermionic emission, field emission, 
a-particle emission from a heavy nucleus.

3.3.7 Alpha-Particle Emission 

It is observed that some radioactive nuclei disintegrate by the emission of 
alpha (a) particle which is the nucleus of a helium atom having charge of 
+2e and a mass 4 units.

An a-particle remains bound within the nucleus by a strong, attractive, 
short range nuclear force. This attractive nuclear force acts upto a distance 
which is approximately equal to the radius of the nucleus. When the a-particle 
comes out of the nucleus then it experiences a long range coulomb repulsive 
force due to the residual nucleus (the nucleus that remains after the emission 
of the a-particle). The variation of the potential energy of the a-particle 
with distance from the centre of the nucleus is qualitatively as shown in the 
Figure (3.6).

If r0 be the radius of the nucleus and Ze be the change of the residual 
nucleus then the coulomb potential energy of the a-particle just beyond the 

surface of the nucleus becomes 
2

0 1

1 2
4

Ze
rp Œ

. For the a-emitting nuclides 
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this energy is several times larger than the energy of the a-particles. The 
question thus arises how the a-particles of energy much less than the 
potential barrier cross the barrier? The answer is provided by the quantum 
mechanical tunneling of a particle through a potential barrier as discussed 
in the previous section.

V r( )

O r0 r1
r

E

Fig. 3.6  Potential Energy of the a-Particle

Let E be the energy of the a-particle emitted from the nucleus. Let the 
repulsive coulomb potential energy of the nucleus be equal to E at a distance 
r1 from the centre of the nucleus. We then have, 

			   E = 
2

0 1

1 2
4

Ze
rp Œ

	 ...(3.98)

or 		  r1 = 
2

0

1 2
4

Ze
Ep Œ

	 ...(3.99)

We may, for some qualitative understanding of the phenomenon of 
a-emission, consider the potential V(r) in the region r0 ≤ r ≤ r1 as a one-
dimensional square potential barrier and use the result of the last section to 
write the transmission coefficient from the barrier as,

		  T = 
0 1 02

8– ( – ) ( – )
0
2

0

16 ( – )
m V E r rE V E e

V

È ˘
Í ˙
Í ˙Î ˚� 	 ...(3.100)

Where	 V0 = 
2 2

0 0 0 1

1 2 1 2
4 4

Ze Ze
r r

=
p Œ p Œ

 	 ...(3.101) 

	 A rigorous treatment yields the transmission coefficient to be, 

			   T = 
1

0

– 2 2 ( ( )– )
r

r
m V r E dr

e
Ú
�

or 		  T = 
2

1

00

1 2– 2 2 –
4

r

r

zem E dr
re

È ˘
Í ˙pŒÍ ˙Î ˚

Ú
� 	 ...(3.102)
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of the order of 107 ms– 1. Considering the nucleus’s radius to be 10– 14 m we 
find that the time taken by the a-particle to move once across the nucleus to 
be 10– 21. Clearly the a-particle strikes the coulomb barrier at the surface of 
the nucleus 1021 times per second. The probability that the a-particle crosses 
the barrier and comes out of the nucleus per sec is, 

				    P = T × 1021

The reciprocal of P gives the life time t of the a-decaying nucleus, i.e.,

				    t = 21
1 1

10P T
=

¥
 	 ...(3.103)

If l be the disintegration constant of the nucleus we get,

		  l = ​ 1 __ t ​ 
2

1

00

1 2– 2 2 –
421 2110 10

r

r

zem E dr
rT e

È ˘
Í ˙pŒÍ ˙Î ˚= ¥ =

Ú
�  

Taking its logarithm we get from the above,

			   log l = A + BE,  A and B Constants	 ...(3.104) 

which is the well-known Geiger-Nuttal law.
Example 1: Find the probability density at the position x of a linear harmonic 
oscillator of mass m and natural angular frequency w0 if the oscillator is in 
its ground state. Find also the position at which the probability density is the 
maximum. What is the maximum probability density?
Solution: The ground state of the given oscillator is described by the 
wavefunction,

			   y0(x) = 
201/4 –

0 2
m xm e

wwÊ ˆ
Á ˜Ë ¯p

�

�

The probability density at the position x is given by,

		  P(x) = 
201/2 –

0*
0 0( ) ( )

m xmx x e
wwÊ ˆy y = Á ˜Ë ¯p
�

�

We find P(x) to be a function of x. Hence, for P(x) to be maximum 
we have,

			   ( )dP x
dx

 = 0

or		
201/2 –

0 0– 2 0
m xm me x x

ww wÊ ˆ Ê ˆ =Á ˜ Á ˜Ë ¯ Ë ¯p
�

� �
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The above gives x = 0. Thus the probability density is the maximum 
at the mean position (x = 0). The maximum probability density is clearly,

		  Pmax = P(0) = 
1/2

0mwÊ ˆ
Á ˜Ë ¯p�

Example 2: A linear harmonic oscillator is described at some instant of time 
by the wavefunction y = a y0 + b y1, where y0 and y1 are, respectively, the 
real, normalized ground state and first excited state energy eigenfunctions 
of the oscillator with a and b real numbers.
	 (a)	Show that the average value of position x is in general different from 

zero.
	 (b)	Find the values of a and b for which 〈x〉 is maximum.
	 (c)	Find the values of a and b for which 〈x〉Òis minimum.
Solution: (a) The normalization condition of the wavefunction gives,

			 
* 1dxy y =Ú

or		  2
0 1( ) 1a b dxy + y =Ú

or		  2 2 2 2
0 1 0 12 1a dx b dx ab dxy + y + y y =Ú Ú Ú

The above gives, 
			   a2 + b2 = 1	 ...(i)

since 2 2
0 1 0 11; 1and 0dx dx dxy = y = y y =Ú Ú Ú  (y0 and y1 being orthogonal)

Now

		  〈x〉 = 0 1 0 1( ) ( )a b x a b dxy + y y + yÚ
          = 

2

0 1( )x a b dxy + yÚ
or      〈x〉 = 0 12ab x dxy yÚ 	 ...(ii)

Since a and b are not zero, in general, we get 〈x〉 ≠ 0.
(b) We may write the result given by Equation (ii), in view of Equation 

(i) as

		  〈x〉Ò = [1 – (a2 + b2 – 2ab)] 0 1x dxy yÚ
or      〈x〉 = [1 – (a – b)2] 0 1x dxy yÚ 	 ...(iii)

	 From the above we find for 〈x〉 to be the maximum,
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or		    (using Equation (i))

(c) From Equation (iii) we find for 〈x〉 to be the minimum

	
Example 3: A particle of rest mass 0.51 eV undergoes harmonic oscillation 
of angular frequency w0 along the x-axis. If the particle is confined to the 

ground state of the oscillator such that ​ 2( ) 0x x− = , find the energy 

required to excite it to its first excited state.
Solution: For a one-dimensional harmonic oscillator the average kinetic 
energy 〈T〉Ò is equal to the average potential energy 〈V〉Ò. Thus the total energy 
of the oscillator is, 

	 	 ...(i)
Since the particle is confined in the ground state we have,

				    E = 0
1
2

w� 	 ...(ii)

From Equations (i) and (ii) we have,

			   0
1
2

w�  = m0 ​w​0​ 2​  〈x〉2Ò

or		  w0 = 2
02m x· Ò
� 	 ...(iii)

We know that for the harmonic oscillator 〈x〉Ò = 0. We have according 
to the problem,

		  2 2 2 2( – ) –x x x x x· · Ò Ò = · Ò · Ò = · Ò  = 10– 10 m	 ...(iv)

The energy difference between the ground state and the first excited 
state is  w0. Clearly, the energy required to excite the particle from the ground 
to the first excited state is, 

	 DE = w0 = 
2

2 2
0 02 2m x m x

=
· Ò · Ò
� �

�

	  = 
–16 2 2

–20 2
0

(6.58 10 )
2 10

c
m c

¥ ¥
¥

	  = 
–16 2 8 2

– 20
(6.58 10 ) (3 10 )

2 0.51 10
¥ ¥ ¥

¥ ¥

	  = 3.8 eV.
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Example 4: A particle of mass m undergoes simple harmonic motion along 
the x-axis with an angular frequency w. Considering the uncertainty relation 

Dx Dp = 
2
� , where,

		  (Dx)2 = 〈(x – 〈x〉Ò)2Ò and (Dp)2 = 〈(p – 〈p〉Ò)2,

Find the minimum energy of the oscillator.
Solution: We know that for the linear harmonic oscillator,

			   〈x〉Ò = 0 and 〈p〉Ò = 0	 ...(i)

We hence get

		  (Dx)2 = 〈x〉2Ò and (Dp)2 = 〈p〉2Ò	 ...(ii)

The Hamiltonian of the oscillator is given by,
		  H = Kinetic Energy (T) + Potential Energy (V)

Clearly

			   	 ...(iii)
Since both terms on the right hand side of Equation (iii) are real and 

positive, we get,

		  〈H〉Ò = 2 2 2 2 2 21 1 1 12
2 2 2 2

p m x p m x
m m

· Ò + w · Ò ≥ · Ò ¥ w · Ò

or	 〈H〉Ò ≥ 2 2 2 2 212 ( ) ( )
4

p x x pw · Ò · Ò = w D D 	

(using Equation (iii))

or		  〈H〉Ò ≥ w Dx Dp

or		  〈H〉Ò ≥ 
2
w�

	 Clearly, the minimum energy is given by,

				    〈H〉Òmin = 1
2

w�  
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One Dimensional ProblemExample 5: A particle of mass m is undergoing harmonic oscillation of 
angular frequency w. If the wavefunction describing the state of the particle 
be,

				    y = 
2–

2
m x

x e
w
�

Find the energy of the particle.
Solution: The wavefunction y satisfies the Schrödinger equation,

			 
2

2 2
2 [ – ] 0d m E V

dx
y + y =

�
	 ...(i)

In the above, E is the energy eigenvalue in the state under consideration, 
V is the potential energy given by,

			   	 ...(ii)

We have

				    y = 
2–

2
m x

x e
w
�

Clearly, 

			 

2 2– –
2 2– 2

2

m mx xd me x x e
dx

w wy w= � �

�

	 = 
2–

22 1 –
m x me x

w wÈ ˘
Í ˙Î ˚

�

�
Further, we get

		

2 2– –2
22 2

2 – 2 – 1 – 2
2

m mx xd m m me x x x e
dx

w wy w w wÈ ˘ È ˘= ¥Í ˙ Í ˙Î ˚ Î ˚
� �

� � �

or	
2–2 2 2

32
2 2

– –2
m xd m m me x x x

dx

w È ˘y w w + w= Í ˙
Î ˚

�

� � �

or	
2–2

22
2 2 – 3

m xd m x me x
dx

wy w wÈ ˘= Í ˙Î ˚
�

� �
	 ...(iii)

Substituting Equations (ii) and (iii) in Equation (i) we get,

		

2 2– –
2 2 22 2

2 2
2 1– 3 – 0

2

m mx xm m mx e x E m x x e
w ww wÈ ˘ È ˘+ w =Í ˙ Í ˙Î ˚ Î ˚
� �

� � �

or		
2– 2 2

2 22
2

2 1 3– – 0
2 2 2

m xm m xx e E m x
w È ˘ww + w =Í ˙

Î ˚
� �

�
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The above gives,

			   E 3 0
2

- w =�

or		  E = 3
2

w� .

Example 6: Find the probability of finding a particle undergoing simple 
harmonic oscillations outside the classical limits if the oscillator is in its 
ground state.
Solution: Consider a linear harmonic oscillator of mass m and angular 
frequency w.

If a be the amplitude of oscillation, the total energy of the particle when 
we treat the oscillator classically is,

			   E = 2 21
2

m aw 	

According to the problem, the oscillator is in its ground state and hence 
its energy is, 

			   E = 1
2

w� 	

Thus, we have

			 
2 21 1

2 2
m aw = w�

or		  a2 = 
mw
�

or		  a = 
mw
� 	

The wavefunction describing the ground state of the oscillator is given 
by,

			   y0 = 
2 21/2 –
2

x

e
aÊ ˆa

Á ˜Ë ¯p
	

Where

			   a = 1m
a

w =
�

	

The probability of finding the oscillator within the classical limits  
(x = – a to x = + a) is given by,

	 p = *
0 0

–

a

a

dx
+

y yÚ
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	 = 2 2–

–

a
x

a

e dx
+

aa
pÚ

			   = 2 2

1

–

1–

xe dx

+
a

a

a

a
pÚ

Let us introduce a new variable y as,
			   y = ax
We then get,

			   p = 2
1

–

–1

1 ye dy
+

pÚ

                = 2
1

–

0

12 ye dy
pÚ

or		  p = 
1 1 1 14 6

2

0 0 0 0

2 – – ...
2! 3!
y ydy y dy dy dy

È ˘
Í ˙+ +

p Í ˙Î ˚
Ú Ú Ú Ú

or		  p = 2 1 1 11 – – ...
3 10 42

È ˘+ +Í ˙p Î ˚

or		  p = 0.84

Thus, the probability of finding the oscillator within the classical limits 
is 0.84 or 84% when the oscillator is in its ground state. Clearly in the ground 
state the probability of finding the particle outside the classical limits of the 
oscillator is (1 – 0.84)  0.16 or 16%.
Example 7: Show that the existence of zero point energy of a linear harmonic 
oscillator is a consequence of the uncertainty principle.
Solution: Consider a harmonic oscillator of mass m capable of oscillating 
along the x-axis with an angular frequency w. If at any time t, x be the 
displacement and p the linear momentum, the Hamiltonian of the oscillator 
is given by, 

			     
2

2ˆ 1ˆ
2 2
pH kx
m

= + 	 ...(i)

where k is the force constant equal to mw2. Classically, the average 
displacement and the average linear momentum of the oscillator are zero, i.e., 

			   〈x〉Ò = 0  and  〈p〉Ò = 0	 ...(ii)
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According to Ehrenfest’s theorem, Equation (ii) also holds for the 
quantum mechanical oscillator. If Dx and Dp be the uncertainties in the 
measured values of x and p then by definition we get,

			   (Dx)2 = 〈x〉2Ò – 〈x〉2

and
			   (Dp)2 = 〈p〉2Ò – 〈p〉2

Using Equation (ii), the above become

				    	 ...(iii)
The average value of the total energy is given by

			   〈E〉Ò = 2 21 1
2 2

p k x
m

· Ò + · Ò

Hence, using Equation (iii) we get,

			   〈E〉Ò = 2 21 1( ) ( )
2 2

p k x
m

D + D 	 ...(iv)

We have the uncertainty relation,

			   Dp Dx ≥ 
2
�

or		  (Dp)2 (Dx)2 ≥ 
2

4
� 	 ...(v)

Using Equation (v), Equation (iv) can be written as,

			   〈E〉Ò ≥ 
2

2
2

1 ( )
28 ( )

k x
m x

+ D
D
� 	 ...(vi)

	 For 〈E〉 to be the minimum we must have,

			   2( )
d E

d x
· Ò
D

 = 0

or		
2

4
min

– 1
28 ( )

k
m x

+
D
�  = 0

or		  (Dx​)​min​ 
4  ​ = 

2 2

24 4mk m m
=

w
� �

or		  (Dx​)​min​ 
2  ​ = 

2mw
� 	 ...(vii)

Clearly
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			   〈E〉Òmin = 

2
2 2

min2
min

1 ( )
28 ( )

m x
m x

+ w D
D
�

	 = 
2

22 1
8 2 2

m m
m m

w + w
w

� �
�

or		  〈E〉Òmin = 1
2

w� 	

Example 8: A particle of mass m undergoes simple harmonic motion along 
the x-axis with an angular frequency w. The wavefunction describing the 
state of the particle at t = 0 is given by,

			   y(x, 0) = 
1 ( )
2

n

n
n

A xÊ ˆ yÁ ˜Ë ¯Â
where yn(x) are the energy eigenfunctions of the oscillator belonging to 

eigenvalues ​( n + ​ 1 __ 2 ​ )​. Find:

	 (a)	The normalization constant A
	 (b)	An expression for y(x, t).
	 (c)	Expectation value of the energy at t = 0 and
	 (d)	Show that the probability density |y(x, t)2| is a periodic function of 

time.
Solution: (a) The normalization condition of the wavefunction is, 

			   *( , 0) ( , 0) 1x x dxy y =Ú
Using the expression for y(x, 0) in the above we get,

		  2 *1 1| | ( ) ( ) 1
2 2

n m

n m
n m

A x x dxÊ ˆ Ê ˆy y =Á ˜ Á ˜Ë ¯ Ë ¯Â ÂÚ

or	 2 *

,

1| | ( ) ( ) 1
2

n m

n m
n m

A x x dx
+Ê ˆ

y y =Á ˜Ë ¯ÂÚ 	 ...(i)

The orthonormality property of eigenfunctions gives,

			   * ( ) ( )n mx x dxy yÚ  = dnm

Using the above in Equation (i) we get,

			 
2

2 1| |
2

n

n

A Ê ˆ
Á ˜Ë ¯Â  = 1 
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or		
2
22 1| |

2

n

n

A Ê ˆ
Á ˜Ë ¯Â  = 1

or		  |A|2 2 = 1

or		  |A| = 1
2

	 ...(ii)

(b) y(x, t) and y(x, 0) are related according to,

	 y(x, t) = y(x, 0) ˆ– iHt

e �

	 = 

1–
21 1 ( )

2 2

i n tn

n
n

x e

Ê ˆw +Á ˜Ë ¯Ê ˆ yÁ ˜Ë ¯Â
�

�

or		  y(x, t) = 
11 –
21 ( )

2

n i n t

n
n

e x
Ê ˆ+ w +Á ˜Ë ¯Ê ˆ yÁ ˜Ë ¯Â 	 ...(iii)

(c) By definition, the expectation value of energy at t = 0 is given by,

		  〈E〉Ò = ˆ*( , 0) ( , 0)x H x dxy yÚ

           = 
1

2
*

,

1 ( ) ( )
2

n m

n m
n m

x x dx

+ +Ê ˆ y yÁ ˜Ë ¯Â Ú

            = 
1

2

,

1 1
2 2

n m

nm
n m

n

+ +Ê ˆ Ê ˆ+ w dÁ ˜ Á ˜Ë ¯ Ë ¯Â �

          = 
1

0

1 1
2 2

n

n

n
+•

=

Ê ˆ Ê ˆ+ wÁ ˜ Á ˜Ë ¯ Ë ¯Â �

            = 1
1 1

22n n+
Ê ˆ+ wÁ ˜Ë ¯Â �

          = 1 2
1

2 2n n
n
+ +w + wÂ Â� �

          = 11
2

¥ w + w� �

or		  〈E〉Ò = 3
2

w�

(d) The probability density is given by,
			   |y(x, t)|2 = y*(x, t) y(x, t)
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	 = 
1

2 – ( – ) *

,

1 ( ) ( )
2

n m

i t n m
n m

n m

e x x

+ +
wÊ ˆ y yÁ ˜Ë ¯Â

The time factor, namely e– iw(n – m) t is a function of time with period 
2

( – )n m
p

w
.

Example 9: The Hamiltonian operator for a harmonic oscillator of angular 
frequency w in terms of raising and lowering operators â+ and â is given by,

		  1ˆ ˆ ˆ
2

H a a+Ê ˆ= w +Á ˜Ë ¯
� .

where	 â = 
1 1/2
2 1 ˆ

2 2
m x i p

m
wÊ ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯w� �

		  â† = 
1 1/2
2 1 ˆ–

2 2
m x i p

m
wÊ ˆ Ê ˆ

Á ˜ Á ˜Ë ¯ Ë ¯w� �

Unnormalized energy eigenfunction of the oscillator is, 

		  y = (2x3 – 3x) ​e​​ 
– x2

 ____ 2 ​ ​

Considering dimensionless units (m = 1, w = 1,  = 1), find the eigenfunctions 
which are closest to y in energy.
Solution: If we take m = 1, w = 1 and  = 1 we get,

			 
†

1ˆ ˆ( )
2
1ˆ ˆ( – )
2

a x ip

a x ip

¸= + ÔÔ
˝
Ô= Ǫ̂ 	 ...(i)

Let yn be an energy eigenfunction of the oscillator belonging to the 
energy eigenvalue,

		  En = 1 1 ,
2 2

n nÊ ˆ Ê ˆ+ w = +Á ˜ Á ˜Ë ¯ Ë ¯
�  n = 0, 1, 2, ...	  ...(ii)

We have

			   âyn = ​÷ 
__

 n ​ yn – 1

And		  â† yn = ​÷ 
_____

 n + 1 ​ yn + 1

So that
		  ˆ ˆaa † yn = â(​÷ 

_____
 n + 1 ​) yn + 1 = (n + 1) yn	 ...(iii)

Using Equation (i) we have,
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			   ˆ ˆaa † y = 1 ˆ ˆ( ) ( – )
2

x ip x ip+ y

Replacing ˆ by – – ,d dp i i
dx dx

=�  the above becomes,

		  ˆ ˆaa † y = 1
2

d dx x
dx dx

Ê ˆ Ê ˆ+ - yÁ ˜ Á ˜Ë ¯ Ë ¯

Using y given in the problem we get,

		  ˆ ˆaa † y = 
2–

3 21 – (2 – 3 )
2

xd dx x x x e
dx dx

Ê ˆ Ê ˆ+Á ˜ Á ˜Ë ¯ Ë ¯

or		  ˆ ˆaa † y = 4(2x3 – 3x) ​e​​ 
– x2

 ____ 2 ​ ​ = (3 + 1) y	 ...(iv)

Comparing Equation (iv) with Equation (iii) we get,
				    n = 3
Hence, the eigenfunctions closest in energy to y belong to n = 2 and 

n = 4. 
The eigenfunction corresponding to n = 2 is,

		  y2 = 
2–

3 21 1 1ˆ (2 – 3 )
3 3 2

xda x x x e
dx

Ê ˆy = +Á ˜Ë ¯

or		  y2 = 
2–

3 21 (2 – 3 )
6

xdx x x e
dx

Ê ˆ+Á ˜Ë ¯

The eigenfunction corresponding to n = 4 is,

		  y4 = 
2–

† 3 21 1ˆ – (2 – 3 )
2 2 2

xda x x x e
dx

Ê ˆy = Á ˜Ë ¯

Example 10: The ground state eigenfunction and the first excited state 
eigenfunction of a linear harmonic oscillator along the x-axis are given, 
respectively, by,

		  y0(x) = 
2 21/2 –
2

x

e
aÈ ˘a

Í ˙pÎ ˚

and	 y1(x) = 
2 21/2 –
22

2

x

x e
aÈ ˘a aÍ ˙pÎ ˚

Find the expectation value of the energy of the oscillator if its state is 
described by the wavefunction,

0 1
1( ) [ ( ) ( )]
2

x x xy y y= +
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One Dimensional ProblemSolution: Let Ĥ  be the Hamiltonian operator for the oscillator. We then have 
according to the problem,

			   	 ...(i)

			   	 ...(ii)
We also have the following orthonormal properties of y0(x) and y1(x),

		

* 2 2
0 0 0 0

– – –

( ) ( ) | ( ) | ( ) 1x x dx x dx x dx
+• +• +•

• • •

y y = y = y =Ú Ú Ú
	

...(iii)

		

* 2 2
1 1 1 1

– – –

( ) ( ) | ( ) | ( ) 1x x dx x dx x dx
+• +• +•

• • •

y y = y = y =Ú Ú Ú
	

...(iv)

		

*
0 1 0 1

–

( ) ( ) ( ) ( ) 0x x dx x x dx
+•

•

y y = y y =Ú Ú
	

...(v)

The expectation value of energy in the state described by the 
wavefunction y(x) is given by,

	 〈E〉Ò = 
–

ˆ* ( ) ( )x H x dx
+•

•

y yÚ

	 = *
0 1 0 1

–

1 1ˆ{ ( ) ( )} { ( ) ( )}
2 2

x x H x x dx
+•

•

È ˘
y + y y + yÍ ˙

Î ˚Ú

	 = 0 1 0 1
–

1 ˆ{ ( ) ( )} { ( ) ( )}
2

x x H x x dx
+•

•

È ˘
Í ˙y + y y + y
Í ˙Î ˚
Ú

or	  0 0 1 1
– –

0 1 1 0
– –

1 ˆ ˆ( ) ( ) ( ) ( )
2

ˆ ˆ( ) ( ) ( ) ( )

x H x dx x H x dxE

x H x dx x H x dx

+• +•

• •

+• +•

• •

È
Í y y + y y· Ò =
ÍÎ

˘
˙+ y y + y y
˙̊

Ú Ú

Ú Ú

	 Using Equations (i) and (ii) the above becomes,

		  〈E〉Ò = 2 2
0 1

– –

1 0 1 00
–

1 1 3( ) ( )
2 2 2

3 1( ) ( ) ( ) ( )
2 2

x dx x dx

x x dx x x dx

+• +•

• •
+• +•

-• •

È
Í w y + w y
ÍÎ

˘
˙+ w y y + w y y
˙̊

Ú Ú

Ú Ú

� �

� �
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Using Equations (iii), (iv) and (v) the above gives,

		  〈E〉Ò = 1 1 3
2 2 2

È ˘w + w = wÍ ˙Î ˚
� � �

Check Your Progress

	 1.	What are the two important properties of one-dimensional motion?
	 2.	How is force constant related to the frequency?
	 3.	What is the total energy of the oscillator?
	 4.	 In terms of the variable x, express the asymptotic solution.
	 5.	Why the infinite series must be terminated for the wave function of 

the oscillator to satisfy the boundary condition?
	 6.	What is the condition for the wave function of the oscillator to satisfy 

the boundary conditions?
	 7.	What is zero-point energy?
	 8.	What is the total energy of the oscillator? How will you obtain velocity 

from it?
	 9.	Give the Hamiltonian operator of a harmonic oscillator.
	 10.	Explain the energy eigenvalues of the oscillator. 

3.4	 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS

	 1.	The important properties of one-dimensional motion that we find are:
	 (i)	 In case of bound states, the energy spectrum is not only discrete 

but is non-degenerate also.
	 (ii)	The eignfunction yn(x) for a bound state has ‘n’ number of nodes 

if the ground state corresponds to n = 0 and (n – 1) number of 
nodes if the ground state corresponds to n = 1.

	 2.	The force constant k (restoring force acting on the particle per unit 
displacement) is related to the frequency w0 as

			   k = m ​w​0​ 2​
	 3.	The total energy E of the oscillator is,
		 E = T + V



NOTES

Self-Instructional
Material 	 115

One Dimensional Problem	 4.	 In terms of the variable x, the asymptotic solution can be expressed as,

			   y(x) = 
20–

2
m x

e
w
�

	 5.	 For the wave function of the oscillator to satisfy the boundary condition, 
the infinite series must be terminated by selecting l in such a way 
that (2r + 1 – l) vanishes for r = n. Thus one of the series becomes 
a polynomial and the other can be eliminated by setting the first 
coefficient to zero.

	 6.	For the wave function of the oscillator to satisfy the boundary conditions 
(y(y) → 0 as y → ± ∞), the parameter l should take the value  
(2n + 1) where n is a positive integer including zero.

	 7.	 In the lowest or the ground state, which corresponds to n = 0, the 
oscillator has the finite energy,

			   E0 = 0
1
2

w� 	
		  Which is called the zero-point energy.
	 8.	The total energy of the oscillator at the position corresponding to the 

displacement ± x from the mean position is,

				    E = 2 21 1
2 2

mv kx+

		  We obtain form the above, the velocity of the oscillator at the position 
± x to be,

				    v = 
1/222 –E kx

m
È ˘
Í ˙
Î ˚

	 9.	The Hamiltonian operator of a harmonic oscillator of mass m oscillating 
along the x-axis under a force constant k is,

			 
2

2ˆ 1ˆ
2 2
pH k x
m

= +

 	 10.	The energy eigenvalues of the oscillator are

			   En = 0
1 ,
2

nÊ ˆ+ wÁ ˜Ë ¯
�   n = 0, 1, 2, ...

		  The operator â† and â  are, respectively, called the raising and lowering 
operators. Further, since the eigenvalues of â† â are positive integers 
it is usual to call the operator â† â as the number operator.

3.5	 SUMMARY

	 •	The nature of the states of the particle is determined completely by the 
energy of the particle and the nature of the potential function V(x).
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	 •	The important properties of one-dimensional motion that we find are:
	 (i)	 In case of bound states, the energy spectrum is not only discrete 

but is non-degenerate also.
	 (ii)	The eignfunction yn(x) for a bound state has ‘n’ number of nodes 

if the ground state corresponds to n = 0 and (n – 1) number of 
nodes if the ground state corresponds to n = 1.

	 •	 If x0 is the amplitude of the oscillator, its displacement x from the mean 
or the equilibrium position varies with time according to,

		  x = x0 sin w0t	​
	 •	The potential energy of the oscillator is,

			   V(x) = 2 2 2
0

1 1
2 2

kx m x= w 	  
	 •	The total energy E of the oscillator is,
		 E = T + V

	 •	One of the asymptotic solutions namely y(y) = 
2

2
y

e
+

 is not physically 
acceptable because it diverges as |y| and hence |x| → ∞. We thus have 
the asymptotic solution for the oscillator,

			   y(y) = 
2

–
2
y

e 		
	 •	 For the wave function of the oscillator to satisfy the boundary condition, 

the infinite series must be terminated by selecting l in such a way 
that (2r + 1 – l) vanishes for r = n. Thus one of the series becomes 
a polynomial and the other can be eliminated by setting the first 
coefficient to zero. 

	 •	The oscillator possesses equi-spaced energy levels, the spacing between 
successive energy levels being w0.

	 •	 For the wave function of the oscillator to satisfy the boundary conditions 
(y(y) → 0 as y → ± ∞), the parameter l should take the value (2n + 
1) where n is a positive integer including zero.

	 •	The probability of finding the oscillating particle between x and x + 
dx when the oscillator is in the nth state described by the wavefunction 
yn(x) and according to the definition is given by,

		 Pn(x) dx = y*
n (x) yn (x) dx = |yn (x)|2 dx

	 •	 In the lowest or the ground state, which corresponds to n = 0, the 
oscillator has the finite energy,

			   E0 = 0
1
2

w� 	
		  Which is called the zero-point energy.
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One Dimensional Problem	 •	The function ​e​– y2/2​ is always an even function, Hn(y) is an even function 
for n even and an odd function for n odd, we find the oscillator energy 
eigenfunctions are even function for n even and odd functions for n 
odd.

	 •	 Since the oscillator energy eigenfunctions yn(x) do not become zero at 
the classical turning points x = ± x0, the oscillator can be found outside 

the parabolic potential barrier 21
2

V kxÊ ˆ=Á ˜Ë ¯
. The oscillator in all its 

quantum state is thus able to penetrate the potential barrier.
	 •	The total energy of the oscillator at the position corresponding to the 

displacement ± x from the mean position is,

				    E = 2 21 1
2 2

mv kx+

		  We obtain form the above, the velocity of the oscillator at the position 
± x to be,

				    v = 
1/222 –E kx

m
È ˘
Í ˙
Î ˚

	 •	The Hamiltonian operator of a harmonic oscillator of mass m oscillating 
along the x-axis under a force constant k is,

			 
2

2ˆ 1ˆ
2 2
pH k x
m

= +

	 •	 â† â  is self-adjoint irrespective of whether â is self-adjoint or not. The 
expectation value of â† â  is positive in all states, i.e., the operator does 
not possess negative eigenvalues. Hence the sequence of eigenvalues 
(l – 1), (l – 2), ... must terminate before the negative value is reached 
and also the sequence ây, â2y, ... must terminate.

	 •	  The energy eigenvalues of the oscillator are

		 En = 0
1 ,
2

nÊ ˆ+ wÁ ˜Ë ¯
�   n = 0, 1, 2, ...	

	 •	The operator â† and â  are, respectively, called the raising and lowering 
operators. Further, since the eigenvalues of â† â are positive integers 
it is usual to call the operator â† â as the number operator.

	 •	A one-dimensional potential barrier of height V0 and width a is defined 
by potential function V(x) given by,

			   V(x) = 0	 for  x < 0

			   = V0	 for  0 < x < a

			   = 0	for  x > a 
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	 •	As the energy E of the incident particle increases, remaining less 
than V0, both k as well as a increase and the transmission coefficient 
increases.

	 •	 It is observed that some radioactive nuclei disintegrate by the emission 
of alpha (a) particle which is the nucleus of a helium atom having 
charge of +2e and a mass 4 units.

	 •	An a-particle remains bound within the nucleus by a strong, attractive, 
short range nuclear force. This attractive nuclear force acts upto a 
distance which is approximately equal to the radius of the nucleus.

	 •	 If r0 be the radius of the nucleus and Ze be the change of the residual 
nucleus then the coulomb potential energy of the a-particle just beyond 
the surface of the nucleus becomes 

2

0 1

1 2
4

Ze
rp Œ

.

	 •	The speed of an a-particle in a heavy nucleus has been estimated to 
be of the order of 107 ms– 1. 

	 •	The probability that the a-particle crosses the barrier and comes out 
of the nucleus per sec is, 

					     P = T × 1021

	 •	The reciprocal of P gives the life time t of the a-decaying nucleus, 
i.e.,

		  t = 21
1 1

10P T
=

¥

3.6	 KEY WORDS

	 •	Nature of the states of the particle: It is determined completely by 
the energy of the particle and the nature of the potential function V(x).

	 •	Bound states: In bound state the energy spectrum is not only discrete 
but is non-degenerate also.

	 •	Total energy E of the oscillator: The total energy E of the oscillator 
is given as E = T + V.

	 •	Alpha-particle emission: Some radioactive nuclei disintegrate by the 
emission of alpha (a) particle which is the nucleus of a helium atom 
having charge of +2e and a mass 4 units.
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One Dimensional Problem
3.7	 SELF ASSESSMENT QUESTIONS AND 

EXERCISES

Short Answer Questions

	 1.	What is one dimensional motion?
	 2.	How the nature of the states of the particle is determined?
	 3.	Define the term linear harmonic oscillator.
	 4.	What is kinetic energy of the oscillator?
	 5.	Give the equation for the asymptotic solution of the wave equation.
	 6.	What is the recurrence relation for the oscillator?
	 7.	What is abstract operator method?
	 8.	Differentiate between eigenvalues and eigenfunction.
	 9.	What is potential barrier problem?
	 10.	Define the term tunnel effect.

Long Answer Questions

	 1.	Discuss the one dimensional problems in quantum mechanics giving 
appropriate examples.

	 2.	Briefly explain the linear harmonic oscillator and tunnel effect in 
quantum mechanics giving appropriate examples.

	 3.	Explain the equations for the time-independent Schrődinger equation 
for an oscillator.

	 4.	Briefly discuss the exact solution/recursion formula of the wave 
equation for the oscillator.

	 5.	Discuss the energy eigenfunctions of the oscillator giving equations 
and figures.

	 6.	Explain the abstract operator method for linear harmonic oscillator 
problem.

	 7.	Write a detailed note on one-dimensional potential barrier.
	 8.	Discuss about the alpha-particle emission giving appropriate examples.
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The Free Particle
BLOCK - II  
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4.0	 INTRODUCTION

In physics, a free particle is a particle that, in some sense, is not bound by 
an external force, or equivalently not in a region where its potential energy 
varies. In classical physics, this means the particle is present in a ‘field-free’ 
space. In quantum mechanics, it means a region of uniform potential, usually 
set to zero in the region of interest since potential can be arbitrarily set to 
zero at any point (or surface in three dimensions) in space. By a free particle 
we mean a particle which moves freely in space without the influence of any 
force. Hence, for a free particle the potential energy is zero.

In quantum mechanics, the particle in a box model, also known as the 
infinite potential well or the infinite square well, describes a particle free 
to move in a small space surrounded by impenetrable barriers. The particle 
may only occupy certain positive energy levels. The particle in a box model 
is one of the very few problems in quantum mechanics which can be solved 
analytically, without approximations. 

In this unit, you will study about the free particle and particle in a box.

4.1	 OBJECTIVES

After going through this unit, you will be able to:
	 •	Understand what free particle is
	 •	Define the particle in a box
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4.2	 THE FREE PARTICLE 

By a free particle we mean a particle which moves freely in space without the 
influence of any force. Hence, for a free particle the potential energy is zero. 
Restricting our discussion to motion in one-dimension, say, along the x-axis, 
we have V(x) = 0 for all values of x so that the wavefunction y(x) describing 
the state of the particle of mass m and a total energy E satisfies the Schrödinger 
equation,

 
y- = y�2 2

2
( ) ( )

2
d x E x

m dx

 

or		
2

2 2
( ) 2 ( ) 0d x m E x

dx
y + y =

�

or		
2

2
2
( ) ( ) 0d x k x

dx
y + y = 	  ...(4.1)

Where			   k2 = 2
2m E
�

	 ...(4.2)

	 The most general solution of Equation (4.1) is a combination of two 
linearly independent plane wave solutions eikx and e– ikx 

			   yk (x) = Aeikx + Be–ikx  	 ...(4.3)

where A and B are arbitrary constants. The complete wavefunction is 
given by,

		  yk (x, t) = Ae i(kx – wt) + Be –i(kx + wt)	 ...(4.4) 

Where			   w = 
2

2
E k

m
= �
�

	 ...(4.5)

The first term in Equation (4.3) y+ (x, t) = Aei(kx – wt) is a wave travelling 
along the positive x-axis while the second term y–(x, t) = Be– i(kx + wt) represents 
a wave travelling along the negative x-axis. Both the waves y+(x, t) and  
y–(x, t) travelling along opposite directions are associated with the motion of 
the free partical having well defined momentum and energy. The momentum 
associated with y+(x, t) is p+ = k while that with y – (x, t) is p – = –  k. Both 

y+(x, t) and y – (x, t) belong to the energy 
2 2

2
k
m
� . Since for free particle motion 

there are no boundary conditions, there exist no restrictions on the values 
of k and E. Clearly the states of the free particle are continuous or unbound.

It is important to discuss some of the physical subtleties present in the 
free particle motion:
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The Free Particle	 (1)	The probability density corresponding to the solution y+(x, t) is,
2 2( , ) | ( , ) | | |P x t x t A+ += y =  = Constant independent of x and t

The probability density corresponding to the solution y – (x, t) is,

		  2 2( , ) | ( , ) | | |P x t x t B- -= y = = Constant independent of x and t.

The above result is a purely quantum mechanical result having no 
explanation according to classical mechanics. Since the particle represented 
by the waves y+(x, t) and y–(x, t) have well defined momenta and energy 
we have the uncertainty in momentum Dp = 0 and uncertainty in energy  
DE = 0. According to Heisenberg’s uncertainty principle we get the uncertainty 
in the position Dx Æ • and the uncertainty in the time Dt Æ •. Thus there 
is complete loss of information about the position and time for any state of 
the particle.
	 (2)	The speed of the plane waves y+(x, t) and y–(x, t) is given by 

		  nwave = 
2 2 / 2

2
E k m k

k k k m
w = = =� �
� �

	 ...(4.6)

The speed of the particle according to classical mechanics is given by,

	  		  nparticle = p k
m m

= � 	 ...(4.7)
We thus observe,
			   nparticle = 2nwave	 ...(4.8)

The above means that the particle travels with a speed which is double 
the speed of the waves representing the particle.
	 (3)	The wavefunction representing the particle is not normalizable. This 

is because, 

		  * 2( , ) ( , ) | |x t x t dx A dx
+• +•

+ +
-• -•

y y = = •Ú Ú 	 ...(4.9)

And	
* 2
– ( , ) ( , ) | |x t x t dx B dx

+• +•

-
-• -•

y y = = •Ú Ú 	 …(4.10)

We may conclude from the above result that the solutions of the 
Schrödinger equation y+(x, t) and y–(x, t) do not represent physical 
situation because wavefunction representing the state of any system must be 
quadratically integrable. We may make a formal conclusion that a free particle 
described by the laws of quantum mechanics cannot have sharply defined 
momentum and energy. We may further conclude that a free partical cannot 
be represented by single (monochromatic) plane wave. Physically acceptable 
representation of a free particle is a wave packet. We may further conclude 
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that solutions of the Schrödinger equation which are physically acceptable 
cannot be plane waves.

4.2.1 The Potential Step

Consider a particle of mass m moving in a one-dimensional potential specified 
in the Figure (4.1). Mathematically, the potential function V(x) is of the form,

      V(x) = 0    x < 0	 (Region I)	
          = V0    x > 0	  (Region II)

The particle moving freely in Region I encounters the potential V0 at 
x = 0.	

I
Vo

II

V x( )

x = 0
x

Fig. 4.1  The Potential Step

The wavefunction y(x) describing the state of the particle in general 
satisfies the Schrödinger equation,

2 2

2
( ) ( ) ( ) ( )

2
d x V x x E x

m dx
y- + y = y�

or		
2

2 2
( ) 2 [ – ( )] ( ) 0d x m E V x x

dx
y + y =

�
 	 …(4.11)

In the above, E is the total energy of the particle.
In the Region I, if y1(x) is the wavefunction, Equation (4.11) takes the 

form
				    2

1
12 2

( ) 2 ( ) 0
d x m E x

dx
y

+ y =
�

	            ...(4.12)

or		
2

21
12

( )
( ) 0

d x
k x

dx
y

+ y =

where		  k2 = 2
2m E
�

	  ...(4.13)

If y2(x) be the wavefunction of the particle in Region II, Equation 
(4.11) gives,
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The Free Particle

			 
2

2
22 2

( ) 2 [ – ] ( ) 0o
d x m E V x

dx
y

+ y =
�

or		
2

22
22

( )
( ) 0

d x
x

dx
y

+ a y = 	 ...(4.14)

Where		  a2 = 2
2 [ – ]o

m E V
�

	 ...(4.15)

Most general solutions of Equations (4.12) and (4.15) can be written as, 

			   y1(x) = Aeikx + Be–ikx	  ...(4.16)

			   y2(x) =  Ceiax + De–iax 	  ...(4.17)

In the above A, B, C and D are constants which may be determined using 
the boundary conditions on the wavefunctions. The first term in Equation 
(4.16), y1+ (x) = Aeikx represents a plane wave travelling along the positive x-axis 
in the Region I and can be considered as an incident wave, while the second 
term y1 –(x) = Be– ikx representing a plane wave in Region I travelling along the 
negative x-axis can be considered as the wave reflected at the potential step at  
x = 0. The first term in Equation (4.17) y2 +(x) = Ce iax represents a plane wave 
travelling in Region II along the positive x-axis and can be considered as the wave 
transmitted in Region II from the potential step at x = 0, while the second term y2 – (x) =  
De– iax represents a plane wave in Region II travelling along the negative 
x-axis. Since throughtout the Region II there exists no potential boundary 
from which reflection can occur, y2 –(x) must vanish which requires D to be 
equal to zero so that Equation(4.17) reduces to, 

			         y2(x) = C eiax 	 ...(4.18)
We have the following boundary conditions in view of single valuedness 

and continuity of wavefunction at a potential boundary:

(i)			   y1 (x) = y2(x)  at x = 0 	 ...(4.19)

Using the above we obtain from Equations (4.16) and (4.18)

			         A + B = C 	 ...(4.20)

(ii)			   1( )d x
dx

y  = 2 ( )d x
dx

y
  at x = 0 	 ...(4.21)

From Equation (4.16) we have 

			   1( ) ikx ikxd x
ikAe ikBe

dx
-y

= - 	 ...(4.22)

	 From Equation (4.18) we have

			   2 ( ) i xd x
i Ce

dx
ay

= a  	 ...(4.23)
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Using Equations (4.22) and (4.23) we get using Equation (4.21)	

			   k (A – B) = aC	 ...(4.24)

Solving Equations (4.20) and (4.24) we obtain, 

			   C = 2k A
k + a

	 ...(4.25)

			   B = k A
k

- a
+ a

	 ...(4.26)

If we consider the constant A as the amplitude of the incident 
wave, constants B and C can respectively be interpreted as the reflected 
and the transmitted amplitudes. We now consider the results on 
reflection and transmission in two cases, namely when E > V0 and when  
E < V0.
Case 1:  E > V0 

The wavefunction in Region I is,
			   y1(x) = Aeikx + Be– ikx	 ...(4.27)
We get on differentiating Equation (4.27) with respect to x 

			   1( )d x
dx

y  = ik [Aeikx – Be– ikx]	 ...(4.28)

Taking complex conjugate, Equation (4.27) becomes

			   y*
1(x) = A*e– ikx + B*eikx	 ...(4.29)

Taking complex conjugate, Equation (4.28) we get

			 
*
1 ( )d x

dx
y  = – ik[A*e– ikx – B*eikx] 	 ...(4.30)

The general expression for probability current density is given by 

			   J = – * *[ – ]
2

i
m

y —y y —y� 	 ...(4.31)

Since we are considering one-dimensional motion we get from Equation 
(4.31) the probability current density in Region I to be 

			   J1 = 
*

1 1*
1

( )– ( ) – ( )
2

d x di x x
m dx dx

È ˘y yy yÍ ˙
Î ˚

�

Substituting from Equations (4.27), (4.28), (4.29), and (4.30) in the 
above we obtain 

			   2 2
1 (| | – | | )kJ A B

m
= �  	  ...(4.32)

The first term on the right hand side of Equation (4.32) gives the 
probability current density of the incident wave / beam 
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The Free Particle
			   (J1)incident = 2| |k A

m
� 	 ...(4.33)

while the second term gives the probability current density of the 
reflected wave / beam

			   (J1)reflected = 2| |k B
m
� 	 ...(4.34)

Let us now consider Region II in which the wavefunction is given by

			   y2(x) = C eiax	 ...(4.35)
The above gives

			   2 ( )d x
dx

y  = ia C eidx	 ...(4.36)

Taking complex conjugate of Equation (4.36) we get
			   y*

2 (x) = C* e– iax	 ...(4.37)

and taking complex conjugate of Equation (4.36) we get

			 
*
2 ( )d x

dx
y  = – ia C* e– iax	 ...(4.38) 

The probability current density in Region II by definition is given by

			   J2 = 
*

2 2*
2 2

– ( ) –
2

d di x
m dx dx

È ˘y y
y yÍ ˙

Î ˚

� 	 ...(4.39)

Substituting from Equations (4.35), (4.36), (4.37) and (4.38) in Equation 
(4.39) we obtain 

			   J2 = 2| |C
m
a� 	 ...(4.40)

Since in Region II, there exists only the transmitted wave we get the 
probability current density of the transmitted wave / beam,

			   (J2)transmitted = 2| |C
m
a� 	 ...(4.41)

The reflectance or the reflection coefficient is, by definition, given by

		  R = Probability current density for reflected beam
Probability current density for incident beam

          = 1 reflected

1 incident

( )
( )
J
J

Using Equations (4.33) and (4.34) we obtain 

		  R = 
2

2

2
2

| | | |
| || |

k B Bm
k AAm

=
�

�
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Using Equation (4.26) in the above we obtain

			   R = 
2

–k
k

Ê ˆa
Á ˜+ aË ¯

	 ...(4.42)

Similarly, the transmittance or transmission coefficient is 

			   T = 2 transmitted

1 incident

( )
( )
J
J

Using Equations (4.33) and (4.41), the above gives 

			   T = 
2

2

2
2

| | | |
| || |

C Cm
k k AAm

a
a=

�

�

Using Equation (4.25) in the above we get 

			   T = 
2

2k
k k

Ê ˆa
Á ˜+ aË ¯

or		  T = 2
4

( )
k

k
a

+ a
	 ...(4.43)

We note the following:

	 1.	We have k = 
2

2m E
�

, a real positive quantity

		   	 a = 0
2 ( – )m E V
�

, a real positive quantity under the condition E 
> V0 

		  Equation (4.42) then shows that R is a real positive quantity, meaning 
that a certain fraction of the incident particles gets reflected on 
encountering the potential step at x = 0. This result is in contrast 
to classical mechanics, according to which a particle going over a 
potential step, under the condition E > V0, would slow down in order 
to conserve energy but would never be reflected. The observed result 
is a consequence of the wave properties of the particle. In other words, 
we can say that reflection under the condition E > V0 is a quantum 
mechanical effect. 

	 2.	For E >> V0, that is for a Æ k from below, the ratio of the reflected 
flux to the incident flux, that is, |R|2 approaches zero. This agrees with 
intution which tells us that at very high incident energies, the presence 
of the step is but a small perturbation on the propagation of the wave.
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The Free ParticleCase 2:  E < V0

In this case, a given by a = 02
2 ( – )m E V
�

 becomes imaginary. We may write 

		  a = 0 02 2
2 2– ( – ) ( – )m mV E i V E i= = b
� �

	 ...(4.44)

hence	 b = 0
2 ( – )m V E
�

 is real positive.	 ...(4.45)

The solution of the Schrödinger equation in Region II is now given by

			   y2(x) = C eiibx = C e– bx 	 ...(4.46) 

We find that y2(x) does not blow up at x = + •
The reflection coefficient given by Equation (4.42), in this case becomes

		  R = 
*

– – –
–

k i k i k i k i
k i k i k i k i

Ê ˆ Ê ˆ Ê ˆ Ê ˆb b b + b=Á ˜ Á ˜ Á ˜ Á ˜+ b + b + b bË ¯ Ë ¯ Ë ¯ Ë ¯
	 ...(4.47)

or		  R = 1 

Thus, when E < V0, as in classical mechanics there is total reflection.
It can, however, be seen that the transmission coefficient given by 

Equation (4.43) does not vanish. Clearly, a part of the incident wave penetrates 
into the classically forbidden region, Such penetration phenomenon again is 
characteristic of waves permitting a ‘tunneling’ through barriers that would 
totally block particles in classical description.

4.2.2  Asymmetric Square Well

Consider a particle of mass m moving in a one-dimensional infinitely deep 
asymmetric potential well as shown in the Figure (4.2), the potential function 
V(x) being of the form,

		  V(x) = +  •	
for  x < 0	 [Region I]

			   = 0	
for  0 £ x £ a	 [Region II]

			   = +  •	
for  x > a	 [Region III]
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I II III

V x( )

+• +•

x = 0 x a=

0
x

Fig. 4.2  Asymmetric Square Well

Classically, the particle remains confined within the well and moves 
with constant momentum back and forth as a result of repeated reflections 
from the walls of the well at x = 0 and at x = a.

Since V(x) = +  • for x < 0 (i.e., in Region I) as well as for x > a (i.e., 
in Region III), the wavefunctions of the particle in these two regions are 
zero, i.e.,

			   y (x = 0) = 0 = y (x = a)	 ...(4.48)

If y (x) represents the wavefunction for the particle inside the well  
(0 £ x £ a), we have the Schrödinger equation 

			 

2

2 2
( ) 2 ( ) 0d x m E x

dx
y + y =

�

or		
2

2
2
( ) ( ) 0d x k x

dx
y + y = 	  ...(4.49) 

Where 	 k = 2
2m E
�

	 ...(4.50)

The general solutions of Equation (4.49) are

			   y(x) = C eikx + De– ikx

or		  y(x) = A sin kx + B cos kx	 ...(4.51)

where A and B are constants.
Using the boundary condition given by Equation (4.48), namely  

y(0) = 0 in Equation (4.51) we get

					     B = 0

so that the solution becomes
				        y(x) = A sin kx	 ...(4.52)

Further, applying the other boundary condition namely y(a) = 0, we 
get from Equation (4.52)

				      A sin ka = 0
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The Free ParticleThe above gives either A = 0 or sin ka = 0. However, A = 0 leads to 
y(x) = 0 everywhere which is not possible. Hence, we obtain

			   sin ka = 0 
The above gives
			   ka = np;  n = A positive integer 

                = 1, 2, 3, ...	 ... (4.53)

We may note that n cannot be 0 because that would make k = 0 so that 
wavefunction would vanish everywhere.

From Equation (4.53) we thus get

				    k = n
a
p 	 ...(4.54)

Using Equation (4.54) in Equation (4.52) we get the energy 
eigenfunctions of the particle to be given by

			   yn(x) = A sin n x
a
pÊ ˆ

Á ˜Ë ¯
  ; n = 1, 2, ...	 ...(4.55)

Constant A can be determined from the requirement that the 
eigenfunctions are normalized, i.e.,

			 
*

0

( ) ( ) 1
a

n nx x dxy y =Ú

The above gives,

			 

2 2

0

sin 1
a nA x dx

a
pÊ ˆ =Á ˜Ë ¯Ú

or		  2 1
2
aA =

or		  2A
a

= 	 ...(4.56)

The energy eigenfunctions are thus 

		  yn(x) = 2 sin ;n x
a a

pÊ ˆ
Á ˜Ë ¯

  n = 1, 2, ...	 ...(4.57)

Using Equation (4.50) in Equation (4.54) we get the energy eigenvalues 
of the particle to be given by

		  2
2

n
m nE

a
p=

�
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or		  En = 
2 2

2
2 ,

2
n

ma
p �   n = 1, 2, ...	 ...(4.58)

We find the energy to be quantized, only certain values of energy are 
permitted. This is as expected because the states of a particle which are 
confined within a limited region of space are bound states and the energy 

eigenvalue spectrum is discrete. This result is in sharp contrast to the result 
in classical physics in which the energy of the particle given by E = ​ p

2

 ___ 2m ​ (p 
being the momentum of the particle) can assume any value continuously 
from a minimum to a maximum.

From Equation (4.58) we get

	  		  En + 1 – En = 
2 2

2 (2 1)
2

n
ma

p +� 	 ...(4.59)

Clearly, the energy levels are not equispaced. 
We have

			 
1

2 2

– 2 1 2 1n n

n

E E n
E nn n

+ += = +

Clearly, in the classical limit, the above gives,

			 

1
2

– 2 1Lt Lt 0n n

n nn

E E
E n n

+

Æ• Æ•

Ê ˆ Ê ˆ= + =Á ˜Á ˜ Ë ¯Ë ¯ 	 ...(4.60)
meaning that the levels become so close together that they become 

practically indistinguishable forming a continuum. 
The lowest energy state or the ground state corresponds to n = 1. The 

ground state energy is given by,

			   E1 = 
2 2

22ma
p� 	 ...(4.61)

And the ground state wavefunction is given by,

			   y1(x) = 2 sin x
a a

pÊ ˆ
Á ˜Ë ¯

	 ...(4.62)

Energy given by Equation (4.61) is called the zero point energy because 
there exists no state with zero energy.

The plot of some of the eigenfunctions with x are shown in Figure (4.3). 
We observe from the plots that the eigenfunction yn

 (x) has (n – 1) nodes.
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Fig. 4.3  Plot of Engenfunctions

Discussion on Zero Point Energy 

If the particle inside the well has zero energy then it will come to rest and 
will be localized within the limited region defining the well. Heisenberg’s 
uncertainty relation then will require the particle to acquire a finite momentum 
and hence a minimum kinetic energy. Since the particle is confined in the 
region 0 < x < a, it has a maximum position uncertainty Dx = a and hence 

a minimum momentum uncertainty Dp ~ 
a
�  which in turn corresponds to 

a minimum kinetic energy 
2 2

2
( )

2 2
p
m ma

D = �  which is in qualitative agreement 
with the exact value E1 = 

2 2

22ma
p � .

The minimum momentum uncertainty given by Dp ~ ,
a
�  is inversely 

proportional to the width of the well. Smaller the width, more the particle 

becomes localized, and Dp increases. This causes the particle to move faster 
thereby increasing the zero point energy. If on the other hand, width of the 
well increases, the zero point energy decreases but never becomes zero. Thus 
localization of a particle forces a minimum motion and hence a minimum 
energy to the particle.

4.2.3  Symmetric Square-Well Potential of Infinite Depth 

A symmetric infinite square well potential is defined as

	 V(x) = + •	 for  x < – a

	 = 0	 for  – a £ x £ a

	 = + •	 for  x > a 

and is represented in the Figure (4.4)
Consider the motion of a particle of mass m in the one-dimensional 

potential described above.
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Fig. 4.4  Symmetric Infinite Square

If y(x) is the wavefunction describing the state of the particle in the 
region – a £ x £ a then it satisfies the time-independent Schrödinger equation, 

			 

2

2 2
( ) 2 ( ) 0d x m E x

dx
y + y =

�

or		
2

2
2
( ) ( ) 0d x k x

dx
y + y = 	 ...(4.63)

Where		  k = 2
2m E
�

	 ...(4.64)

The most general solution of Equation (4.63) is given by,

		  y(x) = A sin (kx) + B cos (kx)	 ...(4.65)

Where A and B are constants.
Since V(x) = • for x < – a and x > a, the wavefunctions in these two 

regions vanish giving, 
			   y(– a) = 0  and  y (+ a) = 0	 ...(4.66)

Using the conditions given by Equation (4.66) in Equation (4.65) we get

			   A sin ka + B cos ka = 0	 ...(4.67)

and
			   – A sin ka + B cos ka = 0	 ...(4.68)
For the above two equations to hold simultaneously we must have
			   A sin ka = 0	 ...(4.69) 

and	 B cos ka = 0	 ...(4.70)

In view of Eqations (4.69) and (4.70) we may have A = 0 and B = 0 
but these are physically unacceptable because y(x) given by Equation (4.65) 
would then vanish.

Since B π 0, we have from Equation (4.70), 
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		  cos ka = 0 = cos , 1, 3, 5, ...

2
n np =

or		  ka = or
2 2

n nk
a

p p=  	 ...(4.71)

Using Equation (4.64) in the above we obtain the energy eigenvalues 

		  En = 
2 2 2 2 2

2
2 2 ,

2 8
n n

m a ma
p p=� �   n = 1, 3, 5, ...	 ...(4.72)

The energy eigenfunctions corresponding to the above energy 
eigenvalues are

		  yn(x) = B cos kx = cos ,
2
nB x

a
pÊ ˆ

Á ˜Ë ¯
  n = 1, 3, 5	 ...(4.73)

The condition given by Equation (4.69) gives

		  sin ka = 0 = sin np	 (since A π 0)

or		  ka = np  or  k = ​ np ___ a ​;  n = 2, 4, 6	  ...(4.74)

Using the above value of k in Equation (4.64) we get the energy 
eigenvalues

			   En = 
2 2 2 2

2
2 ,

2 8
nk

m ma
p=� �   n = 2, 4, 6, ...	 ...(4.75)

The corresponding energy eigenfunctions are 

		  yn (x) = A sin ,
2
n x

a
pÊ ˆ

Á ˜Ë ¯
  n = 2, 4, 6, ...	 ...(4.76)

The normalization conditions of the wavefunctions, 

			 

*

–

( ) ( ) 1
a

n n
a

x x dx
+

y y =Ú

lead to 

			       	 ...(4.77)

We can thus write the set of energy eigenfunctions for the particle in 
the symmetric infinite square well potential as,

		  yn(x) = 1 sin ,
2
n x

aa
pÊ ˆ

Á ˜Ë ¯
  n = 2, 4, ...	 ...(4.78) 

yn(x) = 1 cos ,
2
n x

aa
pÊ ˆ

Á ˜Ë ¯
  n = 1, 3, 5, ...	 ...(4.79) 
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and the discrete set of energy eigenvalues as

		  En = 
2 2

2
2 ,

8
n

ma
p �   n = 1, 2, 3, ...	 ...(4.80)

Discussion 

The wavefunctions corresponding to n = 1, 3, 5, ..., i.e., corresponding to 
odd quantum numbers are symmetric, y(– x) = y(x).

•	 The wavefunctions corresponding to n = 2, 4, 6, ... i.e., corresponding 
to even quantum numbers are antisymmetric, y(– x) = – y(x) 

•	 In other words, for symmetric potentials V(– x) = V(x), the 
wavefunctions of bound states are either even (symmetric) or odd 
(antisymmetric).

•	 The energy spectrum for the particle is discrete and non-degenerate.
•	 The ground state energy or the zero point energy is, 

				    E1 = 
2 2

28ma
p �

Corresponding to the eigenfunction,

			   y1(x) = 1 cos
2

x
aa

p

4.2.4  Symmetric Square-Well Potential of Finite Depth 

A symmetric square well potential of finite depth is described by potential 
function V(x) of the form 

	 V(z) = V0	 for  x < – a	 (Region I)
	 = 0	for  – a £ x £ a 	 (Region II)
	 = V0	 for  x > a 	 (Region III)
The potential function is shown in the Figure (4.5)

Fig. 4.5  Potential Function
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The Free ParticleConsider the motion of a particle of mass m in the potential well 
described above.

The Schrödinger equation in Regions I and III is, 

		

2 2

02
– ( ) ( ) ( )
2

d x V x E x
m dx

y + y = y�

 

or		
2

02 2
( ) 2 ( – ) ( )d x m E V x

dx
y + y

�
 = 0	 ...(4.81)

In Region II the Schrödinger equation is 

			 

2

2 2
( ) 2 ( ) 0d x m E x

dx
y + y =

�

which can be put in the form 

			 

2
2

2
( ) ( ) 0d x k x

dx
y + y =

	 ...(4.82) 

where		  k = 2
2m E
�

	 ...(4.83)

Let us consider the cases where: E < V0,  and  E > V0

Case  E < V0: We may write Equation (4.81) in the form

			 
2

2
2
( ) – ( ) 0d x x

dx
y a y = 	 ...(4.84)

where	 a = 02
2 ( – ) is real positivem V E
�

	 ...(4.85)

The most general solution of Equation (4.84) is

		  y(x) = Ae+ ax + Be– ax,  A and B are constants	 ...(4.86)

Specific solution in Region I	 y1 (x) = A eax	 ...(4.87)

Specific solution in Region III	 y3(x) = B e– ax	 ...(4.88)

Solution of Equation (4.82) gives the wavefunction in region II	

		  y2 (x) = C sin (kx) + D cos (kx)	 ...(4.89)

y2(x) is either symmetric or antisymmetric about x = 0. The first term in 
Equation (4.89) is antisymmetric because sin (kx) = – sin (– kx). The second 
term is symmetric because cos (kx) = cos (– kx).

For the symmetric function in Region II, the coefficient C = 0 so that 
we may write the symmetric wavefunction in Region II as 
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			   (y2(x))symmetric = D cos (kx)	 ...(4.90)

At x = ± a, we have, using the single valuedness of wavefunction

			   Ae – aa = D cos ka	 ...(4.91)

			   Be– aa = D cos ka	 ...(4.92)
Similarly, using the continuity of wavefunction at x = ± a gives 

			   a A e– aa = + D k sin (ka)	 ...(4.93)

			   + a B e– aa = D k sin (ka)	 ...(4.94)
The above equations give

			   A = B	 ...(4.95)

and 	  k tan ka = a	 ...(4.96)

Let us now consider the antisymmetric wavefunctions in Region II. 
In the case D = 0 so that we may write the antisymmetric wavefunction in 
Region II as

			   (y2(x))antisymmetric = C sin (kx)	 ...(4.97)

Using the single valuedness and continuity of wavefunction at the 
boundaries at x = ± a we get

		  A e– aa = – C sin (ka)	 ...(4.98)

		  B e– aa = C sin (ka)	 ...(4.99)

		  a A e– aa = – C k cos (ka)	 ...(4.100)

		  – a Be– aa = C k cos (ka)	 ...(4.101)

From the above four equations, we obtain
			   A = – B 	 ...(4.102)
and
		  k cot ka = – a	 ...(4.103)
The energy eigenvalues for the particle can be obtained by solving 

Equations (4.96) and (4.103) graphically as explained in the following:
Let us put	 ka = x	 ...(4.104)
		  aa = y	 ...(4.105)

From the above we get
			   x2 + y2 = (k2 + a2) a2

Substituting for k and a from Equations (4.83) and (4.85), the above 
becomes 
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		  x2 + y2 = 2

02 2
2 2 ( – )m mE V E aÈ ˘+Í ˙Î ˚� �

or		  x2 + y2 = 
2

02
2ma V
�

	 ...(4.106)

Substituting Equations (4.104) and (4.105) in Eqations (4.96) and 
(4.103), respectively, we obtain 

		  x tan x = y	 ...(4.107)

		  – x cot x = y	 ...(4.108)
We plot x tan x against x, x cot x against x and x2 + y2 for different 

values of V0 a
2 (which are circles of different radii). Since both x and y can 

take only positive values, the sections of the circles have been shown in the 
first quadrant only in Figure (4.6).

y a= a

o
p
2

p
2

3p 2p x ka=

Fig. 4.6  Graph

In the Figure 4.6,	
Full line curves Æ x tan x against x plots
Dashed curves Æ – x cot x against x plots
Circular sections Æ Different values of V0 a

2

The energy levels and the energy eigenvalues for the symmetric 
wavefunction are given by the intersections of the x tan x against x curves 
and the circular sections. Similarly, the energy eigenfunctions and the energy 
eigenvalues when the wavefunction in the well is antisymmetric are given 
by the intersections of – x cot x against x curves and the circular sections.

If the intersections of x tan x against x curves and circles occur at values 
of x equal to x1, x2, ..., xn, ... then we get

		​  x​n​ 2​ = k2a2 = 2
2

2 nm E a
�

or		  En = 
2

2
2 ,

2 nx
ma
�   n = 1, 3, 5, ...
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Similarly, if the intersections of – x cot x against x curves and the circles 
occur at values of x equal to x1¢, x2¢, ... xn¢ …, then we get

		​  x​n     ¢​ 
 2 ​ = 2 2 2

2
2 nmEk a a¢=
�

 

or		  En¢ = 
2

2
2 ;

2 nx
ma ¢
�   n¢ = 2, 4, 6, ...

The number of bound states are seen to depend upon the height V0 and 
the width a of the well through the factor V0 a

2. From the Figure (4.6) we 
find the following 

	 (i)	Only one energy level of symmetric type, if 0 < V0 a
2 < 

2 2

8m
p �

	 (ii)	Two energy levels of which one is of symmetric type and the other of 

antisymmetric type, if 
2 2 2 2

2
0

4
8 8

V a
m m

p p< <� �

	 (iii)	Three energy levels of which two are of symmetric type and one of 

antisymmetric type, if 
2 2 2 2

2
0

4 9
8 8

V a
m m

p p< <� �  and so on.
Some of the energy eigenfunctions corresponding to bound states are 

shown in the Figure (4.7).

V0V0

V x( )

n = 3

n = 2

n = 1

–a o a
x

Fig. 4.7  Eigenfunctions for Bound State

Unlike in the case of infinite potential well, both the symmetric as 
well as the antisymmetric eigenfunctions extend beyond the well, i.e., in the 
regions x < – a and x > a which define the classical turning points. Clearly, 
there exists finite probability of finding the particle outside the well. This is 
a quantum mechanical effect. 
Case  E > V0:
The Schordinger equation in Regions I and III is given by,

			 

2

02 2
( ) 2 ( – ) ( ) 0d x m E V x

dx
y + y =

�

Since E is greater than V0, 02
2 ( – )m E V
�

 is a real positive quantity. As 
such the solution of the above equation is sinusoidal in nature. The probability 
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The Free Particledensity for the particle is distributed over all space in regions I and III. It is 
also distributed in Region II, i.e., within the well. Thus we do not get bound 
state for the particle.

4.3	 PARTICLE IN A BOX

Consider a particle of mass m moving within a rectangular box. Let us 
choose a Cartesian coordinate system with x, y and z axes parallel to the three 
adjacent edges of the box. Let the lengths of the box parallel to the x, y and 
z axes be respectively, a, b and c. Let px, py and pz be the components of the 
linear momentum of the particle along x, y and z axes, respectively. Let us 
consider the motion of the particle to be force-free and the collision of the 
particle with the walls to be perfectly elastic. Under such a force-free motion 
px, py, pz are constants of motion and they only change sign on collision with 
the walls perpendicular to the x-axis, y-axis and z-axis, respectively. Further, 
one cycle of motion parallel to the x-axis is 2a, that parallel to the y-axis is 
2b and that parallel to the z-axis is 2c.

We now have, according to the Wilson–Sommerfeld quantization rule,

		  	 ...(4.109)

		  	 ...(4.110)

		  	 ...(4.111)
The total energy of the particle is given by,

E = ​ px
2

 ___ 2m ​ + ​ 
py

2

 ___ 2m ​ + ​ 
pz

2

 ___ 2m ​

The motion being force-free, potential energy of the particle is zero. 
Using Eqations (4.109), (4.110) and (4.111) in the above, it becomes

E = 
2 2 2 22 2

2 2 2
1

2 4 4 4
y zx n h n hn h

m a b c

È ˘
+ +Í ˙

Í ˙Î ˚

or		  E = 
2 222

2 2 28
y zx n nnh

m a b c

È ˘
+ +Í ˙

Í ˙Î ˚
	 ...(4.112)

	 In the above equations, nx, ny and nz are zero or integers. Equation 
(4.112) shows that the energy of the particle within the box is quantized.
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Check Your Progress

	 1.	What is free particle?
	 2.	Define the Heisenberg’s uncertainty principle.
	 3.	Explain potential function V(x).
	 4.	What is reflection coefficient?
	 5.	What happens if the particle inside the well has zero energy?

4.4	 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS

	 1.	By a free particle we mean a particle which moves freely in space 
without the influence of any force. Hence, for a free particle the 
potential energy is zero.

	 2.	According to Heisenberg’s uncertainty principle we get the uncertainty 
in the position Dx Æ • and the uncertainty in the time Dt Æ •. Thus 
there is complete loss of information about the position and time for 
any state of the particle.

	 3.	 Mathematically, the potential function V(x) is of the form,
      V(x) = 0    x < 0		  (Region I)	
          = V0    x > 0	 	   (Region II)
		  The particle moving freely in Region I encounters the potential V0 at 

x = 0.
	 4.	The reflectance or the reflection coefficient is, by definition, given by

	 R = Probability current density for reflected beam
Probability current density for incident beam

          = 
1 reflected

1 incident

( )
( )
J
J

	 5.	 If the particle inside the well has zero energy then it will come to 
rest and will be localized within the limited region defining the well. 
Heisenberg’s uncertainty relation then will require the particle to 
acquire a finite momentum and hence a minimum kinetic energy.

4.5	 SUMMARY

	 •	By a free particle we mean a particle which moves freely in space 
without the influence of any force. Hence, for a free particle the 
potential energy is zero.
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The Free Particle	 •	The probability density corresponding to the solution y+(x, t) is,
		  2 2( , ) | ( , ) | | |P x t x t A+ += y =  = Constant independent of x and t 
		  The probability density corresponding to the solution y – (x, t) is,
	  	 2 2( , ) | ( , ) | | |P x t x t B- -= y = = Constant independent of x and t.
	 •	Mathematically, the potential function V(x) is of the form,
      V(x) = 0    x < 0		  (Region I)	
          = V0    x > 0	 	   (Region II)
		  The particle moving freely in Region I encounters the potential V0 at 

x = 0.
	 •	The reflectance or the reflection coefficient is, by definition, given by

		  R = 
Probability current density for reflected beam
Probability current density for incident beam

          = 1 reflected

1 incident

( )
( )
J
J

	 •	 For E >> V0, that is for a Æ k from below, the ratio of the reflected flux 
to the incident flux, that is, |R|2 approaches zero.

	 •	 If the particle inside the well has zero energy then it will come to 
rest and will be localized within the limited region defining the well. 
Heisenberg’s uncertainty relation then will require the particle to 
acquire a finite momentum and hence a minimum kinetic energy. 

	 •	The minimum momentum uncertainty given by Dp ~ ,
a
�  is inversely 

proportional to the width of the well.
	 •	The wavefunctions corresponding to n = 1, 3, 5, ..., i.e., corresponding 

to odd quantum numbers are symmetric, y(– x) = y(x).
	 •	The energy levels and the energy eigenvalues for the symmetric 

wavefunction are given by the intersections of the x tan x against x 
curves and the circular sections.

4.6	 KEY WORDS

	 •	Free particle: It means a particle which moves freely in space without 
the influence of any force. Hence, for a free particle the potential energy 
is zero.

	 •	Heisenberg’s uncertainty principle: It states that the uncertainty in 
the position  and the uncertainty in the time  .
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4.7	 SELF ASSESSMENT QUESTIONS AND 
EXERCISES

Short Answer Questions

	 1.	What is free particle?
	 2.	Define Heisenberg’s uncertainty principle.
	 3.	What is potential step?
	 4.	What dose particle in a box state?

Long Answer Questions

	 1.	Discuss the concept of free particle giving appropriate examples.
	 2.	Briefly explain the potential function V(x) with relevant equations.
	 3.	Discuss asymmetric square well and symmetric square well with 

relevant examples.
	 4.	Explain the concept of particle in a box.
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Three Dimensional Problem

UNIT 5	 THREE DIMENSIONAL 
PROBLEM

Structure 
	 5.0	 Introduction
	 5.1	 Objectives
	 5.2	 Three Dimensional Harmonic Oscillator 
	 5.3	 Rigid Rotator

	 5.3.1	 Schrödinger Equation for a Rigid Rotator with Free-Axis
	 5.3.2	 Solution of the Wave Equation: Energy Eigenvalues and Energy 

Eigenfunctions for the Rotator
	 5.3.3	 Rigid Rotator with Fixed Axis

	 5.4	 Answers to Check Your Progress Questions
	 5.5	 Summary
	 5.6	 Key Words
	 5.7	 Self Assessment Questions and Exercises
	 5.8	 Further Readings

5.0	 INTRODUCTION

In physics, the one and three-dimensional particle in a box are prototypes of 
bound systems. The harmonic oscillator is the most basic model with which 
we treat the vibrations of molecules. The rigid rotor is a mechanical model 
of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, 
such as a top. A special rigid rotor is the linear rotor requiring only two angles 
to describe, for example of a diatomic molecule. More general molecules 
are 3-dimensional, such as water (asymmetric rotor), ammonia (symmetric 
rotor), or methane (spherical rotor).

In this unit, you will study about the three dimensional harmonic 
oscillator and rigid rotator.

5.1	 OBJECTIVES

After going through this unit, you will be able to:
	 •	Understand what three dimensional harmonic oscillator is
	 •	Define the rigid rotator

5.2	 THREE DIMENSIONAL HARMONIC 
OSCILLATOR 

A general three-dimensional harmonic oscillator consists of a particle, of 
mass say m, bound to the origin O of a rectangular coordinate system (XYZ) 
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by a restoring force  = –   where  is the position vector of the particle 
with respect to the origin O and k is the force constant. We may consider the 
force ​

​_
 

›
 F ​ to have cartesian components

	 Fx = – kxx,  Fy = – kyy,  Fz = – kzz	 ...(5.1)
where x, y, z are respectively the components of ​​

_
 › r ​ along x, y and z axes. 

For generality, the force constants kx, ky and kz along the three axes have been 
considered to be different.

If nx, ny, nz be respectively the components of the natural frequency n0 
of the oscillator along the x, y and z axes then we have 

	 	 ...(5.2)
	 k = m​w​ 0​  2​ = m(2pn0)

2 = 4p2 m​n ​0​  2​ 	 ...(5.3)

	The potential energy function of the oscillator is spherically symmetric 
and is given by

	 V = V(r) = 2 2 2
0

1 1
2 2

kr m r= w 	 ...(5.4)

Alternatively, we may write the potential energy function as

	 V(x, y, z) = 2 2 2 2 2 21 ( )
2 x y zm x y zw + w + w 	 ...(5.5)

The Schrödinger equation for the oscillator given by

	 D2y + 
2

2 [ – ( )] 0m E V r y =
�

can be expressed in Cartesian coordinates as 
2 2 2

2 2 2 2 2 2
2 2 2 2

( , , ) ( , , ) ( , , ) 2 [ – ( )] ( , , ) 0x y z
x y z x y z x y z m E m x y z x y z
x y z

∂ y ∂ y ∂ y+ + + w + w + w y =
∂ ∂ ∂ � 	 ...(5.6)

Solution of the Schrödinger Equation

Equation (5.6) can be solved using the method of separation of variables. 
We write y(x, y, z) as a product of a function of only x, a function of only y, 
and a function of only z, 

	 y(x, y, z) = X(x) Y(y) Z(z)	 ...(5.7)

Using Equation (5.7) in Equation (5.6) we get

	
2 2 2

2 2 2 2 2 2
2 2 2 2

2 [ – ( )]x y z
d X d Y d Z mYZ XZ XY E m x y z XYZ

x y z
+ + + w + w + w

∂ ∂ ∂ �
 = 0

Dividing by XYZ and rearranging the terms the above becomes 
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2 2 2 2 2 2

2 2 2 2 2 2 2
1 2 1 2 1 2 2– – – –x y z

d X m d Y m d Z m mEx y z
x y zdx dy dz

È ˘ È ˘ È ˘
w + w + w =Í ˙ Í ˙ Í ˙

Î ˚ Î ˚ Î ˚� � � �
 	 ...(5.8)

We find 
	 (i)	The sum of the three terms on the left hand side of Equation (5.8) is 

a constant because the total energy E of the harmonic oscillator is a 
constant.

	 (ii)	The first term in the left hand side of Equation (5.8) is a function of 
only x, the second term is a function of only y while the third term is 
a function of only z.
These facts require each term on the left hand side of Equation (5.8) 

to be equal to a separate constant, we put
2 2

2 2
2 2 2

1 2 –2– x
d X m mx

X dx
w =

� �
 Ex,  Ex = A constant

or	
2 2

2 2
2 2

1 2 –x x
d X m E m x

X dx
È ˘+ wÎ ˚�

 = 0

or	
2 2

2 2
2 2

2 –x x
d X m E m x X
dx

È ˘+ wÎ ˚�
 = 0 	 …(5.9)

Similarly, writing the second term and the third term on the left hand 

side of Equation (5.8) equal to  2 2
–2 –2andy

m mE
� �

 Ez respectively, we obtain 

	
2

2 2
2 2

2 [ – ]y y
d Y m E m y Y
dy

+ w
�

 = 0	 ...(5.10)

	
2

2 2
2 2

2 [ – ]z y
d Z m E m y Z
dz

+ w
�

 = 0	 ...(5.11)
We also find

		
2 2 2 2

2 2 2 –2–x y z
m m m mE E E E- - =
� � � �

or
	 Ex + Ey + Ez = E	 ...(5.12)

Equations (5.9), (5.10) and (5.11) are mathematically identical with 
the time-independent Schrödinger equation for linear harmonic oscillator.

The results (A) and (B) as below:

(A)	 1
2
1
2
1
2

x x x

y y y

z z z

E n

E n

E n

¸Ê ˆ= + wÁ ˜ ÔË ¯ Ô
ÔÊ ˆ Ô= + w ˝Á ˜Ë ¯ Ô
ÔÊ ˆ= + w ÔÁ ˜Ë ¯ Ǫ̂

�

�

�

	 ...(5.13)
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where nx, ny, nz are positive integers including zero.
In view of the results given by Equations (5.12) and (5.13) we get the 

energy eigenvalues of the three-dimensional harmonic oscillator to be
1 1 1
2 2 2x y z

x y z x x y y z zn n n
E E E E n n n

È ˘Ê ˆ Ê ˆ Ê ˆ= + + = + w + + w + + wÍ ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Î ˚
� 	

...(5.14)

(B) The normalized solutions of Equations (5.9), (5.10) and (5.11) to 
be given respectively by

2
–

2( ) ( )
x x xn n nX x N H e

x

= x

or	
21/2

–
2( ) ( )

2 !x xx

k
n nn

x

X x H e
n

xÈ ˘g
= xÍ ˙

pÍ ˙Î ˚
	 ...(5.15)

where	 gx = andx
x

m
x

w
x = g

�
	 ...(5.16)

2

1/2

2( ) ( )
2 !

-h
È ˘g
Í ˙= h
Í ˙pÎ ˚

y yy

y
n nn

y

Y y H e
n

	 ...(5.17)

where	 gy = and
w

h = g
�

y
y

m
y	

and 

	
1/2

3( )
2 !

È ˘g
= Í ˙

pÍ ˙Î ˚
z zz

n nn
z

Z z H
n

(z)​e​– z2/2​	 ...(5.18)

	 gz = zmw
�

  and  z = gz z	 ...(5.19)

Substituting Equations (5.15), (5.17) and (5.18) in Equation (5.19) we 
get the normalized eigenfunctions of the three-dimensional oscillator to be 
given by

	
1/2

3/2( , , ) ( ) ( )
2 ! ! !

È ˘g g g
y = x hÍ ˙

pÍ ˙Î ˚
x y z x y z

x y z
n n n n n nn

x y z
x y z H H H

n n n
(z) × ​e​ – ​ 1 __ 2 ​(x2 + h2 + z2)​	 ...(5.20)

In the above,
	 n = n1 + n2 + n3 	 ...(5.21)
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In the following we consider a three-dimensional harmonic oscillator for 
which the natural frequencies of oscillations nx, ny, nz along X, Y and Z axes 
respectively are equal. The angular frequencies wx, wy, and wz then are also 
equal. Let us assume 

	 wx = wy = wz = w0	 ...(5.22) 
Equation (5.14) then gives the energy eigenvalues of the oscillator to be

	 0 0
3( )
2

È ˘= + + w + wÍ ˙Î ˚
�

x y zn n n x y zE n n n

or 

	 En = 3
2

nÊ ˆ+Á ˜Ë ¯
�w0;  n = nx + ny + nz = 0, 1, 2,...	 ...(5.23)

In view of Equation (5.22) we find 

	 gx = gy = gz 
0mw
�

	 ...(5.24)

	 x = 0 0 0; ;
w w w

h = z =
� � �

m m m
x y z 	 ...(5.25)

	Substituting Equations (5.24) and (5.25) in Equation (5.20) we get the 
eignfunctions of the oscillator to be given by

1/23
0

( ) 3/2
( , , ) ( ) ( )

2 ! ! !+ +

È ˘wÊ ˆÍ ˙Á ˜Ë ¯Í ˙y = x hÍ ˙pÍ ˙
Í ˙Î ˚

�
x y z x y zx y zn n n n n nn n n

x y z

m

x y z H H H
n n n

(z) × ​​e​ – ​ 1 __ 2 ​ ​ 
mw0 ____   ​​​

 (x2 + y2 + z2)
​	 ...(5.26)

The ground state of the oscillator corresponds to
	 nx = ny = nz = 0	 ...(5.27)
	From Equation (5.23) we get the energy of the ground state to be given 

by

	 E0 = ​ 3 __ 2 ​ hw0

and the ground state eigenfunction from Equation (5.26) to be		

y000(x, y, z) = 
03/2 1– 2 2 20 2

1/2 ( )
wwÊ ˆ + +Á ˜Ë ¯p
�

�

mm
e x y x 	 ...(5.28)

The first excited state corresponds to

	 n = 1
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so that we may have

	
= 1, = 0, = 0

= 0, = 1, = 0

= 0, = 0, = 1

¸
ÔÔ
˝
Ô
Ǫ̂

x y z

x y z

x y z

n n n

n n n

n n n

	 ...(5.29)

Equation (5.23) gives the energy eigenvalues corresponding to this 
state to be

	 E1 = 0
5
2

w� 	 ...(5.30)

The corresponding eigenfunctions are 
	 y010,  y010  and  y001 

We find that there are 3 different eigenfunctions corresponding to the 
same energy eigenvalue 0

5
2

w� .

Consider the first excited state of the three-dimensional isotropic 
oscillator to be 3-fold degenerate.

The second excited state of the oscillator corresponds to
	 n = 2
so that we may have the following sets of values of nx, ny, and nz 

		

= 2, = 0, = 0

= 0, = 2, = 0

= 0, = 0, = 2

= 1, = 1, = 0

= 1, = 0, = 1

= 0, = 1, = 1

x y z

x y z

x y z

x y z

x y z

x y z

n n n

n n n

n n n

n n n

n n n

n n n

¸
Ô
Ô
Ô
Ô
˝
Ô
Ô
Ô
Ǫ̂

	 ...(5.31)

The energy eigenvalue for this state from Equation (5.23) is given by

	 E2 = 0
7
2

w� 	 …(5.32)

Corresponding to this energy eigenvalue there exist 6 different energy 
eigenfunctions, namely

	 y200,  y020,  y002,  y110,  y101,  y011

Thus the second excited state is six-fold degenerate.
In general, the degeneracy of the energy eigenstate of the three-

dimensional isotropic oscillator is

	 Degree of degeneracy =  (n + 1) (n + 2)	 ...(5.33)
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5.3	 RIGID ROTATOR

A rigid rotator consists of two mass points attached at the two ends of a 
massless rod. The system is capable of rotating about an axis passing through 
its centre of mass and perpendicular to the length of the rod. If the rotator is 
constrained to rotate in plane, it can be described by an angle coordinate q 
at any instant of time.

The potential energy of the rotator is zero because the masses are rigidly 
connected to the ends of the rod of constant length.

The kinetic energy of the rotator is given by

where I is the moment of inertia of the rotator about the axis of rotation 
and w =  q

.  
is the angular velocity of rotation. Clearly, the total energy of the 

classical rotator is

				    	 ...(5.34)
The phase integral of the rotator can be written in terms of the total 

angular momentum pq and the angular coordinate q as

                	 ...(5.35)
According to Wilson–Sommerfeld quantization rule we have

		          J = nh,  n = 0, 1, 2, ...	 ...(5.36)

Using Equation (5.35) in Equation (5.36) we obtain

Since the total angular momentum pq = Iw is a constant of motion, the 
above equation gives

				  

or		        pq = Iw = ​ nh ___ 2p ​	 ...(5.37)

The above equation gives

				    	 ...(5.38)
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Substituting the value of w in Equation (5.34) we obtain

or			   	 ...(5.39)
We find that the energy of the rigid rotator is discrete and not continuous.

Problem of Rigid Rotator

Rigid rotator is a system of two spherical particles separated by a fixed 
distance. The system can rotate about an axis through the centre of mass and 
perpendicular to the plane containing the particles. If the plane containing the 
particles can take any arbitrary orientation, the axis of rotation can assume 
any orientation in space and the system is then referred to as a rigid rotator 
with free axis. On the other hand, if the particles are confined within a given 
plane then the axis of rotation has a fixed direction in space and the system 
is then referred to as a rigid rotator with fixed axis.

A quantum mechanical treatment of rigid rotator with free axis is 
helpful in understanding the behaviour of a diatomic molecule which can be 
considered as a rigid rotator with free axis at least as a first approximation.

5.3.1 Schrödinger Equation for a Rigid Rotator with Free-Axis

In order to arrive at the Schrödinger equation, let us first calculate the total 
energy of the oscillator which is the sum of the kinetic energies of the two 
particles constituting the rotator and the potential energy of the system.

Let the rotator consist of two particles of masses m1 and m2 
separated by a fixed distance ro. Let the system of particles rotate with 
an angular velocity ‘w’ about the axis XY passing though the centre 
of mass O and normal to the line joining the particles as shown in the 
Figure (5.1). 

Fig. 5.1  Rigid Rotator

Let for any arbitrary position of the plane containing the particles, i.e., 
for an arbitrary orientation of the axis XY in space, the cartesian coordinates of 
m1 and m2 with respect to O which is considered as the origin of a rectangular 
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Three Dimensional Problemcoordinate system be respectively (x1, y1, z1) and (x2, y2, z2). Let (r1, q, f) and 
(r2, q + p, f + p) be respectively the spherical polar coordinates of m1 and 
m2. We then have the transformation equations given by

		
1 1

1 1

1 1

= sin cos
= sin sin
= cos

q f¸
Ôq f ˝
Ôq ˛

x r
y r
z r

	 ...(5.40)

and

		
2 2 2

2 2 2

2 2 2

= sin ( + ) cos ( + ) = sin cos
= sin ( + ) sin ( + ) = sin sin
= cos ( + ) = – cos

q p f p q f¸
Ôq p f p q f ˝
Ôq p q ˛

x r r
y r r
z r r

	 ...(5.41)

	 The kinetic energy of the particle of mass m1 is 

	 T1 = 2 2 2
1 1 1 1

1 ( )
2

m x y z+ +� � � 	 ...(5.42)
Obtaining the time derivatives x.1, y.1 and z.1 from Equation (5.40), 

substituting them in Equation (5.42) and simplifying we obtain

	 T1 = 2 2 2 2
1 1

1 ( sin )
2

m r q + q f� � 	 ...(5.43)

Similarly, the kinetic energy of the particle of mass m2 is found to be

	 T2 = 2 2 2 2 2 2 2
2 2 2 2 2 2

1 1( ) ( sin )
2 2

m x y z m r+ + = q + qf� �� � � 	 ...(5.44)

The total kinetic energy of the rotator is thus

	 T = T1 + T2 = 2 2 2 2 2
1 1 2 2

1 1 ( sin )
2 2

m r m rÊ ˆ+ q + q fÁ ˜Ë ¯
� � 	 ...(5.45)

Since for the rigid rotator the distance r0 between the two particles is 
fixed (r0 = constant), we can say that there exists no mutual force between the 
particles. As a consequence, the potential energy of the rotator is zero (V = 0).

The total energy of the rotator is thus

	 E = T = 2 2 2 2 2
1 1 2 2

1 ( ) ( sin )
2

m r m r q + q f� �

	 E = 2 2 21 ( sin )
2

I q + q f� �  	 ...(5.46)

where,	 I = m.1r1
2 + m2r 2

2	 ...(5.47)

is the moment of inertia of the rotator about the axis of rotation XY.
To gain physical insight into the rotator problem, we now express 

Equation (5.46) in a different form using the definition of centre of mass of a 
system of particles. Let with respect to the origin O, 1 and 2 be respectively 
the position vectors of the particles of masses m1 and m2. The position vector 
of the centre of mass with respect to the origin is then given by
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	 	 ...(5.48)
Since the origin has been chosen as the centre of mass itself we have 
	  = 0,  1 and 2 oppositely directed
We thus obtain from Equation (5.48)

	 O = 1 1 2 2

1 2

–m r m r
m m+

The above gives
	 m1r1 = m2r2	 …(5.49)
We may write Equation (5.49) as
	 m1r1 = m2 (r0 – r1)

or	 r1 = 2
0

1 2+
m

r
m m

	 ...(5.50)

Similarly, we obtain 

	 r2 = 1
0

1 2+
m

r
m m

	 ...(5.51)

Substituting Equations (5.50) and (5.51) in Equation (5.47) we get

	 I = m1

2 2
2 22 1

0 2 0
1 2 1 2

Ê ˆ Ê ˆ
+Á ˜ Á ˜+ +Ë ¯ Ë ¯

m m
r m r

m m m m
or

	 I = 21 2
0

1 2

m m
r

m m+
or
	 I = m​r​ 0​ 

 2​	 ...(5.52)

where  m = 21 2
0

1 2

m m
r

m m+   in the reduced mass of the two particles.

Using Equation (5.52) in Equation (5.46) we get the total energy of 
the rotator as

	 E = 2 2 2 2
0

1 ( sin )
2

rm q + qf� � 	 ...(5.53)

	If for convenience, we set the distance between the particles equal to 
unity, i.e., r0 = 1, we get 

	 m​r​ 0​ 
 2​ = m = I0(say)	 ...(5.54)

We can then write the total energy of the rotator as

	 E = 2 2 2
0

1 ( sin )
2

I q + qf� � 	 ...(5.55)
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surface of a sphere of radius unity.

Thus the motion of the rigid rotator is the same as that of a single 
particle of mass I0, equal to the reduced mass of the two particles forming 
the rotator, over the surface of a sphere of radius unity.

The wavefunction y(x, y, z) describing the state of a particle of mass m 
having a total energy E moving in a potential field V satisfies the Schrödinger 
equation, 

	 D2 y (x, y, z) + 
2

2 [ – ] ( , , ) 0m E V ry q f =
�

	 ...(5.56)

	 In spherical polar coordinates the above becomes 

	 2
2 2

1 ( , , ) 1 ( , , )sin
sin

r rr
r rr r

∂ ∂y q f ∂ ∂y q fÊ ˆ Ê ˆ+ qÁ ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂q ∂qq

	 2 2 2 2
1 ( , , ) 2 [ – ] ( , , ) 0

sin
r m E V r

r
∂y q f+ + y q f =

q ∂f �
	 ...(5.57)

As seen above, the rigid rotator behaves as a single particle of mass  
m = I0 over a sphere of unit radius. We thus have r = 1 so that we get

	 2
2 2

1 ( , , )rr
rr

Ê ˆ∂ ∂y q f
Á ˜∂ ∂fË ¯

 = 0	 ...(5.58)

Equation (5.57) then becomes

    
2

0
2 2 2

21 1sin [ – ]
sin sin

I
E V

Ê ˆ∂ ∂y ∂ yq + + yÁ ˜q ∂q ∂fË ¯ q ∂f �
 = 0	 ...(5.59)

Further for the rigid rotator V = 0, so that Equation (5.59) reduces to

	
2

0
2 2 2

21 1sin
sin sin

I
E∂ ∂y ∂ yÊ ˆq + + yÁ ˜Ë ¯q ∂q ∂q q ∂f �

 = 0	 ...(5.60)

In the above, y is a function of only q and f since r = constant i.e.,  
y = y(q, f)

5.3.2	 Solution of the Wave Equation: Energy Eigenvalues and 
Energy Eigenfunctions for the Rotator

The wave equation given by Equation (5.60) can be solved using the method 
of separation of variables. We do this by writing

	 y(q, f) = Q (q) F (f)	 ...(5.61)
where Q and F are respectively functions of q alone and f alone.
Using Equation (5.61) in Equation (5.60) we obtain 

	
2

0
2 2 2

21 1sin
sin sin

∂ Q FÊ ˆF q + Q + QFÁ ˜Ë ¯q ∂q q q f �
I Ed d

d d
 = 0
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Dividing the above throughout by 2sin
QF

q
, we get

	
2

20
2 2

21 1sin sin sin –Q FÊ ˆq q + q =Á ˜Ë ¯Q q q F f�
I Ed d d

d d d
	 ...(5.62)

The left hand side of Equation (5.62) depends only on q while the right 
hand side depends only on q. Hence for the Equation (5.62) to be valid, each 
side of it must separately be equal to a constant. For convenience we set 

	
2

2
1– d

d
F

F f
 = m2 (m = constant)

or	
2

2
d
d

F
f

 + m2F = 0	 ...(5.63)
Let us call it F equation.
We also have 

		  20
2

21 sin sin sin
I Ed d

d d
QÊ ˆq q + qÁ ˜Ë ¯Q q q �

 = m2

Dividing the above by 
2sin q

Q
 we obtain 

		
2

0
2 2

21 sin
sin sin

I Ed d m
d d

QÊ ˆq + Q = QÁ ˜Ë ¯q q q q�
or

	
2

0
2 2

21 sin –
sin sin

I Ed d m
d d

Ê ˆQÊ ˆq + QÁ ˜ Á ˜Ë ¯q q q qË ¯�
= 0	 ...(5.64)

Let us call it Q equation.

Solution of the  Equation

The most general solution of Equation (5.63) is given by
	 F = Ae±imf	 ...(5.65)
where A is an arbitrary constant, and can be evaluated using the 

requirement of the normalization of F 

	
p

F F fÚ
2

0

* d  = 1

Using Equation (5.65) in the above we obtain

	
p

fÚ
2

2

0

| |A d  = 1
or
	 |A|2 2p = 1
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	 |A|2 = 
p
1

2
or

	 A = 
p

1
2

	 ...(5.66)

	For F to be a factor in the total wavefunction of the rotator, the single 
valuedness of F demands 

	 F(f) = F(f + 2p)
Using Equation (5.65) in the above we get 

	 Ae± imf = Ae± im(f + 2p) 
or
	 e± imf = e± imf e± 2p mi

or
	 e± 2p mi = 1
or
	 cos 2pm ± i sin 2pm = 1
The above demands m to be zero or an integer positive as well as 

negative, i.e.,
	 m = 0, ± 1, ± 2,...	 ...(5.67)
Using the results given in Equations (5.66) and (5.67), we obtain from 

Equation (5.66)

	 F(f) = 1
2

ime f

p
	 ...(5.68)

The integer m can be identified as the magnetic quantum number.
Note: The Lagrangian function L for the rigid rotator is by definition given by

	 L = T – V.
or	 L = E 	 (  V = 0 and E = T )
	Using the expression for the total energy E given by Equation (5.46) 

we get

	 L = 2 2 21 ( sin )
2

I q + q f� �

	We observe that f does not appear explicitly in the Lagrangian function 
and hance f is a cyclic or ignorable coordinate.

Solution of the Q Equation

Putting	 l = 0
2

2I E
�

	 ...(5.69)
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the Q equation which is given by Equation (5.64) becomes 

	
2

2
1 sin –

sin sin
d d m
d d

Ê ˆQÊ ˆq + l QÁ ˜ Á ˜Ë ¯q q q qË ¯
 = 0	 ...(5.70)

Let us introduce a new variable x as
	 x = cos q	 ...(5.71)
Now

	 –sind d d d
d d d d
Q Q x Q= = q
q x q x

	 (using Equation 5.71)
or

	 –sind d
d d

= q
q x

	 ...(5.72)

Using Equations (5.71) and (5.72) in Equation (5.70) we get

	
2

2
2– –(1 – ) –

1 –
d d m
d d

È ˘È ˘Qx + l QÍ ˙Í ˙x x xÎ ˚ Î ˚
 = 0

or

	
2 2

2
2 2(1 – ) –2 –

1 –
d d m

dd
È ˘Q Qx x + l QÍ ˙xx xÎ ˚

 = 0	 ...(5.73)

For mathematical convenience let us substitute

	 Q = (1 – x2​)​​ 
m __ 2 ​​ X(x)	 ...(5.74)

where X(x) is a function of only x.

Substituting for 
2

2andd d
d d
Q Q
x x

 as obtained from Equation (5.74) in 

Equation (5.73) and simplifying we obtain

	 x + x + l +
xx

2
2

2(1 – ) –2 ( 1) [ – ( 1)]d X dXm m m X
dd

= 0	 ...(5.75)

	Equation (5.75) can be solved using power series method. For this we 
express the function X as a power series in x as 

	 X = 
•

=

xÂ
0

,n
n

n

a   n = 0, 1, 2,...	 ...(5.76)

The above gives

	 –1

0

n
n

n

dX n a
d

•

=

= x
x Â 	 ...(5.77)

and

	
2

–2
2

2

( – 1) n

n

d X n n
d

•

=

= x
x Â 	 ...(5.78)
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yields

µ • •

= = =

x x + xÂ Â Â–2

2 2 1

( – 1) – ( – 1) – 2( 1)n n n
n n n

n n n

n n a n n a m n a  

•

=

+ l + xÂ
0

[ – ( 1)] n
n

n

m m a  = 0                            ...(5.79)

For Equation (5.79) to be valid for all possible values of x, the 
coefficients of the individual powers of x must separately vanish. 

Thus we obtain, in general, for the coefficient of xn 

(n + 1) (n + 2)an + 2 – n (n – 1)an – 2 (m + 1)nan + [l – m(m + 1)] an = 
0

or

	 an + 2 = ( – 1) 2 ( 1) ( 1) –
( 1) ( 2)

n n n m m m
n n

+ + + + l
+ +

 an

or

	 2 ( – 1) 2 ( 1) ( 1) –
( 1) ( 2)

n

n

a n n n m m m
a n n

+ + + + + l=
+ +

	 ...(5.80)

Equation (5.79) is referred to as the Recursion formula for the 
coefficients of the series for X(x). In order that the polynomial X represents a 
satisfactory part of the total wavefunction of the rotator, the series for X must 
break off (terminate) after a finite number of terms (otherwise it diverges). 
Considering that polynomial breaks off after the nth term we get,

	 an + 2 = 0

and hence Equation (5.80) gives

	 n(n – 1) + 2n (m + 1) + m(m + 1) – l = 0

or	                  l = (n + m) (n + m + 1)            ...(5.81)

In Equation (5.81) m = 0, 1, 2, ... and n = 0, 1, 2,..., Hence we may write
	 n + m = l is an integer including 0	 ...(5.82)
We can thus write Equation (5.81) as
	 l = l(l + 1)	 ...(5.83)
Using the above values of l, Equation (5.73) becomes 

	
2 2

2
2 2(1 – ) –2 ( 1) –

1 –
d d ml l

dd
È ˘Q Qx x + + QÍ ˙xx xÎ ˚

 = 0	 ...(5.84)

	It is well known that the associated Legendre function pl
|m|(x) of degree 

l and order |m| where l = 0, 1, 2,... and m = 0, 1, 2,..., l is defined in terms of 
Legendre polynomial Pl(x) as
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	 Pl 
|m|(x) = 

| | | |
2 2

| |(1 – ) ( )
m m

lm
d P
d

x x
x

	 ...(5.85)

Pl(x) satisfies the Legendre differential equation

	 2 ( )
(1 – ) ( 1) ( )l

l
dPd l l P

d d
È ˘x

x + + xÍ ˙x xÎ ˚
 = 0	 ...(5.86)

Differentiating Equation (5.86) |m| times with respect to x and using 
Equation (5.85) we obtain,

	
2 | | | | 2

2 | |
2 2

( )
(1 – ) –2 ( 1) – ( )

1 –

m m
ml l

l
d P d P ml l P

dd
Ï ¸x Ô Ôx x + + xÌ ˝xx xÔ ÔÓ ˛

 = 0	 ...(5.87)

Comparing Equations (5.84) and (5.88) we identify

Q(q) = Pl
|m|(x) = Pl

|m|(cos q)	 ...(5.88)

Thus we can express the general solution of the Q equation as,
	 Q(q) = B Pl

|m| (cos q)	 ...(5.89)
In the above the constant B is determined by requiring Q(q) to be 

normalized, i.e.,

	
0

* ( ) ( ) sin d
p

Q q Q q q qÚ  = 1

Using Equation (5.89) in the above we obtain,

	
1

2 | | * | |

–1

{ (cos )} { (cos )} (cos )m m
l lB P P d

+

q q qÚ  = 1

or

	 2 2( | |)!
2 ( – | |)!

l mB
l l l m

+
+

 = 1

	 The above gives

	 B = 2 ( | |)!
2( | |)!

l l l m
l m

+ -
+

	 ...(5.90)

	Thus the general solution of the Q equation given by Equation (5.90) 
becomes

	 | |2 ( | |)!( ) (cos )
2( | |)!

m
l

l l l m P
l m

+ -Q q = q
+

	 ...(5.91)

	In view of Equation (5.68) and Equation (5.91) we can now write the 
wavefunction y for the rigid rotator with free axis as
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	 | |

,| |
1 2 ( | |)!( ) ( ) (cos )

2( | |)!2
m im

l m l
l l l m P e

l m
f+ -y = Q q F q = q

+p
	 ...(5.92)

	Set of values of l and |m| give the different energy eigenfunctions for 
the rotator.

The corresponding energy eigenvalues are obtained from 

	 l = l(l + 1)
or

	 0
2

2 lI E
�

 = l(l + 1)
or

	  
2

0
[ ( 1)]

2lE l l
I

= +� 	 ...(5.93)

5.3.3 Rigid Rotator with Fixed Axis

For a rigid rotator with fixed axis, q becomes 90° so that the Schrödinger 
equation for the rotator given by Equation (5.60) becomes

	
2

0
2 2

2I
E∂ y + y

∂f �
 = 0	 ...(5.94)

Writing 0
2

2I
�

 E = m2 as before, Equation (5.94) becomes 

		
2

2
2 m∂ y + y

∂f
 = 0	 ...(5.95)

The general solution of Equation (5.95) is given by 

	 y(f) = Ae± imf	
As has been shown earlier, the requirement of normalization of y(f) 

gives 

	 A = 1
2

ime f

p
	

and the requirement of single valuedness property y(f) demands m to 
be zero or a positive or negative integer. Thus the normalized eigenfunctions 
of a rigid rotator with fixed axis are given by

	 ym(f) = 1
2

ime f

p
,  m = 0, ±1, ± 2,...	

and the corresponding energy eigenvalues are

	 Em = 
2

2

02
m

I
� 	

Note: The total wave function describing the state of a rigid rotator with free 
axis as obtained above is
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	 y = Ql, ± m(q) F±m(f) = Yl, ± m(q, f)

The functions Ye, ±m(q, f) are called spherical harmonics. They are the 
simultaneous eigenfunctions of angular momentum operators L̂ 

z and L̂ 2, being 
solutions of the eigenvalue equations

	 L̂2 Yl, ± m(q f) = l(l + 1) 2 Yl, ± m 

	 L̂ 
z Yl, ± m(q f) = ± m  Yl, ± m.

We find that the quantum mechanical problems of rigid rotator and 
angular momentum are directly related.

Check Your Progress

	 1.	What is three-dimensional harmonic oscillator?
	 2.	Define the potential energy function of the oscillator.
	 3.	Explain rigid rotator.
	 4.	Give equation for the kinetic energy of the rotator.
	 5.	What is the total energy of the rotator? 

5.4	 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS

	 1.	Three-dimensional harmonic oscillator.  A general three-dimensional 
harmonic oscillator consists of a particle, of mass say m, bound to the 
origin O of a rectangular coordinate system (XYZ) by a restoring force 

 = –   where  is the position vector of the particle with respect to 
the origin O and k is the force constant.

	 2.	The potential energy function of the oscillator is spherically symmetric 
and is given by

	 V = V(r) = 2 2 2
0

1 1
2 2

kr m r= w

	 3.	A rigid rotator consists of two mass points attached at the two ends of 
a massless rod. The system is capable of rotating about an axis passing 
through its centre of mass and perpendicular to the length of the rod. 
If the rotator is constrained to rotate in plane, it can be described by 
an angle coordinate q at any instant of time.

	 4.	The kinetic energy of the rotator is given by

		
		 where I is the moment of inertia of the rotator about the axis of rotation 

and w =  q
.  

is the angular velocity of rotation.
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Three Dimensional Problem	 5.	The total energy of the rotator is thus

	 E = T = 2 2 2 2 2
1 1 2 2

1 ( ) ( sin )
2

m r m r q + q f� �

	 E = 2 2 21 ( sin )
2

I q + q f� �  	

where	 I = m.1r1
2 + m2r 2

2	

is the moment of inertia of the rotator about the axis of rotation XY.

5.5	 SUMMARY

	 •	Three-dimensional harmonic oscillator. A general three-dimensional 
harmonic oscillator consists of a particle, of mass say m, bound to the 
origin O of a rectangular coordinate system (XYZ) by a restoring force 

 = –   where  is the position vector of the particle with respect to 
the origin O and k is the force constant.

	 •	The potential energy function of the oscillator is spherically symmetric 
and is given by
	 V = V(r) = 2 2 2

0
1 1
2 2

kr m r= w

	 •	A rigid rotator consists of two mass points attached at the two ends of 
a massless rod. The system is capable of rotating about an axis passing 
through its centre of mass and perpendicular to the length of the rod. 
If the rotator is constrained to rotate in plane, it can be described by 
an angle coordinate q at any instant of time.

	 •	The potential energy of the rotator is zero because the masses are rigidly 
connected to the ends of the rod of constant length.

	 •	The kinetic energy of the rotator is given by

		
		 where I is the moment of inertia of the rotator about the axis of rotation 

and w =  q
.  

is the angular velocity of rotation.
	 •	Rigid rotator is a system of two spherical particles separated by a fixed 

distance. The system can rotate about an axis through the centre of 
mass and perpendicular to the plane containing the particles. 

	 •	 If the particles are confined within a given plane then the axis of rotation 
has a fixed direction in space and the system is then referred to as a 
rigid rotator with fixed axis.

	 •	Any arbitrary position of the plane containing the particles, i.e., for an 
arbitrary orientation of the axis XY in space, the cartesian coordinates 
of m1 and m2 with respect to O which is considered as the origin of a 
rectangular coordinate system be respectively (x1, y1, z1) and (x2, y2, z2). 
Let (r1, q, f) and (r2, q + p, f + p) be respectively the spherical polar 
coordinates of m1 and m2. 
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5.6	 KEY WORDS

	 •	Three-dimensional harmonic oscillator: A general three-dimensional 
harmonic oscillator consists of a particle, of mass say m, bound to the 
origin O of a rectangular coordinate system (XYZ) by a restoring force 

 = –   where  is the position vector of the particle with respect to 
the origin O and k is the force constant.

	 •	Rigid rotator: It consists of two mass points attached at the two ends of 
a massless rod. The system is capable of rotating about an axis passing 
through its centre of mass and perpendicular to the length of the rod.

5.7	 SELF ASSESSMENT QUESTIONS AND 
EXERCISES

Short Answer Questions
	 1.	Define three-dimensional harmonic oscillator.
	 2.	Give the Schrödinger equation for the oscillator.
	 3.	What is rigid rotator?

Long Answer Questions
	 1.	Discuss the concept of three-dimensional harmonic oscillator giving 

appropriate examples.
	 2.	Briefly explain the concept of rigid rotator with relevant equations.
	 3.	Prove that the potential energy of the rotator is zero because the masses 

are rigidly connected to the ends of the rod of constant length.
	 4.	Explain the terms free axis and fixed axis for a rotator.
	 5.	Discuss Schrödinger equation for a rigid rotator with free-axis with 

relevant examples.
	 6.	Explain the energy eigenvalues and energy eigenfunctions for the 

rotator.

5.8	 FURTHER READINGS
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Application to Diatomic 
MoleculesUNIT 6	 APPLICATION TO 

DIATOMIC MOLECULES
Structure 
	 6.0	 Introduction
	 6.1	 Objectives
	 6.2	 Separation of Variables and Solution of R, q, F, Equations

	 6.2.1	 Solution of the F-Equation
	 6.2.2	 Solution of the Q-Equation 
	 6.2.3	 Normalized Angular Part of the Wavefunction 
	 6.2.4	 Solution of the Radial Wave Equation

	 6.3	 Application to Diatomic Molecules – Hydrogen Atom 
	 6.3.1	 Properties of the Radial Wave Function of Hydrogen Atom

	 6.4	 Discussion of Bound States and Parity
	 6.5	 Answers to Check Your Progress Questions
	 6.6	 Summary
	 6.7	 Key Words
	 6.8	 Self Assessment Questions and Exercises
	 6.9	 Further Readings

6.0	 INTRODUCTION

A potential depending only on the distance from a fixed point (centre of 
the force) is referred to as a spherically symmetric potential. Examples of 
spherically symmetric potential are: gravitational potential due to a mass 
point, electrostatic potential due to a point change, etc. Diatomic molecules 
are molecules composed of only two atoms, of the same or different chemical 
elements. The prefix ‘di-’ is of Greek origin, meaning ‘two’. If a diatomic 
molecule consists of two atoms of the same element, such as hydrogen (H2) 
or oxygen (O2), then it is said to be homonuclear. Otherwise, if a diatomic 
molecule consists of two different atoms, such as carbon monoxide (CO) or 
nitric oxide (NO), the molecule is said to be heteronuclear. The only chemical 
elements that form stable homonuclear diatomic molecules at Standard 
Temperature and Pressure (STP) or typical laboratory conditions, of 1 bar 
and 25 °C, are the gases hydrogen (H2), nitrogen (N2), oxygen (O2), fluorine 
(F2), and chlorine (Cl2). The simplest molecule possible is the H2

+ molecular 
ion.  It consists of two protons and one electron. The ground state energy of 
the system will be -13.6 eV, when the electron forms a hydrogen atom with 
one of the protons.   

In this unit, you will study about the separation of variables and solution 
of R,q, F equation, diatomic molecules - hydrogen atom, and bound states 
and parity.
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6.1	 OBJECTIVES

After going through this unit, you will be able to:
	 ·	Understand separation of variables and solution of R,q, F equation
	 ·	Define diatomic molecules - hydrogen atom
	 ·	Discuss and solve for bound states and parity

6.2	 SEPARATION OF VARIABLES AND SOLUTION 
OF R, Q, F, EQUATIONS

Consider a particle of mass m moving under a central force, i.e., a force whose 
magnitude depends only on the distance of the particle from a fixed point and 
whose the direction is always towards or away from the fixed point. Such a 
force  (r) can always be derived from a potential function V according to

	 (r) = –dV
dr

	 ...(6.1)
It is evident that the potential function depends only on the distance r and can be 

expressed as
	 V = V(r)	 ...(6.2)
Such a potential depending only on the distance from a fixed point 

(centre of the force) is referred to as a spherically symmetric potential. 
Examples of spherically symmetric potential are: gravitational potential due 
to a mass point, electrostatic potential due to a point change, etc.

The wavefunction y which is a function of the coordinates of the 
particle in space and which describes the state of the particle satisfies the 
Schrödinger equation

	 2
2

2 [ – ( )] 0m E V r— y + y =
�

	 ...(6.3)

For motion under spherically symmetric potential, it is advantageous to 
express the Schrödinger equation in terms of spherical polar coordinates r, q, 
f instead of Cartesian coordinates x, y, z because the potential is independent 
of the angular coordinates q and f.

The operator —2 in spherical polar coordinates is given by

	 —2 = 
2

2
2 2 2 2 2

1 1 1sin
sin sin

r
r rr r r

∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ q +Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂q ∂qq q ∂f
	 ...(6.4)

which when used in Equation (6.3) gives the Schrödinger equation in 
spherical polar coordinates 

		  2
2 2

1 ( , , ) 1 ( , , )sin
sin

r rr
r rr r

∂ ∂y q f ∂ ∂y q fÊ ˆ Ê ˆ+ qÁ ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂q ∂qq
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2

2 2 2 2
1 ( , , ) 2 [ – ( )] ( , , ) 0

sin
r m E V r r

r
∂ y q f + y q f =

q ∂f �
	 ...(6.5)

The above equation can be separated into three independent equations 
corresponding to the three independent variables r, q and f using the well 
known method of separation of variables. The method consists in writing

		        y(r, q, f) = R(r) Q(q) F(f)	 ...(6.6)

where R(r), Q(q) and F(f) are, respectively, functions of only r, only 
q and only f.

Substituting Equation (6.6) in Equation (6.5) we obtain

2
2

2 2 2 2 2 2
1 1 1 2sin [ – ( )] 0

sin sin
d dR d d d mr R R E V r R
dr dr d dr r r d

Q FÊ ˆ Ê ˆQF + F + Q + QF =Á ˜ Á ˜Ë ¯ Ë ¯q qq q f �  

Multiplying throughout by 
2 2sinr
R

q
QF

, the above equation gives

2 2
2 2 2

2 2
sin sin 1 2sin [ – ( )] sin 0d dR d d d mr E V r r

R dr dr d d d
q q Q FÊ ˆ Ê ˆ+ q + + q =Á ˜ Á ˜Ë ¯ Ë ¯Q q q F f �

or 
2 2

2 2 2
2 2

sin sin 2 –1sin [ – ( )] sind dR d d m dr E V r r
R dr dr d d d

q q Q FÊ ˆ Ê ˆ+ q + q =Á ˜ Á ˜Ë ¯ Ë ¯Q q q F f�
	...(6.7)

Since the left hand side of the above equation is a function of r and 
q while the right hand side is a function of only f, we must have each side 
equal to some constant. For convenience let the constant be put equal to m2. 
We then get

		    
2 2

2 2
2 2

1– or 0d dm m
d d

F F= + F =
F f f

	 ...(6.8)

We also get

	
2

2 2 2 2
2

sin sin 2sin [ – ( )] sind dR d d mr E V r r m
R dr dr d d

q q QÊ ˆ Ê ˆ+ q + q =Á ˜ Á ˜Ë ¯ Ë ¯Q q q �

Dividing the above equation by sin2 q we obtain 

2 2 2 2
2

1 2 1[ – ( )] sin /sin 0
sin

d dR m d dr E V r r m
R dr dr d d

- QÊ ˆ Ê ˆ+ = q + q =Á ˜ Á ˜Ë ¯ Ë ¯Q q q q�
	

...(6.9)
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In the above equation the left hand side is a function of only r while 
the right hand side is a function of q only. Hence each side of the equation 
must be equal to a constant. Considering the constant to be l, we get

	 – 2 21 sin sin
sin

d d m
d d

QÊ ˆ + q = lÁ ˜Ë ¯Q q q q

or	
2

2
1 sin – 0

sin sin
d d m
d d

Ê ˆQÊ ˆq + l q =Á ˜ Á ˜Ë ¯q q q qË ¯
	 ...(6.10)

and 	 2 2
2

1 2 [ – ( )]d dR mr E V r r
R dr dr

Ê ˆ + = lÁ ˜Ë ¯ �

Multiplying by ​ R __ 
r2

 ​, the above gives

	 2
2 2 2

1 2 [ – ( )]d dR m Rr E V r R
dr drr r

lÊ ˆ + =Á ˜Ë ¯ �

or	 2
2 2 2

1 2 [ – ( )] 0d dR mr E V r R R
dr drr r

lÊ ˆ + = =Á ˜Ë ¯ �
	 ...(6.11)

Equation (6.11) is usually referred to as the radial wave equation. We 
have thus been able to separate the three-dimensional Schrödinger equation 
given by Equation (6.5) into three independent, one-dimensional equations 
involving the independent coordinate r, q and f given by Equations (6.8), 
(6.10) and (6.11), respectively.

It is important to note that the equation involving the angular co-
ordinates namely q and f do not contain the potential function and hence these 
two equations hold for all three-dimensional problems involving spherically 
symmetric potentials. The radial wave equation given by Equation (6.11), 
however, involves the potential function V(r) and hence it takes different 
forms for different types of V(r) as in hydrogen atom problem, three-
dimensional oscillator problem, rigid rotator problem, etc.

Solution of the Schrödinger Equation

Solutions of the Equations (6.8), (6.10) and (6.11), respectively, give the 
functions R(r), Q(q), F(f). We can then obtain the solution of the Schrödinger 
equation given by Equation (6.5) in terms of R(r), Q(q) and F(f) as

	 y(r, q, f) = R(r) Q(q) F(f)

6.2.1  Solution of the F-Equation

The function F(f) satisfies Equation (6.8)

				  
2

2
d
d

F
f

 + m2F = 0
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The general solution of the above second-order differential equation 
is given by

	 F(f) = Ae ± imf	 ...(6.12)
For F(f) to be a factor of acceptable wavefunction y(r, q, f), it must 

be single valued, i.e., it must satisfy the condition

	 F(f) = F(f + 2p)

or	 Ae ± imf = Ae ± im(f + 2p) = Ae ± imf e± i2pm 

The above holds if

	 e ± i2pm = 1
or
	 cos 2pm ± i sin 2pm = 1
The above requires m to be equal to 0 or an integer, i.e.,
	 m = 0, 1, 2,	 ...(6.13)
m is called the magnetic quantum number.
Further, the function F(f) must be normalized requiring 

	
2

0

* ( ) ( ) 1d
P

F f F f f =Ú
Using Equation (6.12) in the above we obtain

	
2

2

0

| | 1A d
P

f =Ú

or	 2 1 1| | or
2 2

A A= =
p p

	 ...(6.14)

The normalized solution of the F-equation is thus

	 F(f) = 1 , 0, 1, 2,...
2

ime mf = ± ±
p

	 ...(6.15)

We find that the function F(f) is, in general, a complex function which 
can be decomposed into a real part and an imaginary part, i.e.,

Real form	 F(f) = 1
2p

 cos mf	 ...(6.16)

Imaginary from 	 F(f) = 1
2p

 sin mf	 ...(6.17)
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6.2.2  Solution of the Q-Equation 

We have the Q-equation given by Equation (6.10)

	
2

2
1 sin –

sin sin
d d m
d d

Ê ˆQÊ ˆq + l QÁ ˜ Á ˜Ë ¯q q q qË ¯
 = 0

Let us introduce a new variable x as

	 x = cos q	 ...(6.18)
We then get

	 –sind d d d
d d d d
Q Q x Q= = q
q x q x

	 ...(6.19)

Further

	 sin q = 2 21 – cos 1 –q = x 	 ...(6.20)

Using Equation (6.20) in Equation (6.19) we get

	 2– 1 –d d
d d

= x
q x

	 ...(6.21)

	 Using Equations (6.19), (6.20) and (6.21), the Q equation becomes

		
2

2
2

( )(1 – ) – ( )
1 –

d d m
d d

È ˘È ˘Q xx + l Q xÍ ˙Í ˙x x xÎ ˚ Î ˚
 = 0	 ...(6.22)

Equation (6.22) is the well known associated Legendre equation. Since 
x = cos q, the above equation is physically meaningful only for values of x 
lying between –1 and +1. Physically acceptable solutions of Equation (6.22) 
give

	 l = l(l + 1);  l = 0, 1, 2,...	  ...(6.23)
		              m = 0, ± 1, ±  2,... ±  l	 ...(6.24)

When m = 0, Equation (6.22) reduces to the well known Legendre 
differential equation whose solution is the Legendre polynomial

	 Pl(x) = Pl(cos q)	 ...(6.25)
For m π 0, the solutions are associated Legendre polynomials 

	​ P​ l​ 
 |m|​(x) = ​P​ l​ 

 |m|​(cos q)	 ...(6.26)
The normalized solutions of Equation (6.22) are given by

	 2 1 ( – | |)!( ) (–1) (cos ), 0
2 ( | |)!

m m m
l l

l l m P m
l m

+Q q = q >
+

	 ...(6.27)

	 2 1 ( – | |)!( ) (cos ), 0
2 ( | |)!

m m
l l

l l m P m
l m

+Q q = q £
+

	 ...(6.28)
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6.2.3	 Normalized Angular Part of the Wavefunction 

The normalized angular part of the wavefunction is the product of Q(q) given 
by Equation (6.27) and F(f) given by Equation (6.15)

	 1 2 1 ( – | |)!( , ) (–1) (cos ),
2 ( | |)!2

m m im
l

angular

l l m P e
l m

f+y q f = q
+p

	 ...(6.29)

where
	 l = 0, 1, 2,...;  m = 0, ± 1, ± 2, ..., ± l	 ...(6.30)
The angular part of the wavefunction is called spherical harmonic and 

written as Ylm (q, f). We get

	 Ylm(q, f) = 2 1 ( – | |)! (cos ),
2 ( | |)!

m im
l

l l m P e
l m

f+Œ q
+

	 ...(6.31)

We observe that the angular part of the wavefunction neither depends 
upon the total energy E nor upon the potential function V(r).

6.2.4  Solution of the Radial Wave Equation

The radial wave equation is given by Equation (6.11)

	 2
2 2 2

1 2 [ – ( )] –d dR mr E V r R R
dr drr r

lÊ ˆ +Á ˜Ë ¯ �
 = 0

The above equation can be solved exactly provided the potential 
function V(r) is stated explicitly. It is thus clear that the radial wavefunction 
R(r) depends upon the nature of the problem under consideration.

For solving the radial wavefunction it is usual to introduce a function 
u(r) according to

	 u(r) = rR(r)	 ...(6.32)
	 The above gives,

				  
2

– 1dR u du
dr r drr

= + 	 ...(6.33)

Using Equations (6.32) and (6.33) and l = l(l + 1) in the radial wave 
equation and simplifying we obtain 

	
2 2

2 2 2
2 ( 1)– ( ) –

2
d u m l lE V r
dr mr

È ˘++ Í ˙
Î ˚

�
�

u = 0	 ...(6.34)

The term 
2

2
( 1)
2

l l
mr
+ �  is called the centrifugal potential because its first 

derivative with respect to r gives the classical centrifugal force when we 
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use  as the orbital angular momentum. Since centrifugal force 

is a repulsive force, the term 
2

2
( 1)
2

l l
mr
+ �  represents a repulsive potential. We 

may note that the spherically symmetric potential V(r) may be attractive or 
repulsive. We may write Equation (6.34) as

	 +
�

2

2 2
2 [ – ]eff

d u m E V u
dr

 = 0	 ...(6.35)

where Veff which may be called the effective potential under which the 
particle moves is given as

		          Veff = V(r) + 
2

2
( 1)
2

l l
mr
+ � 	 ...(6.35(a))

Equation (6.35) has the form of one-dimensional Schrödinger equation 
and can be solved from a knowledge of the spherically symmetric potential 
V(r).

6.3	 APPLICATION TO DIATOMIC MOLECULES – 
HYDROGEN ATOM 

A hydrogen atom consists of an electron of charge – e, mass me and a nucleus 
having a proton of charge + e and mass mp. By hydrogen-like atom we mean 
a one electron atom having a nucleus with Z protons (for example a singly 
ionized helium atom, a doubly-ionized lithium atom, etc.) For generality we 
consider a hydrogen-like atom.

If r be distance between the nucleus and the electron then the potential 
energy function V(r) is given by

V(r) = 
2 2

0 0

1 1–
4 4

Ze Zek k
r r

È ˘- = =Í ˙p Œ p ŒÎ ˚
	 ...(6.36)

If E be the total energy of relative motion between the nucleus and the 
electron then the time independent Schrödinger equation for the atom in the 
centre of mass coordinate system is given by 

	 2
2

2( ) [ – ( )] ( )— y + y� �
�
mr E V r r  = 0	 ...(6.37)

where

	 m = 
( )

( )
e p

e p

m Zm
m Zm+

 is the reduced mass.

Equation (6.37) expressed in spherical polar coordinate (r, q, f) is

   
2

2
2 2 2 2 2 2

1 1 1 2sin [ – ( )]
sin sin

∂ ∂y ∂ ∂y ∂ yÊ ˆ Ê ˆ+ q + + yÁ ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂q ∂qq q ∂f �
mr E V r

r rr r r
 = 0	...(6.38)
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In the above,

	 y = y(r, q, f).
Using the method of separation of variables we may write

	 y = y(r, q, f) = R(r) Q (q) F (f)	 ...(6.39)
We obtain the following three equations

(i) F equation:	
2

2
d
d

F
f

 m2F = 0	 ...(6.40)

(ii) Q equation:	
2

2
1 sin –

sin sin
d d m
d d

Ê ˆQÊ ˆq + l QÁ ˜ Á ˜Ë ¯q q q qË ¯
 = 0	...(6.41)

(iii) R (radial) equation:  2
2 2 2

1 2 [ – ( )] –d dR mr E v r R
dr drr r

lÊ ˆ +Á ˜Ë ¯ �
R = 0	...(6.42)

	 In the above, 		  l = l(l + 1)		  ...(6.43)
Solution of the F equation was obtained earlier and is given by

	 Fm(f) =  1
2

ime f

p
,  m = 0, ±1, ± 2,...	 ...(6.44)

Solution of the Q equation was obtained in earlier and is given by

	 Qlm(q) = 2 1 ( – | |)!(–1) (cos ); 0
2 ( | |)!
+ q >

+
m m

l
l l m P m

l m
	 ...(6.45)

	 Qlm(q) = 2 1 ( – | |)! (cos ); 0
2 ( | |)!
+ q £

+
m

l
l l m P m

l m
	 ...(6.46)

In the above, 
	 l = 0, 1, 2,...	 ...(6.47)

	 m = 0, ±1, ±2, ..., ± l	 ...(6.48)
The normalized angular part of the wavefunction is given by

1 2 1 ( – | |)!( , ) ( ) ( ) (–1) (cos )
2 ( | |)!2

f+y q f = Q q F f = q
+p

m m im
m llmlm

l l m P e
l m

	...(6.49)

Solution of the Radial Equation 

Substituting for V(r) given by Equation (6.36) and l given by Equation (6.43) 
the radial wave Equation (6.42) becomes

    
2 2

2
2 2 2

1 2 ( 1)–
2

d dR m l l Zer E k R
dr dr rr mr

È ˘+Ê ˆ + +Í ˙Á ˜Ë ¯ Î ˚

�
�

= 0	 ...(6.50)
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For solving Equation (6.50) let us introduce a dimensionless variable 
r as

	 r = gr	 ...(6.51)
The parameter g is chosen as

	 g = 2
–8mE
�

	 ...(6.52)

Further let us introduce a constant l as

	 l = 
2

–2
k Ze m

E�
	 ...(6.53)

We may note that E is negative for bound states of the atom under 
consideration and hence both r and l are real.

In terms of r and l, Equation (6.50) becomes

		
2

2 2
2 1 ( 1)– –

4
d R dR l l R

dd
È ˘l ++ + Í ˙r r rr rÎ ˚

 = 0	 ...(6.54)

Let us first find the asymptotic solution of Equation (6.54). It is the solution in  
the limit r (and hence r) → ∞. In this limit Equation (6.54) reduces to

	
2

2
1–
4

d R R
dr

= 0	 ...(6.55)

The two independent solutions of the above equation are
	 R = e – r/2

and
	 R = e + r/2

	The second solution is not acceptable because as r → ∞ R → ∞. Hence 
the acceptable asymptotic solution is

	 R(r) = e– r/2 
In view of the above asymptotic solution, we may write the exact 

solution of Equation (6.54) as
	 R(r) = F(r)e – r/2	 ...(6.56)

where F(r) is some function of r.
Using Equation (6.56) in Equation (6.54) we obtain

2
2

2
( ) ( )(2 – ) [ – – ( 1)] ( )d R dF l l F

dd
r rr + r r + rl r + r

rr
= 0	 ...(6.57)

We find that when r = 0

	 l(l + 1) F(0) = 0
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or
	 F(0) = 0, l π 0	 ...(6.58)

	Clearly, a power series solution for F(r) must not contain a constant 
term. Hence, we may write the power series solution as

	 F(r) = 
0

•
+

=

rÂ s k
k

k

C 	 ...(6.59)

	 The above gives 

	 –1( ) ( ) +r = + r
r Â s k

k
dF C s k

d
	 ...(6.60)

	
2

– 2
2
( ) ( ) ( – 1) +r = + + r

r Â s k
k

d F C s k s k
d

	 ...(6.61)

	 Substituting Equations (6.59), (6.60), (6.61) in Equation (6.57) we 
obtain 

–1 2 2 2( – 1 – ) ( 2 – – )+ +l + r + + + + + rÂ Âs k s k
k k

k k

C s k C s sk k s k l l  = 0	 ...(6.62)

For the above equation to be valid for all value of r, the coefficient 
of each power of r must separately vanish. Equating the coefficient of rs to 
zero we get

	 C0(s
2 + s – l2 – l) = 0 

Since C0 π 0, we get
	 s2 + s – l2 – l = 0 
or 
				    (s – l) (s + l + 1) = 0
The above gives
	 s = l  or  s = – (l + 1)	 ...(6.63)

If s = – (l + 1), the first term in F(r) given by Equation (6.59) becomes 

C0 r
– (l + 1)k = 0

( 1)+r l k
C  which tends to infinity as r and hence r tends to zero. We 

hence get s = l. Equating the coefficient of rS + k + 1 = rl + k + 1 in Equation (6.62) 
to zero we obtain the recurrence relation

	 Ck + 1 =  1 –
( 1) ( 2 2)

+ + l
+ + +
l k

k k l
Ck	 ...(6.64)

Using the above relation we can find the coefficients C1, C2, C3, etc., 
in terms of the coefficient C0.
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For large values of k, Equation (6.64) gives

	 Ck + 1 = 2
k
k

Ck 

or

	 1 1k

k

C
C k

+
= 	 ...(6.65)

We have

	
0 0

1
!

• •
r

= =

= r = rÂ Âk k
k

k k

e b
k

	 ...(6.66)

where	 bk =  1
!k

Clearly	 bk + 1 =  1
( 1)!+k

So that	
1 ! 1

( 1)! 1
+

= =
+ +

k

k

b k
b k k

For large k we get

	
1 1+

=k

k

b
b k

	 ...(6.67)

F(r) given by Equation (6.59) can be written as 

	 F(r) = 
0 0

µ µ

= =

r r = r rÂ Âs k l k
k k

k k

C C 	 ...(6.68)

Using Equation (6.66) we obtain 

	 rl er = r rÂl k
kb 	 ...(6.69)

	In view of the results given by Equations (6.65), (6.67), (6.68) and 
(6.69) we get

	 F(r) = rl er

So that
	 R(r) = rlere– r/2 = rler/2	 ...(6.70)

R(r) given by Equation (6.70) is not acceptable because R(r) → ∞ as 
r and hence r → ∞. Thus the series governed by the recursion relation given 
by Equation (6.64) does not lead to an acceptable radial wavefunction unless 
the series breaks off after a finite number of terms.
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Energy Eigenvalues 

Let us assume the series to break off after the kth term so that Ck + 1 becomes 
zero. The recursion formula given by Equation (6.64) then gives

	 l + k + 1 + l = 0
or
	 l = l + k + 1 = n (say)	 ...(6.71)
In Equation (6.71), the number k is called the radial quantum number 

which can take values 0, 1, 2, 3,... . The number n is called the total or principal 
quantum number which can take  the values 1, 2, 3,...

From Equation (6.53) we get

	 l2 = 
2 2 4

2 (–2 )�
k Z e m

E

	 Using Equation (6.71) in the above equation we obtain the energy 
eigenvalues for a hydrogen-like atom to be

	 En = 
2 2 4 4 2

2 2 2 2 2 2
0

– –
2 32 p Œ� �

k mZ e me Z
n n

	 ...(6.72)

The energy eigenvalues for a hydrogen atom are obtained by putting 
Z = 1 in Equation (6.72). We get

	 En = 
4

2 2 2 2
0

–
32 p Œ �

me
n

	 ...(6.73)

	 Substituting the values of m, e,  ∈o and h we obtain the energy 
eigenvalues of hydrogen atom to be

	 E1 = –13.6 eV,  E2 = – 3.4 eV,  E3 = –1.51 eV, etc.
The above values are the same as obtained by Bohr on the basis of old 

quantum theory.

Radial Wave Function

The infinite series for F(r) becomes a polynomial due to the requirement of 
the series to break off after a finite number of terms.

Let us write

	 F(r) = rlL(r)	 ...(6.74)
We then get

	 –1( ) ( ) ( )l ldF dL l L
d d

r r= r + r r
r r

	 ...(6.75)

	
2 2

–1 –1 – 2
2 2
( ) ( ) ( ) ( ) ( – 1) ( )l l l ld F d L dL dLl l l l L

d dd d
r r r r= r + r + r + r r

r rr r
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	 = 
2

–1 –2
2
( ) ( )2 ( – 1) ( )r rr + r + r r

rr
l l ld L dLl l l L

dd
	 ...(6.76)

Substituting Equations (6.74), (6.75) and (6.76) in Equation (6.57) and 
simplifying we get

	
2

2
( ) ( )(2 2 – ) ( – – 1) ( )d L dLl n l L

dd
r rr + + r + r

rr
 = 0	...(6.77)

If ​L​ q​  p​(r) be the associated Laguerre polynomial of the order p and degree 
(q – p) then it satisfies the differential equation

	           
2

2

( ) ( )
( 1 – ) ( – ) ( )

p p
q q p

q
d L dL

p q p L
dd

r r
r + + r + r

rr
 = 0	 ...(6.78)

If we consider q = n + l and p = 2l + l then Equation (6.77) becomes 
identical with Equation (6.78) and we can identify L(r) as the associated 
Laguerre polynomial of the order (2l + 1) and degree (n + l), i.e., as ​L​ n + l​ 

 2l +1​ (r).
We thus obtain the radial wavefunction to be of the form 

			   Rnl(r) = 2 1 – /2( )ll
n lL e+ r

+r r

The normalized radial wavefunction is then

	 Rnl(r) =  2 1 – /2( )ll
nl n lN L e+ r

+r r 	 ...(6.79)
The normalization constant Nnl can be obtained from the normalized 

integral

	 2 2

0

( )
•

Ú nlR r r dr = 1	 ...(6.80)

Using Rnl(r) given by Equation (6.79) and the orthogonal properties of 
associated Laguerre polynomials we obtain 

	 Nnl = 
È ˘Ê ˆÍ ˙± Á ˜Í ˙+Ë ¯Î ˚�

1/232

2 3
2 ( – – 1)!

2 [( )!]
Zmke n l
n n n l

	 ...(6.81)

Using the result given by Equation (6.81) in Equation (6.79) we obtain

		  Rnl(r) = r +
+

È ˘Ê ˆÍ ˙ r rÁ ˜Ë ¯Í + ˙Î ˚

1/23
– /2 2 1

3
H

2 ( – – 1)!– ( )
2 [( )!]

l l
n l

Z n l e L
na n n l

	
...(6.82)

where 

	 aH = 
2

0
2

4
me

p Œ �  	 ...(6.83)
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Since the reduced mass m is almost the same as the electron mass me 
(for both hydrogen and hydrogen-like atoms), we get

	 aH = 
2

0
2

4

em e
p Œ �  = a0 (A constant)	 ...(6.84)

a0 is identified as the radius of the first circular orbit for the electron 
in the hydrogen atom called the Bohr radius.

In view of Equation (6.84), the radial wavefunction becomes

	 Rne(r) = r +
+

È ˘Ê ˆÍ ˙ r rÁ ˜Í ˙+Ë ¯Î ˚

3
– /2 2 1

3
0

2 ( – – 1)!– ( )
2 [( )!]

l l
n l

Z n l e L
na n n l

	 ...(6.85)

The negative sign for N has been used to make R10 positive.

r and r are related according to r = gr = 
�2

–8mE r

Substituting for E given by Equation (167) we get

	 r = 
0

2Z
na

 r	 ...(6.86)

Equation (6.86) used in Equation (6.82) gives the radial wavefunction 
for hydrogen-like atom as 

	 Rnl(r) = – +
+

Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜+Ë ¯ Ë ¯ Ë ¯

0

3 –
2 1

13
0 0 0

2 ( – – 1)! 2 2
2 [( )!]

lZ r
na l

n
Z n l Zr Zre L

na na nan n l
	

...(6.87)

Putting Z = 1 in the above, the radial wavefunction for hydrogen atom 
is found to be

	 Rnl(r) = – 0

3 –
2 1

3
0 0 0

2 ( – – 1)! 2 2
2 [( )!]

lr
na l

n l
n l r re L

na na nan n l
+

+
Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜+Ë ¯ Ë ¯ Ë ¯

	...(6.88)

Complete Wavefunction

The complete wavefunction is given by

	 ynlm(r, q, f) = Rnl(r) Qlm(q) Fm(f)

where	 Qlm(q) = (2 1) ( – | |)! (cos )
2( | |)!

m
l

l l m P
l m

+ q
+



Application to Diatomic 
Molecules

NOTES

	 Self-Instructional 
180	 Material

		  Fm(f) = 1
2

ime f

p

and	Rnl(r) = 0

3 –
2 1

3
0 0 0

2 ( – – 1)! 2 2
2 [( )!]

lZr
na l

n l
Z n l Zr Zre L

na na nan n l
+

+
Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜+Ë ¯ Ë ¯ Ë ¯

In the above 
		  n = 1, 2, 3,...
		  l = 0, 1, 2,... (n – 1)
		  m = 0, ±1, ±2,... ± l.

The explicit forms of the complete wavefunctions ynlm, for some of 
the values of n, l, m which describe stationary states of the hydrogen-like 
atom are given below along with the spectroscopic designations of the states.

n l m Spectroscopic designation Wave function ynlm 

1 0 0 1s y100 = ​ 1 ___ 
​÷ 

__
 p ​
 ​ ​​( ​ Z __ a0

 ​ )​​3/2
​ ​e​

​ – Z ___ a0

 ​ r
​

2 0 0 2s y200 = ​ 1 ___ 
​÷ 

__
 p ​
 ​ ​​( ​  Z ___ 

2a0

 ​ )​​3/2
​ ​( 2 – ​ Zr __ a0

 ​ )​ ​e ​
​ – Z ___ 
2a0

 ​ r
​

2 1 0 2p y210 = ​ 1 ___ 
​÷ 

__
 p ​
 ​ ​​( ​  Z ___ 

2a0

 ​ )​​5/2
​ r ​e ​

​ – Z ___ 
2a0

 ​ r
​ cos q

2 1 +1 2p y211 = ​  1 ____ 
8​÷ 

__
 p ​
 ​ ​​( ​ Z __ a0

 ​ )​​5/2
​ r ​e ​

​ – Z ___ 
2a0

 ​ r
​ sin q eif

2 1 –1 2p y21 – 1 = ​  1 ____ 
8​÷ 

__
 p ​
 ​ ​​( ​ Z __ a0

 ​ )​​​ 
5 __ 
2

 ​
​ r ​e​

​ – Zr ___ 
2a0

 ​
​ r sin q e– if 

Putting Z = 1 in the above, we obtain the wavefunctions for the 
hydrogen atom.

Degeneracy of the Energy Levels

The energy eigenvalues for the hydrogen-like or hydrogen atom depend only 
on the principal quantum numbers n as is seen from the Equations (6.72) 
and (6.73). The energy eigenfunctions, however, depend on the quantum 
numbers n, l and m. We have seen that for a given value of n, l can take 
values 0 to n – 1 and for each of these l values there are 2l + 1 values of the 
m from – l to + l. Clearly the energy level defined by the energy eigenvalue 
En is degenerate. The degeneracy is given by

	 D = 
–1

0

(2 1)
n

l

l
=

+ =Â n2	 ...(6.89)
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The ground state, i.e., the minimum energy state for which n = 1 is 
clearly non-degenerate (n2 = 1). The first excited state for which n = 2 is 
4-fold degenerate, and so on.

Probability Distribution Function

Let us consider the atom in the state described by the wavefunction ynlm(r, 
q, f). The probability of finding the electron in the volume element dt = r2 
dr sin q dq df about the point (r, q, f) is then given by

	 Pnlm dt = |ynlm|2 dt = |ynlm|2 r2dr sin q dq df 

	 = |Rnl(r)|2 |Ylm(q, f)|2 r2dr sin q dq df 

Clearly, the probability of finding the electron within a spherical shell 
of radius r and thickness dr from the nucleus irrespective of its angular 
position is given by

	 Pnl(r)dr = 
2

2 2

0 0

| ( )| sinnlR r r dr d d
p p

q q fÚ Ú
or		  Pnl(r) dr = 4p |Rnl (r)|2 r2dr	 ...(6.90)
In this case, the atom is in the ground state described by the 

wavefunction,

	 y100 = 0

–

3 1/2
0

1
( )

r
ae

ap

The probability of finding the electron at the distance r from the nucleus 
is according to Equation (6.90) given by

	 P10(r) = 0 0

–2 –2
2 2

3 3
0 0

4 4
( )

r r
a ae r e r

a a
p =

p
	 ...(6.91)

For P10(r) to be the maximum we have 

	 10 ( )d P r
dr

 = 0
or

			   0

–2
2

3
0

4
r

ad e r
dr a

È ˘
Í ˙
Í ˙Î ˚

 = 0

or

	 0 0

–2 –2
2

0

22 –
r r

a ae r r e
a

 = 0

or
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	 2r – 
2

0

2r
a

 = 0

or 

	 1 – 
0 0

0 orr r
a a

=  = 1

or
	 r = a0	 ...(6.91)
Thus the electron of the hydrogen atom in the ground state is found 

with maximum probability at a distance equal to the Bohr radius which is 
about 0.5 Å from the nucleus.

Equation (6.91) shows that P10 = 0 at r = 0 and also at r = ∞. We thus 
find from the theory of hydrogen atom based on Schrödinger wave mechanics 
that the position of the electron in the atom is not certain as opposed to 
Bohr’s theory and instead we can say that the electron is found for most of 
the time around the Bohr radius. The result is consistent with Heisenberg’s 
uncertainty principle.

6.3.1	 Properties of the Radial Wave Function of Hydrogen Atom

The radial wavefunctions of the hydrogen atom have the properties shown 
in the Figure (6.1). We observe the following:
	 (i)	They behave like r l for small r 
	 (ii)	They decrease exponentially for large value of r since ​L​ n + l​ 

 2l +1​ is dominated 
by the highest power rn – l – 1.

Fig. 6.1  Radial Wavefunctions of Hydrogen Atom



NOTES

Self-Instructional
Material 	 183

Application to Diatomic 
Molecules	 (iii)	The radial function Rnl (r) has n – l – 1 radial nodes since  2 1

0

2l
n l

rL
na

+
+

Ê ˆ
Á ˜Ë ¯

 is 
a polynomial of degree n – l – 1.

6.4	 DISCUSSION OF BOUND STATES AND PARITY

Example 1: A rigid rotator which rotates freely in the x–y plane has a moment 
of inertia I about the axis of rotation. f is the angle between the x-axis and 
the axis of rotation. Find (a) the energy eigenvalues and the corresponding 
eigenfunctions. (b) If at t = 0, the rotator is described by the wavefunction 
y(0) = A sin2 f, find the wavefunction at the time t (t > 0).
Solution:
	 (a)	For the given rotator, the Hamiltonian is given by

	 Ĥ = 
2 2

2
–
2

d
I df
� 	 ...(6.92)

If y be the energy eigenfunction belonging to the energy eigenvalue 
E, we have the eigenvalue equation

	 Ĥ y = Ey 
or

	
2 2

2
–
2

d
I d

y
f

�  = Ey 

or

	
2

2 2
2d I

d
y +

f �
 Ey = 0

or

	
2

2
d
d

y
f

 + m2y = 0	 ...(6.93)

where

	 m2 = 2
2I
�

E	 ...(6.94)

The general solution of Equation (6.93) is

	 y(f) = Aeimf	 ...(6.95)
where A is an arbitrary constant.
Single valuedness of y(f) requires

	 y(f) = y(f + 2p)	 ...(6.96)

Using Equation (6.95) in Equation (6.96) we get
	 m = 0, ±1, ±2,...	 ...(6.97)
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Thus, we may write the solution given by Equation (6.95) as

	 y(f) = Aeimf, m = 0, ±1, ±2,...	 ...(6.98)

Normalization of y(f) gives

	
2

0

* ( ) ( )d
p

y f y f fÚ  = 1

or

	 |A|2 = 1 1or
2 2

A =
p p

	 ...(6.99)

We thus get energy eigenvalues, using Equation (6.94), as

	 Em = 
2

2I
�  m2,  m = 0, ±1, ±2,...	 ...(6.100)

and the energy eigenfunctions, using Equation (6.99) in Equation 
(6.98), as

		  ym(f) = 1
2p

eimf,  m = 0, ±1, ±2,...	 ...(6.101)

	 (b)	We have
	 y(0) = A sin2 f 

We may express the above as

	 y(0) = f =[1 – cos 2 ] –
2 2 4
A A A (ei2f + e– i2f)	...(6.102)

The first term corresponds to m = 0.

The term ​ A __ 4 ​ ei2f corresponds to m = +2

The term ​ A __ 4 ​ e– i2f corresponds to m = – 2 

Now we get y(t) from y(0) as

	 y(t) = 2–2– –
2 4 4

i E tiA A Ae ef e– i2f​e​– iE2 t​

or	 y(t) = 
2 2– 2 – 2

2 – 2– –
2 4 4

i it ti iI IA A Ae e e ef f
� �

or	 y(t) = 
2 2

2 – –2 –
– –

2 4 4

i t i t
I IA A Ae e

Ê ˆ Ê ˆ
f fÁ ˜ Á ˜Ë ¯ Ë ¯
� �

	 ...(6.103)

Example 2: For a rigid hydrogen molecule (H2) calculate the energies of the 
stationary states corresponding to l = 1 and l = 2. Find the bond length of the 
molecule in terms of the energy difference between the states.
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Solution: A rigid hydrogen molecule can be considered as a rigid rotator 
with free axis. As such the energy eigenvalues are given by

	 El = 
2( 1) ,

2
l l

I
+ �   l = 0, 1, 2,...	 ...(6.104)

where	I = the moment of inertia of the molecule

	 = ma2 = ​  mm ______ m + m  ​ a
2 = ​ m __ 2 ​ a2	 ...(6.105)

In the above m is the mass of each atom and a is the bond length.
We have from Equation (6.104)

the energy corresponding to l = 1 as E1 = 
2

I
�

the energy corresponding to l = 2 as E2 = 
23

I
�

We get	 E2 – E1 = 
22

I
�

which gives	 I = 
2

2 1

2
–E E
� 	 ...(6.106)

From Equation (6.105) we have the bond length given by

	 a = 2I
m

 

Using Equation (6.107) in the above we get

	 a = 
2

2 1 2 1

2 2 12
( – ) ( – )E E m m E E

¥ =�
� 	 ...(6.107)

Example 3: A particle of mass m is moving in a three-dimensional potential 
given by

	 V(x, y, z) = ​ 1 __ 2 ​ mw2z2  for 0 < x < a,  0 < y < a

	 = ∞ elsewhere.
Write down (a) the total energy (b) the wavefunction for the particle.
Solution: The given three-dimensional potential essentially consists of
	 (a)	An infinite potential well along the x-axis
	 (b)	An infinite potential well along the y-axis
	 (c)	A harmonic oscillator potential along the z-axis.
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The energy due to the potential well along the x-axis = 
2 2

2
22 xn

ma
p �

The energy due to the potential well along the y-axis = 
2 2

2
22 yn

ma
p �

The energy due to the harmonic oscillator potential = Ê ˆ+ wÁ ˜Ë ¯
�

1
2zn

(a) Clearly, the total energy of the particle is 

		​  E​nx ny nz
​ = 

2 2
2 2

2
1( )
22 x y zn n n

ma
p Ê ˆ+ + + wÁ ˜Ë ¯
�

�  

(b) The total wavefunction of the particle is 

	 2( , , ) sin sin ( )
x y z z

yx
n n n n

nn
x y z x y Z z

a a a
pÊ ˆpÊ ˆy = Á ˜ Á ˜Ë ¯ Ë ¯

where Znz
 is given is terms of Hermite polynomial as 

	
2

0

–
2 2

1/2
00

1( )
[ 2 ! ]z zz

z
z

n nn
z

zZ z e H
zn z

Ê ˆ
= Á ˜Ë ¯p

	 z0 = 
n
p
w
�

Example 4: Determine the expectation values for r and r2 when a hydrogen 
atom is in its ground state, r being the distance of the electron from the 
nucleus. 
Solution: The wavefunction for the hydrogen atom in its ground state is 

	 y100 = 0
–

3 1/2
0

1
( )

r
ae

ap

By definition we have the expectation value of r irrespective of its 
angular position with respect to the nucleus as given by 

		
µ p p

· Ò = y y t = y q q fÚ Ú Ú Ú
2

* 2 2
100 100 100

0 0 0

| | sinr r d r r dr d d

	 = 4p 0

–22
3

3
00

1
r

ae r dr
a

p

pÚ

or 			 
4

0
03

0

4 33!
2 2
a

r a
a

Ê ˆ· Ò = =Á ˜Ë ¯
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The expectation value of r2 is similarly given by 

	 0

–2
2 4

3
00

14
r

ar e r dr
a

µ

· Ò = p
pÚ

	 = 
5

0
3
0

4 4!
2
a

a
Ê ˆ
Á ˜Ë ¯

or 
	 2 2

03r a· Ò =

Example 5: Obtain the expectation value of the potential energy v(r) of the 
electron in a hydrogen atom in its ground state. 
Solution: The normalized wavefunction for the hydrogen atom in its ground 
state is 

	 y100 = 0

–

3 1/2
0

1
( )

r
ae

ap

The potential energy of the electron in the Coulomb field of the nucleus 
is given by 

	 V(r) = –
2

0

1
4

e
rpŒ

By definition, we get

	
2

2
100

0

1( ) | | –
4

eV r d
r

Ê ˆ
· Ò = y tÁ ˜p ŒË ¯Ú

	 = 
• p pÊ ˆ

y q q fÁ ˜p ŒË ¯Ú Ú Ú
22

2 2
100

00 0 0

1| | – sin
4

e r dr d d
r

	 = 
•

p ¥
p Œ p Ú 0

–22

3
0 0 0

1– 4
4

r
ae e r dr

a
 

	 =
22 2
0

3 2 3
0 0 0 0

0

1– –
42

ae e
a a

a

¥ = ¥
p Œ p ŒÊ ˆ

Á ˜Ë ¯

or	
2

0 0

1( ) –
4

eV r
a

· Ò =
p Œ
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Example 6: Calculate 1
r

 for a singly-charged helium ion in its ground state.

Solution: The radial part of the wavefunction of a hydrogen-like atom in 
the ground state is 

			   R10(r) = 0

3/2 –

0
2

Z r
aZ e

a
Ê ˆ
Á ˜Ë ¯

	 For Hc
+ we have Z = 2 so that the radial wavefunction becomes 

			   R10(r) = 0

3/2 2–

0

22
r

ae
a

Ê ˆ
Á ˜Ë ¯

                   = 0

2–

3/2
0

4 2 r
ae

a

The radial probability density is then given by 

	 P10(r) = 0

– 4
2 2 3

10 3
0

32| ( )|
r

ar R r r e
a

=

We thus get 

	 0

– 4
3

3
00 0

1 1 1 32( )
r

aP r dr r e dr
r r r a

• •

= =Ú Ú

	 = 
•

Ú 0

– 4

3
0 0

32
r

ae r dr
a

				          = 
2
0

3
0

32
16
a

a
¥

or 

                    
0

1 2
r a

=  

Example 7: Obtain the effective potential energy of the electron in a hydrogen 
atom. Under what condition does the bound state for the atom occur?
Solution: The radial wave equation for hydrogen atom is given by

	 2
2 2 2

1 2 ( 1)[ – ( )] –d dR m l lr E V r R R
dr drr r

+Ê ˆ +Á ˜Ë ¯ �
 = 0	...(6.108)

where R = R (r) is the radial wavefunction for the atom.
We can write Equation (6.108) as

	
2

2
2

2 [ – ( )] – ( 1)d dR mrr E V r R l l R
dr dr

Ê ˆ + +Á ˜Ë ¯ �
 = 0	 ...(6.109)
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Let us introduce a function of r, namely u(r) as 

	 u(r) = r R(r)	 ...(6.110) 
The above gives 

	 R(r) = ​ u(r) ____ r  ​	 ...(6.111)

Using Equation (6.111) in Equation (6.109) we get 

	
2

2 2
2 2

1 ( ) 1 2 ( ) ( )– ( ) [ – ( )] – ( 1)d du r mr u r u rr r u r E V r l l
dr r dr r rr

È ˘¥ ¥ + +Í ˙Î ˚ �
 = 0

or

	 2
2

( ) 2 ( )– ( ) [ – ( )] ( ) – ( 1)d du r m u rr u r r E V r u r l l
dr dr r

È ˘ + +Í ˙Î ˚ �
 = 0 

or 

	
2

2 2
( ) ( ) ( ) 2 ( 1)– [ – ( )] ( ) – ( )d u r du r du r m l lr E V r ru r u r

dr dr rdr
++ +

�
 = 0 

Dividing throughout by r, we get 

	
2

2 2 2
( ) 2 ( 1)[ – ( )] ( ) – ( )d u r m l lE V r u r u r

dr r
++

�
 = 0

or

	
2 2

2 2 2
( ) 2 ( 1)– ( ) – ( )

2
d u r m l lE V r u r

dr mr
È ˘++ Í ˙
Î ˚

�
�

 = 0

or 		
2

effective2 2
( ) 2 [ – ] ( )d u r m E V u r

dr
+
�

 = 0		  ...(6.112)

where	        Veffective = V(r) + 
2

2
( 1)
2

l l
mr
+ � 	 ...(6.113) 

Equation (6.112) is the Schrödinger equation for a particle of mass m 
and total energy E moving in a potential field given by the potential energy 
function Veffective defined by Equation (6.113).

The first term in Equation (6.113) is the Coulomb potential energy 
given by 

	 V(r) = –
2

0

1
4

e
rpŒ

The second term can be recognized as the centrifugal potential energy 
function because its first derivative with respect to r gives the centrifugal 
force if we take the angular momentum of the electron as  ( 1)l l + �.
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The plot of Veffective against r is as shown in the Figure (6.2). 

 

Fig. 6.2  Plot of Veffective against r

For total energy positive, Veffective is positive corresponding to repulsive 
force and hence positive energy cannot correspond to bound state. On the other 
hand if the total energy is negative say – E, the effective potential remains 
negative corresponding to attractive force in the range r1 < r < r2. The state 
of the particle is clearly a bound state. 
Example 8: A hydrogen atom is in its ground state. Find the root mean square 
deviation in the measurement of r (distance of the electron from the nucleus).
Solution: The root mean square deviation in the measurement of r is by 
definition given by 

				    Dr = 2 2–r r· Ò · Ò  

In the ground state of hydrogen atom, we have seen is Example 4

	 0
3
2

r a· Ò =  

and	 2 2
03r a· Ò =

We hence obtain 

		  Dr = 
2 2
0 0 0

33 –
4 4
aa a a= .

Check Your Progress

	 1.	What is spherically symmetric potential?
	 2.	Define operator ∇2 in spherical polar coordinates.
	 3.	State the condition essential to be a factor of acceptable wavefunction.
	 4.	What is centrifugal potential?
	 5.	State the properties of hydrogen atom.
	 6.	Explain the properties of the radial wave function of hydrogen atom.
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QUESTIONS

	 1.	The potential function depends only on the distance r and can be 
expressed as
	 V = V(r)

	 2.	 The operator —2 in spherical polar coordinates is given by

	 —2 = 
2

2
2 2 2 2 2

1 1 1sin
sin sin

r
r rr r r

∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ q +Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂q ∂qq q ∂f

	 3.	 For F(f) to be a factor of acceptable wavefunction y(r, q, f), it must 
be single valued, i.e., it must satisfy the condition

	 F(f) = F(f + 2p)

	 4.	The term 
2

2
( 1)
2

l l
mr
+ �  is called the centrifugal potential because its first 

derivative with respect to r gives the classical centrifugal force when 

we use  as the orbital angular momentum.

	 5.	A hydrogen atom consists of an electron of charge – e, mass me and a 
nucleus having a proton of charge + e and mass mp. By hydrogen-like 
atom we mean a one electron atom having a nucleus with Z protons 
(for example a singly ionized helium atom, a doubly-ionized lithium 
atom, etc.)

	 6.	The radial wavefunctions of the hydrogen atom have the properties 
	 (i)	They behave like r l for small r 
	 (ii)	They decrease exponentially for large value of r since ​L​ n + l​ 

 2l +1​ is 
dominated by the highest power rn – l – 1.

	 (iii)	The radial function Rnl (r) has n – l – 1 radial nodes since 
2 1

0

2l
n l

rL
na

+
+

Ê ˆ
Á ˜Ë ¯

 is a polynomial of degree n – l – 1.

6.6	 SUMMARY

	 ·	The potential function depends only on the distance r and can be 
expressed as

			   V = V(r)
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		  Such a potential depending only on the distance from a fixed point 
(centre of the force) is referred to as a spherically symmetric potential.

	 ·	The wavefunction y which is a function of the coordinates of the 
particle in space and which describes the state of the particle satisfies 
the Schrödinger equation

		  2
2

2 [ – ( )] 0m E V r— y + y =
�

	 ·	 For motion under spherically symmetric potential, it is advantageous to 
express the Schrödinger equation in terms of spherical polar coordinates 
r, q, f instead of Cartesian coordinates x, y, z because the potential is 
independent of the angular coordinates q and f.

	 ·	 For F(f) to be a factor of acceptable wavefunction y(r, q, f), it must 
be single valued, i.e., it must satisfy the condition

		  F(f) = F(f + 2p)
	 ·	The normalized solution of the F-equation is

		  F(f) = 
1 , 0, 1, 2,...
2

ime mf = ± ±
p

	 ·	The function F(f) is, in general, a complex function which can be 
decomposed into a real part and an imaginary part, i.e.,

		  Real form	 F(f) = 1
2p

 cos mf

		  Imaginary from 	  F(f) = 
1
2p  sin mf

	 ·	The angular part of the wavefunction is called spherical harmonic and 
written as Ylm (q, f).

	 ·	The term 
2

2
( 1)
2

l l
mr
+ �  is called the centrifugal potential because its first 

derivative with respect to r gives the classical centrifugal force when 

we use  as the orbital angular momentum.

	 ·	A hydrogen atom consists of an electron of charge – e, mass me and a 
nucleus having a proton of charge + e and mass mp. By hydrogen-like 
atom we mean a one electron atom having a nucleus with Z protons 
(for example a singly ionized helium atom, a doubly-ionized lithium 
atom, etc.)

	 ·	 If E be the total energy of relative motion between the nucleus and the 
electron then the time independent Schrödinger equation for the atom 
in the centre of mass coordinate system is given by 

		  2
2

2( ) [ – ( )] ( )— y + y� �
�
mr E V r r  = 0
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		 where

			   m = 
( )

( )
e p

e p

m Zm
m Zm+

 is the reduced mass.
	 ·	E is negative for bound states of the atom under consideration and 

hence both r and l are real.
	 ·	The infinite series for F(r) becomes a polynomial due to the requirement 

of the series to break off after a finite number of terms.
	 ·	The complete wavefunction is given by
		  ynlm(r, q, f) = Rnl(r) Qlm(q) Fm(f)
	 ·	The energy eigenvalues for the hydrogen-like or hydrogen atom depend 

only on the principal quantum numbers n.
	 ·	The probability of finding the electron in the volume element dt = r2 

dr sin q dq df about the point (r, q, f) is then given by
		  Pnlm dt = |ynlm|2 dt = |ynlm|2 r2dr sin q dq df 
		  = |Rnl(r)|2 |Ylm(q, f)|2 r2dr sin q dq df 
	 ·	The electron of the hydrogen atom in the ground state is found with 

maximum probability at a distance equal to the Bohr radius which is 
about 0.5 Å from the nucleus.

	 ·	The normalized wavefunction for the hydrogen atom in its ground state 
is 

		  y100 = 
0

–

3 1/2
0

1
( )

r
ae

ap

	 ·	The potential energy of the electron in the Coulomb field of the nucleus 
is given by 

		  V(r) = –

2

0

1
4

e
rpŒ

6.7	 KEY WORDS

	 ·	 Spherically symmetric potential: The potential depending only on 
the distance from a fixed point (centre of the force) is referred to as a 
spherically symmetric potential.

	 ·	 Spherical harmonic: The angular part of the wavefunction is called 
spherical harmonic and written as .

	 ·	Radial quantum number: The number k is called the radial quantum 
number which can take values 0, 1, 2, 3,... .

	 ·	Complete wavefunction: The complete wavefunction is given by the 
equation, .
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6.8	 SELF ASSESSMENT QUESTIONS AND 
EXERCISES

Short Answer Questions

	 1.	Define the term spherically symmetric potential giving examples.
	 2.	What are q equation and F equation? 
	 3.	Define the angular part of the wavefunction spherical harmonic.
	 4.	What is diatomic molecule?
	 5.	Give the composition of hydrogen atom.
	 6.	What is bound states and parity?

Long Answer Questions

	 1.	Discuss the concept of separation of variables and solution of R,q, F 
equation giving appropriate examples.

	 2.	Explain the equations for Schrödinger equation in spherical polar 
coordinates.

	 3.	Discuss the solution equations of the radial wave equation.
	 4.	Briefly explain diatomic molecules with reference to hydrogen atom.
	 5.	What is the significance of energy eigenvalues? Discuss with the help 

of examples.
	 6.	Discuss about bound states and parity with the help of relevant 

examples.
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BLOCK - III  

REPRESENTATION THEORIES

UNIT 7	 HARMONIC OSCILLATOR
Structure 
	 7.0	 Introduction
	 7.1	 Objectives
	 7.2	 Harmonic Oscillator
	 7.3	 Dirac’s Bra Ket Vectors

	 7.3.1	 Wavefunction as Vector; Ket Vector
	 7.3.2	 Scalar Product, Bra Vector
	 7.3.3	 Norm of a Ket
	 7.3.4	 Orthogonality of Kets and Bras

	 7.4	 Solution using Ladder Operator and Matrix Representation
	 7.5	 Answers to Check Your Progress Questions
	 7.6	 Summary
	 7.7	 Key Words
	 7.8	 Self Assessment Questions and Exercises
	 7.9	 Further Readings

7.0	 INTRODUCTION

The harmonic oscillator is a model which has several important applications 
in both classical and quantum mechanics. It serves as a prototype in the 
mathematical treatment of such diverse phenomena as elasticity, acoustics, 
AC circuits, molecular and crystal vibrations, electromagnetic fields and 
optical properties of matter. In classical mechanics, a harmonic oscillator is 
a system that, when displaced from its equilibrium position, experiences a 
restoring force F proportional to the displacement x,  where, k is 
a positive constant.

If F is the only force acting on the system, the system is called a simple 
harmonic oscillator, and it undergoes simple harmonic motion: sinusoidal 
oscillations about the equilibrium point, with a constant amplitude and a 
constant frequency (which does not depend on the amplitude). A simple 
harmonic oscillator is an oscillator that is neither driven nor damped. It 
consists of a mass m, which experiences a single force F, which pulls the mass 
in the direction of the point x = 0 and depends only on the mass’s position 
x and a constant k. 

Bra–ket notation is a notation for linear algebra, particularly focused 
on vectors, inner products, linear operators, Hermitian conjugation, and the 
dual space, for both finite-dimensional and infinite-dimensional complex 
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vector spaces. It is specifically designed to ease the types of calculations that 
frequently come up in quantum mechanics. Its use in quantum mechanics 
is quite widespread. Many phenomena that are explained using quantum 
mechanics are usually explained using bra–ket notation.

In simple cases, a ket |m  can be described as a column vector, a bra 
with the same label m| is its conjugate transpose (which is a row vector), 
and writing bras, kets, and linear operators next to each other implies 
matrix multiplication. However, kets may also exist in uncountably-infinite-
dimensional vector spaces, such that they cannot be literally written as a 
column vector. Also, writing a column vector as a list of numbers requires 
picking a basis, whereas one can write ‘|m ’ without committing to any 
particular basis. This is helpful because quantum mechanics calculations 
involve frequently switching between different bases, so it is better to have 
the basis vectors (if any) written out explicitly. In some situations involving 
two important basis vectors they will be referred to simply as ‘|- ’ and ‘|+ ’.

In this unit, you will study about harmonic oscillator, Dirac’s bra ket 
vectors and solutions using ladder operator and matrix representation in detail.

7.1	 OBJECTIVES

After going through this unit, you will be able to:
•	 Understand what harmonic oscillator is
•	 Discuss Dirac’s bra ket vectors
•	 Explain solutions using ladder operator and matrix representation

7.2	 HARMONIC OSCILLATOR

Bohr’s theory based on the quantization of angular momentum and energy 
of the electron in hydrogen atom was successful in explaining broad features 
of hydrogen atom and of the spectral lines emitted by it. The concepts used 
in the theory were new but of fundamental importance and inspired further 
researches in atomic physics.

Bohr’s theory was extended by Arnold Sommerfeld in the year 1915 
by introducing elliptical orbits for the electrons in atoms.

In the same year Wilson and Sommerfeld postulated independently a 
more general statement of quantization rule for systems undergoing periodic 
motion.

If a periodic system of s degrees of freedom described by generalized 
coordinates q1 ... qs and generalized momenta p1, p2 ..., ps then phase integrals 
of the system are defined as
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	 	 ...(7.1)
the integration being carried over one complete cycle of the variable 

qi. Wilson and Sommerfeld stated that the stationary states (allowed orbits) 
for the system are those for which the phase integrals are integral multiples 
of Planck’s constant h, i.e.,

	 	 ...(7.2)
	 In the case of motion of electron in circular orbits, the number of 

degrees of freedom is only one and the angular momentum l = mvr is a 
constant of motion so that the quantization rule given by Equation (7.2) 
reduces t

	  mvr df	 = nh
or	 mvr 2p	 = nh

so that	 mvr	 =   ​  ​  nh
2p 	 ...(7.3)

	 We may note that Equation (7.3) is the quantization rule postulated 
by Bohr for the electron in hydrogen atom rotating in circular orbits.

	 The general quantization rule of Wilson and Sommerfeld was used in 
a number of problems of interest, particularly for finding out the energies that 
periodic systems could assume. In the following, we present a brief outline 
of some such systems in the microscopic domain.

The Harmonic Oscillator

Consider a harmonic oscillator of mass m oscillating along the x-axis about 
the equilibrium position x = 0. The displacement of the particle from the 
equilibrium position at any instant t is given by

	 x 	 = a sin w0t	 ...(7.4)
where a is amplitude and w0 is the natural frequency related to the force 

constant according to

	 w0 	 = 	 ...(7.5)

The potential energy of the oscillator is given by

	          = = w w2 2 2 2
0 0

1 1 sin ( )
2 2

V kx m a t 	 ...(7.6)

The kinetic energy of the oscillator is

	            T = 
2

2 2 2
0 0

1 1 1 cos ( )
2 2 2

dxmv m ma t
dt

2Ê ˆ= = w wÁ ˜Ë ¯
	 ...(7.7)

Thus, the total energy of the oscillator becomes

		  E = T + V = ​ 1 __ 2 ​ m ​w​0​ 
2​ a2	 ...(7.8)
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According to Wilson–Sommerfeld quantization rule, we get

	  px dx	 = nh,  n = 0, 1, 2,

or	 m   ​ dx ___ dt ​ dx	 = nh.

Substituting for  and dx, the above equation becomes

		    	
Evaluating the integral, the above gives

	            	 ...(7.9)
Using Equation (7.9) in Equation (7.8), the energy of the oscillator is

	            	 ...(7.10)
Thus the quantization rule applied to linear harmonic oscillator gives 

the energy of the oscillator to be zero or an integral multiple of hw0 and not 
continuous.

7.3	 DIRAC’S BRA KET VECTORS

According to the Schrödinger formulation of quantum mechanics, the physical 
state at any time t, say, of a particle of mass m moving in one dimension in 
a potential field V(q), q being the coordinate of the particle which can take 
values from – • to + •, is described, in general by a complex valued function 
y (q, t) called the wave function in the position or coordinate representation. 
Schrödinger postulated that if the particle is undisturbed by any measurement 
its state develops with time in a completely causal manner according to the 
equation

		
2 2

2
( , ) ( ) ( , )

2
q ti V q q t
t m q

È ˘∂y - ∂= + yÍ ˙∂ ∂Î ˚

h
h 	 …(7.11)

According to Max Born and Jordan, ​| y(q, t) |​2 dq gives the probability 
of finding the particle between the position q and q + dq if a measurement 
is made.

	 It is possible to define a function f(p, t) called the wave function in 
the momentum representation (p representing the momentum of the particle) 
according to the Fourier transform,

		
-+•

-•
f = y

p Ú h

h
21( , ) ( , )

2

ipq

p t q t e dq  	                       …(7.12)
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of the particle as does y(q, t). In other words, f(p, t) represents the same 
dynamical state as y(q, t) while the expression ​| f (p, t) |​2 dp gives the probability 
that a measurement of momentum yields a value lying between p and p + dp. 

Schrödinger theory has been developed in position as well as momentum 
representation in entirely equivalent way.

We know that problems in ordinary geometry may be solved using 
vectors without the necessity of using any coordinate system. A question thus 
arises—can quantum mechanics be formulated without using any particular 
representation? If the answer is yes, the results would then be independent 
of representation on the one hand, while on the other the obvious advantages 
of using a representation in such a formulation would not be lost. To carry 
out calculations we would be free to use any convenient representation, just 
like in geometry a coordinate system may be conveniently chosen when 
vectors are used.

In Dirac’s formulation, quantum mechanics is developed without using 
any specific representation and instead it uses the concept of vectors in a 
space that may have a finite or an infinite dimension.

In the sections to follow a brief account of the essentials of Dirac’s 
formulation is presented.

7.3.1	 Wavefunction as Vector; Ket Vector

Let y(q) be the wavefunction that describes the state of a particle moving in 
one dimension at the time t. For each specific value of q (in the range – • to 
+ •), say q1, q2, etc., the wave function is y(q1), y(q2), etc., respectively.

Let us imagine an infinite dimensional space having mutually 
perpendicular axes each labeled by one of the values of q. Let us now consider 
a vector in this space at the time t such that its projection on the qi axis is 
y(q1), that on the q2-axis is y(q2) and so on. The vector thus considered then 
represents the state of the particle just as its components along the different 
axes do.

Since y’s are, in general, complex valued functions, the vector 
representing the state is not an ordinary vector in real space.

For Dirac, we call such a state-vector in a complex vector-space a ket 
vector or simply a ket and denote it by the symbol ​| Ò ​​. The particular vector 
whose components are y(q1), y(q2), etc., is called ket y and is written as ​| y ​​Ò.

In the Figure (7.1) is shown the ket vector ​| y ​​Ò and its components 
y(q1), y(q2), etc., along the different axes (it is possible to show only three 
components).
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Fig. 7.1  Ket Vector |yÒ and Three of its Coordinate Representatives

If Ax, Ay, Az be the components of an ordinary vector  along the axes 
of a Cartesian coordinate system XYZ, then the vector  can be represented 
completely by these components, i.e.,  = [Ax, Ay, Az]. Likewise, |y   Ò may be 
completely represented by its components along the orthogonal q-axes, i.e., ​
| y ​​Ò = [y(q1), y(q2), …]. The vector ​| y ​​Ò thus represented is said to be given 
in the position representation.

If we now consider another Cartesian co-ordinate system X ¢Y¢Z¢ 
rotated with respect to the system XYZ then the same vector  may 
equally well be represented by its new components Ax¢, Ay¢ and Az¢ and 
we may write  = [Ax¢, Ay¢, Az¢]. Exactly similarly, we may express ​| y ​​Ò  
in another representation, namely the momentum representation as ​| y ​​Ò = 
[f(p1), f(p2), ….]. We may visualize f(p1), f(p2), etc., as the components 
of ​| y ​​Ò on a rotated orthogonal set of axes p1, p2…. as shown in the Figure 
(7.2). The relation between the new p-axes and the old q-axes is given by 
Fourier transform.

Fig. 7.2  Ket Vector |yÒ and Three of its Momentum Representatives.

We note that by introducing the above concept of vector in complex 
vector space to describe physical state of a quantum system it is possible to 
visualize the possibility of an infinite number of equivalent representations 
in which quantum mechanics can be formulated.
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With each state of a dynamical system is associated a ket vector. A general ket 
is denoted by the symbol ​| Ò ​​. The ket vectors with labels inside such as ​| aÒ ​​,  
​| bÒ, ​​ etc., designate particular states.

The state ket is postulated to contain complete information about the 
physical state.

The ket vector space is a linear vector space by which we mean that if 
C1 and C2 are two complex numbers and ​| aÒ ​​ and ​| bÒ ​​ are two ket vectors in 
a given space, the linear combination, 

	    ​     | aÒ ​​ = C1 ​| aÒ ​​ + C2 ​| bÒ ​​ 	 …(7.13)
is also a ket vector in the space of ​| aÒ ​​ and ​| bÒ ​​ and represents a state 

of the system.
If a ket depends on a parameter q¢ which may take any value in the 

range q1¢ < q ¢ < q2¢ then we may generalize Equation (7.13) as

	         ​| bÒ ​​ = 2

1

( ) |
q

q
C q q dq

¢

¢
¢ ¢Ò ¢Ú 	 …(7.14)

when C(q¢) is a complex function of q¢ and the vector ​| bÒ ​​ is in ket 
space.

Kets ​| aÒ ​​ and ​| bÒ ​​ defined by Equations (7.13) and (7.14), respectively 
are said to be linearly dependent on ​| aÒ ​​ and ​| bÒ ​​ and on ​| q¢Ò ​​.

When C1​| aÒ ​​ and C2 ​| aÒ ​​ are added, the result is 

		          C1​| aÒ ​​ + C2​| aÒ ​​ = (C1 + C2)​| aÒ ​​	 …(7.15)

In the above, C1 ​| aÒ ​​, C2​| aÒ ​​ and (C1 + C2)​| aÒ ​​ represent the same 
dynamical state of the system. If, however, C1 + C2 = 0, the result is no state 
at all.

From the above, it follows that dynamical state of a system is specified 
entirely by the direction of the ket vector representing the state in the ket 
space. In other words, there exists a one-to-one correspondence between the 
state of a system and a direction in ket vector space. ​| aÒ ​​ and – ​| aÒ ​​ represents 
the same state.

The above also shows that classical and quantum superposition 
principles are different. Quantum mechanically, there exists nothing that 
corresponds to classical amplitude. Instead, only the direction of ket is 
significant. Further, in quantum mechanics there is no state corresponding 
to no motion (C1 + C2 = 0 in Equation 7.15); no motion is nothing at all. 
However, classically the state of rest (no motion) is a state of the system. 

	 The dimensionality of ket space is determined by the number of 
linearly independent kets in the space, i.e., the number of independent states 
of the system under consideration.
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7.3.2	 Scalar Product, Bra Vector

With each ket ​| aÒ ​​, a complex number f  is associated. The set of numbers 
associated with different ​| aÒ ​​‘s is a linear function of ​| aÒ ​​. This means that the 
number associated with ​( ​| a1Ò ​​ + ​| a2Ò ​​ )​, where ​| a1Ò ​​ and ​| a2Ò ​​ are two kets, is the 
sum of the numbers associated with ​| a1Ò ​​ and ​| a2Ò ​​ separately. Similarly, the 
number associated with C ​| aÒ ​​, where C is a complex number, is C times the 
number associated with ​| aÒ ​​. The above results may be written as,

	 f ​( ​| a1Ò ​​ + ​| a2Ò ​​ )​ = f ​( ​| a1Ò ​​ )​ + f ​( ​| a2Ò ​​ )                        …(7.16)

	 f (C |aÒ) = C f  | aÒ                                                  …(7.17)

The number f  associated with all the kets in ket space may be visualized 
as defining a vector in another space (dual space) denoted, following Dirac, 
by the symbol · ​​ f  |​. and called the bra vector.

The scalar product of ​​ ·  f  |​ and ​| aÒ ​​ is written as · f ​| aÒ ​​ and it is a complex 
number.

In view of the above, we may re-write Equations (7.16) and (7.17) as

	​ ​ · f |​ ​( ​| a1Ò ​​ + ​| a2Ò ​​ )​ = · f |a1Ò + ·  f a2Ò                         …(7.18)

	​ ​ · f  |​​( C ​| aÒ ​​ )​ = C ·  f ​| aÒ ​​                                        …(7.19)

If ·b ​| aÒ ​​ = 0 for all ​| aÒ ​​, we may conclude that ​​ ·b |​ = 0, i.e., ​​ ·b |​ is a null bra.

If,	 ·b1​| aÒ ​​ = ·b2 ​| aÒ ​​ for all ​| aÒ ​​                                  …(7.20)

then	​ ​ ·b1 |​ = ​​ ·b2 |​                                                         …(7.21)

The sum of two bras ​​ ·b1 |​ and ​​ ·b2 |​ is defined by its scalar product with ​
| aÒ ​​. Thus 

	​ ( ​​ ·b1 |​ + ​​ ·b2 |​ )​​| aÒ ​​ = ·b1​| aÒ ​​ + ·b2� ​| aÒ ​​                       …(7.22)

It is assumed that each ket is associated with a single bra in a unique 
way. Hence bra is given the same status as the ket to which it is associated. 
·a | is the bra associated with the ket ​| aÒ ​​.

Consider the ket

	​​ | aÒ ​​ = ​| aÒ ​​ + ​| bÒ ​​                                                  …(7.23)

The bra associated with ​| aÒ ​​ is then

	​ ​ ·a |​ = ​​ ·a |​ + ​​ ·b |​                                                  …(7.24)
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	​​ | bÒ ​​ = C ​| aÒ ​​,  C = A complex number	 …(7.25)

is associated the bra,

	​​ ​ ·b |​ = C* ​​ ·a |​,  C* = Complex conjugate of C	…(7.26)
From the above, it is reasonable to call the bra ​​ ·a |​ associated with a 

ket ​| aÒ ​​ as the hermitian adjoint of ​| aÒ ​​ and vice-versa, i.e.,
	​​ ​ ·a |​ = (|aÒ)†, ​ | aÒ ​​ = (​​ ·a |​)†	 …(7.27)
Since there exists unique correspondence between bras and kets, the 

direction of a bra vector represents the state of a quantum system as does the 
direction of the associated ket. Hence, they are said to be dual of one another.

7.3.3	 Norm of a Ket

Consider two kets ​| aÒ ​​ and ​| bÒ ​​ and the bras ​​ ·a |​ and ​​ ·b |​ associated with them, 
respectively. We can form four numbers, namely 

		  ·a |aÒ,  ·a |bÒ,  ·b |bÒ  and  ·b | aÒ
In general, ·a |bÒ and ·b | aÒ are complex, and it is assumed that they 

are related as 
	 ·a |bÒ = ·b |aÒ*	 …(7.28)
Replacing ​| bÒ ​​ by ​| aÒ ​​ in Equation (7.28) we get
	​​ ​·a|aÒ = ·a|aÒ*	 …(7.29)
Clearly, ·a |aÒ is real and is called the length or norm of ​| aÒ. ​​
It is assumed that the norm of a ket vector is either positive or zero, i.e.,
	​​ ​·a |aÒ ≥ 0	 …(7.30)
Equality sign holds in the above if ​| aÒ ​​ = 0.
The assumption given by Equations (7.28) and (7.29) are motivated 

from a consideration of wave function y(q, t) and its complex conjugate 
y*(q, t). As seen earlier, y(q, t) is visualized as components of ​| yÒ ​​ in ket 
space. Likewise, we may visualize y*(q, t) as the components of ​​ ·y |​ in the 
bra space. We know from wave mechanics that the complex numbers y*(q, t)  
c(q, t) and c*(q, t) y(q, t) are related as 

            y*(q, t) c(q, t) = [c*(q, t) y(q, t)]*	 …(7.31)
We also know that

	​​ ​Ú |y(q, t) |2 dq ≥ 0	 …(7.32)
Since bras and kets are intimately related to wave functions, relations 

similar to those given by Equations (7.31) and (7.32) should hold also for 
them. Such relations are given by Equations (7.28) and (7.30).
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7.3.4	 Orthogonality of Kets and Bras

In wave mechanics, the wave functions y(q) and f(q) are orthogonal, if
	 ​​  ​ *yÚ (q) f(q) dq = 0	 …(7.33)
In the case of kets and bras, the vectors ​| aÒ ​​ and ​| bÒ ​​ are orthogonal if 

their scalar product is zero, i.e., if 
	    ​​     ​·a|bÒ = 0	 …(7.34)
The orthogonality involved with ket/bra vector is different from the 

orthgonality of two ordinary vectors, say, ​
​

​ and ​  ​ in the real space. If ​
​

​ and ​ 
are orthogonal, i.e., if  ​

​
​ ​.​  ​ = 0, ​ and ​

​
​  are at right angles to each other and they 

lie in the same vector space. In the orthogonality condition given by Equation 
(7.34), we may note that ​​ ·a |​ and ​| bÒ ​​ are in different vector spaces. Further, if 
·a|bÒ = 0 we may say that not only ​| aÒ ​​ and ​| bÒ ​​ are orthogonal but also ​​ ·a |​ and 
​​ ·b |​ are orthogonal. When ·a|bÒ = 0 it may also be said that the associated 
quantum states of the system they represent are orthogonal.

7.4	 SOLUTION USING LADDER OPERATOR AND 
MATRIX REPRESENTATION

If with each ket ​|aÒ ​​ in the ket space we can associate another ket ​| bÒ ​​, then 
this association may be used to define an operator say aˆ which we may 
write in the form

	           ​|bÒ ​​ = |aÒ	 …(7.35)
 in the above might mean multiplication, differentiation, integration, 

etc., operations.
An operator always appears to the left of the ket on which it operates.
A class of operators used extensively in the formulation of quantum 

mechanics is the linear operators. A linear operator in ket space is defined 
as given in the following; if ​ |a1Ò ​​, | a2Ò ​​ and ​ |a Ò ​​ are any three kets in the 
space and C is a number then an operator aˆ is said to be linear if 

	 ​  ​( ​|a1Ò ​​ + ​|a2Ò ​​ )​ =  ​|a1Ò ​​ +  ​|a2Ò ​​	 …(7.36)
And	 (C | aÒ) = C ​| aÒ ​​	 …(7.37)

Equal Linear Operators 

A linear operator is completely defined when its effect on every ket in the ket 
space is known. Hence, two linear operators  and  are equal (  = ) if

	  |aÒ ​​ =  ​|aÒ ​​  for all ​|aÒ ​​	 …(7.38)
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A linear operator a is a null operator if
	 ​​|aÒ ​​ = 0  for all ​|aÒ ​​	 …(7.39)

Identity operator

A linear Operator  is said to be an identity operator if

	  ​|aÒ ​​ = ​|aÒ ​​  for all ​| aÒ ​​	 …(7.40)

Algebra of Linear Operators 

(i)  Sum of two linear operators  and , i.e., (  + ) is defined according to
	 (  + ) ​| aÒ ​​ =  ​| aÒ ​​ +  ​|aÒ ​​	 …(7.41) 

(ii) � Product of two linear operators a1 and , i.e., (  ) is defined 
according to

	 (   ) | aÒ ​​ =  (  ​| aÒ ​​)	 …(7.42)
From Equation (7.42) it is possible to define powers of a linear operator.

We further find the following relations to hold
	 (  + ) ​| aÒ ​​ = (  + ) ​| aÒ ​​	 …(7.43)
	 [(  + ) + ] ​| aÒ ​​ = [  + (  + )] ​| aÒ ​​	 …(7.44)
	 [  (  + )] ​| aÒ ​​ =  ​ | aÒ ​​ +   ​| aÒ ​​	 …(7.45)

(iii) �Commutator of two linear operators  and  is written as [ , ] 
and is defined as

	 [ , ] =   –  	 …(7.46)
The operator aˆ

1 and aˆ
2 are said to be non-commutative if

	   π  , i.e., [ , ] π 0 	 …(7.47)
We may note that the above properties hold with matrices.
It is seen that the algebra of N-dimensional square matrices is the same 

as the algebra of linear operators.
We may further note that the algebra of quantum mechanics is a non-

commutative algebra.
Multiplication by a constant is linear operation. A constant operator 

commutes with all linear operators.
(iv) �Inverse of an Operator: If two linear operators  and  satisfy the 

equation

	   =   =  (Identity operator)	 …(7.48)
then  is said to be the inverse of  and vice-versa, provided the 

inverse exists and we write
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	          = ,   = 	 …(7.49)
The inverse of a product of operators ( , , ) is 
	       (   )–1 =  	 …(7.50)
As mentioned earlier, the above properties of linear operators are 

common to finite square matrices. This fact allows us to represent operators 
by matrices.

Operation of Linear Operator on Bra
By operating a linear operator (say  ) on a bra (say ​​ ·c |​) we obtain, in general, 
another bra (say ​​ ·d |​) in the same bra space. It is a convention to write the 
operator to the right of the bra on which it operates. Hence we write, 

	           ·d |= ​​ ·c |  	 …(7.51)
The operation is defined through the equation,
	     ·c |​ (  ​| aÒ ​​) = (​​ ·c |​ ) ​| aÒ ​​. 	 …(7.52)
Thus,  may first operate on ​​ ·c | and the result applied to ​| aÒ ​​ or vice-

versa.
We may note that operator properties given above are equally valid 

whether they are applied to kets or to bras.

An Example of a Linear Operator

A simple example of a linear operator that occurs frequently in quantum 
theory is,

	 ​          |aÒ ​​ ​​ ·b | = 	 …(7.53)

 may operate as a ket, say, ​| cÒ ​​ to give

		           ​ | cÒ ​​ = ​| aÒ ​​ ·b|cÒ

The above is the ket ​| aÒ ​​ multiplied by the number ·b|cÒ
 may operate on the bra ​​ ·c | to give

	 ·c|  = ·caÒ ·b. 	 …(7.54)

The above is the bra ​​ ·b |​ multiplied by the number ·c|aÒ.

The operator  defined above is seen to satisfy the requirements of a 
linear operator.

Hermitian Operators

As discussed earlier, the linear operators which represent dynamical variables 
of a quantum system are real linear operators. Such operators are said to be 
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and bra vectors.

Consider the ket ​| qÒ ​​ to be the result of operation of the linear operator 
 on a ket ​| pÒ ​​, i.e., 

		     ​       | qÒ ​​ =  ​| pÒ ​​

The bra associated with ket ​| qÒ ​​ is then given by, 

		​  ​     ·q |​ = ​​ ·p |​  =  ​| pÒ† ​​ = ​( ​| qÒ ​​)​†

The symbol  is called the Hermitian adjoint of  . Thus, the bra ​​ ·q |​ 
which is hermitian adjoint of ​| qÒ ​​ may be considered as the result of some 
linear operator operating on ​​ ·p |​ which is designated by . 

If in Equation (7.28) we take ​​ ·a |​ = ​​ · p |​  and ​| aÒ ​​ =  ​| pÒ ​​, then 
we get

​	      · p |  ​| bÒ ​​ = ​​ ·b  |  | pÒ ​​*	 …(7.55)
Equation (7.55) is a general result that applies to any two kets ​| pÒ ​​ and ​

| bÒ ​​ and any linear operator   .

We may replace  by  in Equation (7.55) to obtain 

	 ​     · p |​   bÒ = ​​ ·b |​     pÒ*	 …(7.56)

Let us now replace |aÒ in Equation (7.28) by ​| aÒ ​​ =  ​| pÒ ​​

and ​​ ·a |​ = ​​ · p |​ . We then get

	​​      · p |​ ​| bÒ ​​ = ·b| | pÒ ​​* 	 …(7.57)
Comparing Equations (7.56) and (7.57) we obtain

	      · p |​ ​| bÒ ​​ = ​​ · p |​  ​| bÒ ​​.	 …(7.58)

Since in Equation (7.58) ket ​| bÒ ​​ and bra ​​ · p |​ are arbitrary, we find that

	              = 	 …(7.59)

If the linear operator  is self adjoint, i.e., if

		                 = 

then  is said to be Hermitian. From Equation (7.55) we find that if 
 is Hermitian, it must satisfy

	      · p |​  ​| bÒ ​​ = ​​ ·b |​ aˆ ​| pÒ ​​* 	 …(7.60)

for arbitrary ​| bÒ ​​ and ​| pÒ ​​.
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Eigenvalue Problem for Operators in Ket and Bra Space

Let us consider a linear operator . In general,  operating as a ket gives 
another ket in the same space.

However, for every linear operator there exists a set of kets such that the 
result of operation of the operator on any such ket is the same ket multiplied 
by a number. If ​| aÒ ​​ be such a ket for the operator  then we obtain

	          ​| aÒ ​​ = aa ​| aÒ ​​	 …(7.61)
aa being a number.
Equation (7.61) is referred to as the eigenvalue problem for the operator 

, ​| aÒ ​​ is said to be the eigen ket of  and aa the associated eigenvalue.
It is customary to label an eigenket with the associated eigenvalue. 

With this convention, we may rewrite the eigenvalue problem (eigenvalue 
equation) as

	          | aa Ò = aa | aa Ò  	 …(7.61a)

If ​| aa Ò ​​ is an eigenket of , then by Equation (7.62) any constant c 
times ​| aaÒ ​​ is also an eigenket of  with the same eigenvalue aa. The states 
represented by ​| aaÒ ​​ and c​| aaÒ ​​ are one and the same state.

Eigenvalue problem formulated in terms of bras is 
	         ·b​​ a |​ b

ˆ = ba ·b​​ a |​. 	 …(7.61b)
In the above ​​ ·ba |​ is an eigenbra of the linear operator bˆ belonging to 

the eigenvalue ba.

Theorems Valid for All Linear Hermitian Operators

Earler we discussed the following two theorems related to linear Hermitian 
operators. We once again state the theorems and prove them using Dirac’s 
bra and ket notations.
Theorem 1: The eigenvalues of a linear Hermitian operator are real.

Proof:  Consider a linear hermitian operator . The eigenvalues of  
satisfy the equation

 ​| akÒ ​​ = ak ​| akÒ ​​

Forming scalar product of both sides of the above equation with ​​ ·ak |, we get

	         ·ak |​  ​| akÒ ​​ = ak ·ak ​| akÒ ​​	 …(7.62)
Taking complex conjugate of both sides we obtain

		​​   ·ak |​  ​| akÒ ​​
* = ​​ ·ak |​   ​| akÒ ​​ = ak* ·ak ​| akÒ ​​          …(7.63)
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But since   =  and ·ak |akÒ π 0, comparing Equations (7.62) and 

(7.63) we get
	         ak = ak

*	 …(7.64)
Clearly the eigenvalue ak is real.

Theorem 2: Two eigenvectors of a linear Hermitian operator belonging to 
different eigenvalues are orthogonal.

Proof: Consider a linear Hermitian operator .

Let | aj Ò be the eigenvector of   belonging to eigenvalue aj and |ak Ò 
be the eigenvector of aˆ belonging to eigenvalue ak.

We then have according to our considerations

	     	 ...(7.65)
Let ​​ ·ak |​ be the eigenbra associated with the eignket ​| akÒ ​​.
We then have the eigenvalue equations

	     ​| ajÒ ​​ = aj ​| ajÒ ​​ 	 …(7.66)

	​​    ·ak |​  = ak ​​ ·ak |​	 …(7.67)
Forming scalar product of Equation (7.65) with ​​ ·ak |​, we get

	​​    ·ak |​ ​​    |​ ajÒ = aj ·ak ​| ajÒ ​​	 …(7.68)
Similarly, forming scalar product of Equation (7.67) with |ajÒ we obtain 

	   ·ak |  ​| aj ​​Ò = ak ​​ ·ak |​ajÒ 	 …(7.69)
Subtracting Equation (7.69) from Equation (7.68), we get
	   (aj – ak) ·ak ​| ajÒ ​​ = 0	 …(7.70)
Since aj and ak are two different eigenvalues, Equation (7.70) gives
	       ·ak ​| aj Ò ​​ = 0	 …(7.71)
Clearly, the eigenvectors ​| aj Ò ​​ and ​| akÒ ​​are orthogonal to each other.
We may note from Equations (7.66) and (7.67) that the eigenvalues 

associated with eigenkets are the same as those associated with the 
corresponding bras.

Physical Interpretation to Eigenvalues; Completeness, Expansion in 
Eigenkets 

Any dynamical variable of a system that can be measured is called an 
observable of that system.
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According to a basic postulate of quantum mechanics, with every 
observable there is associated a Hermitian operator and the result of 
measurement of an observable is an eigenvalue of the corresponding operator. 

Consider an observable of a quantum system. Let  be the 
corresponding Hermitian operator. If the system is in a particular eigen state 
of  , say ​| akÒ, ​​ then if we measure a we obtain the value ak. We assume 
that if we measure a and in each measurement we obtain the value ak with 
certainty, that is, if we measure a for a large number of systems each prepared 
in an identical way and always get the value ak, then we say that the system 
is in the state ​| akÒ ​​.

Furthermore, when a single measurement of a is made on the system 
in an arbitrary state, we obtain one of the eigen values of  . In such a 
measurement the measurement process disturbs the system and causes it to 
jump into one of the eigen states of  .

The eignekets of the operator  corresponding to the observable a 
form an orthonormal set,

	         · l1 | lj Ò = dij	 …(7.72)
where dij is the Kronecker delta,

	       0 if

1 if
ij i j

i j

d = π Ô̧
˝

= = Ǫ̂
	 …(7.73)

It is postulated that any state of the system is linearly dependent on 
the eigenkets ​| ak ​​ Ò. In after words eigenkets of  form a complete set. Any 
arbitrary state described by the ket ​| PÒ ​​ can thus be written in terms of the 
eigenkets of  as

	  ​   | P Ò ​​ = ​S 
k
 ​ 

 
 ​  ​ ak ​| akÒ ​​	 …(7.74)

If a measurement of a is made in the state described by ​| P Ò ​​ then |ak|
2 

gives the probability of obtaining the value ak.
If the system is in a state described by the normalized ket

	​     | PÒ ​​ = a1​| a1Ò ​​ + a2 ​| a2 ​​	 …(7.75)
then a measurement of a gives either the value a1 with probability |a1|

2 
or the value a2 with probability |a2|

2. Since ·P |P Ò = 1, we obtain

	​ | P Ò ​​ = ​S 
k
 ​ 

 
 ​  ​ ak ​| akÒ ​​	…(7.74)	 |a1|

2 + |a2|
2 = 1. 	 …(7.76)

We know that the eigenkets of aˆ form an orthonormal set so that

		                ·ai ​| ajÒ ​​ = dij
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		  ·ai ​| PÒ ​​ = ​S k ​   ​  ​ Ck ·ai ​| akÒ ​​ = ​S k ​    ​  ​ Ck dik = Ci 	 …(7.77)

	 Thus,	​ | PÒ ​​ = Â ​| akÒ ​​ Ck = ​{ ​S k ​   ​  ​​ | akÒ ​​ ·ak }​​| PÒ ​​

(  Ck = ​​ ·ak |​ PÒ from Equation (7.76)

	 Since the above result holds for all arbitrary kets we must have

	​ S 
k
 ​ 

 
 ​  ​​ | akÒ ​​ ​​ ·ak |​ = 1. 	 …(7.78)

	 The above equation is referred to as the completeness condition of 
eigenkets of the operator corresponding to an observable of a quantum system.

Classical Definition of Angular Momentum

Let us first consider the angular momentum classically. For this, let us consider 
a particle of mass m moving along a path AB about some fixed point O as 
shown in the Figure (7.3). Let at some instant of time, the particle be at the 
position P. The position P of the particle with respect to the point O is defined 
by the position vector  or . Let the linear momentum of the particle at the 
position P be . The direction of  is along the tangent to the path AB at P.

Fig. 7.3   Angular Momentum

Classically, the angular momentum (which is a vector quantity) of the 
particle about the point O when it is at P is defined as

	 	 …(7.79)
With the point O as the origin, let us consider a rectangular coordinate 

system (XYZ). If x, y, z be the coordinates of the point P then

	 	 …(7.80)
Further, if px, py and pz be respectively the components of  along X, 

Y and Z axes then

	 	 …(7.81)
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If Lx, Ly and Lz be respectively the X, Y and Z components of , then 
using equations (7.80) and (7.81) in Equation (7.79), we get

		
ˆˆ ˆ

ˆˆ ˆ
x y z

x y z

i j k
iL jL kL x y z

p p p

Ê ˆ
Á ˜+ + = Á ˜
Á ˜Ë ¯

Evaluating the right hand side of the above equation and comparing 
the coefficients of î , ĵ  and k̂ on both sides we obtain 

	 Lx = ypz – zpy	 …(7.82)
	 Ly = zpx – xpz	 …(7.83)
	 Lz = xpy –ypx	 …(7.84)

Quantum Mechanical Description of Angular Momentum

In order to treat angular momentum quantum mechanically, we replace the 
physical quantities  Lx, Ly, Lz, x, y, z, px, py and pz by corresponding 
linear Hermitian operators,

			   x Æ x̂ = x 

			   y Æ ŷ = y

			   z Æ ẑ = z

            px Æ p̂x = – ih ​ ∂ ___ 
∂x ​

            py Æ p̂y = – ih ​ ∂ ___ 
∂y ​

            pz Æ p̂z = – ih ​ ∂ __ 
∂z ​	 …(7.85)

Substituting the above in Equations (7.79), (7.82), (7.83) and (7.84) 
we obtain the quantum mechanical operators corresponding to the quantities 

, Lx, Ly, Lz as

	 	 …(7.86)

	 	 …(7.87) 

	 	  …(7.88)

	 	 …(7.89)
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Operators

Instead of L̂x and L̂y it is often convenient and more instructive to use their 
complex combinations L̂x ± iL̂ 

y.
The operator 	 L̂ 

+ = L̂x + iL̂ 
y 	 …(7.90)

is called the step-up operator.
The operator	 L̂ 

– = L̂ 
x – iL̂ 

y	 …(7.91)
is called the step-down operator.
We find	 L̂ 

zL̂
 
+ = L̂ 

z(L̂x + iL̂ 
y) = L̂ 

zL̂x + iL̂ 
zL̂

 
y	 …(7.92)

Using the commutation relations Equation (7.92) becomes 
	 L̂ 

zL̂
 
+ = L̂ 

xL̂
 
z + iL̂ 

y + i(L̂ 
yL̂

 
z – iL̂ 

x)
	 = (L̂ 

x + iL̂ 
y) L̂

 
z + (L̂ 

x + iL̂ 
y)

	 = L̂ 
+L̂

 
z + L̂ 

+

or 
	 L̂ 

zL̂ + = L̂ 
+ (L̂

 
z + 1)	 …(7.93)

Similarly, we obtain
	 L̂ 

zL̂
 
– = L̂ 

– (L̂
 
z + 1)	 …(7.94)

Let Yim be a simultaneous eigenfunction of L̂2 and L̂ 
z belonging to 

eigenvalue m of L̂ 
z. We obtain

	 L̂ 
zL̂

 
+Ylm = L̂ 

+(L̂
 
z + 1) Ylm	 [using Equation (7.93)]

	 = L̂ 
+L̂ 

zYlm + L̂ 
+Ylm

	 = L̂ 
+mYlm + L̂ 

+Ylm

or 
	  L̂ 

z(L̂
 
+Ylm) = (m + 1) (L̂ 

+Ylm)	 …(7.95)
Similarly, we get
	  L̂ 

z(L̂
  
–Ylm) = (m – 1) (L̂  

–Ylm)	 …(7.96)

Equation (7.95) shows that L̂  
+Ylm is an eigenfunction of L̂  

z belonging to 
eigenvalue (m + 1), i.e., an eigenvalue one unit greater while Equation (7.96) 
shows that L̂  

–Ylm is an eigenfunction of L̂  
z with eigenvalue (m – 1), i.e., an 

eigenvalue one unit less than the eigenvalue m belonging to the eigenfunction 
Ylm. For the above reasons, the operators L̂  

+ and L̂  
– are Respectively, called 

the step-up and step-down operators or ladder operators. 
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Check Your Progress

	 1.	Why was Bohr’s theory extended?
	 2.	Give the displacement equation of the particle from the equilibrium 

position at any instant t.
	 3.	According to the Schrödinger formulation of quantum mechanics, 

explain the physical state at any time t. 
	 4.	What is ket vector? How it is represented?
	 5.	How is a dynamical system associated with a ket vector? How is a 

general ket denoted?
	 6.	Explain that each ket is associated with a single bra.
	 7.	When the ket and bra said to be dual of one another?
	 8.	When a linear operator is a null operator?

7.5	 ANSWERS TO CHECK YOUR PROGRESS 
QUESTIONS

	 1.	Bohr’s theory was extended by Arnold Sommerfeld in the year 1915 
by introducing elliptical orbits for the electrons in atoms.

	 2.	 The displacement of the particle from the equilibrium position at any 
instant t is given by
	 x 	 = a sin w0t

		 where a is amplitude and w0 is the natural frequency related to the force 
constant according to

	 w0 	 = 
	 3.	According to the Schrödinger formulation of quantum mechanics, 

the physical state at any time t, say, of a particle of mass m moving in 
one dimension in a potential field V(q), q being the coordinate of the 
particle which can take values from – • to + •, is described, in general 
by a complex valued function y (q, t) called the wave function in the 
position or coordinate representation.

	 4.	Since y’s are, in general, complex valued functions, the vector 
representing the state is not an ordinary vector in real space.

		  For Dirac, we call such a state-vector in a complex vector-space a ket 
vector or simply a ket and denote it by the symbol ​| Ò ​​. The particular 
vector whose components are y(q1), y(q2), etc., is called ket y and is 
written as ​| y ​​Ò.
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Harmonic Oscillator	 5.	With each state of a dynamical system is associated a ket vector. A general 
ket is denoted by the symbol ​| Ò ​​. The ket vectors with labels inside such as ​| aÒ ​​,  
​| bÒ, ​​ etc., designate particular states.

		  The state ket is postulated to contain complete information about the 
physical state.

	 6.	 It is assumed that each ket is associated with a single bra in a unique 
way. Hence bra is given the same status as the ket to which it is 
associated. ·a | is the bra associated with the ket ​| aÒ ​​.

	 7.	Since there exists unique correspondence between bras and kets, the 
direction of a bra vector represents the state of a quantum system as 
does the direction of the associated ket. Hence, they are said to be dual 
of one another.

	 8.	A linear operator a is a null operator if
	 ​​|aÒ ​​ = 0  for all ​|aÒ ​

7.6	 SUMMARY

	 •	 Bohr’s theory was extended by Arnold Sommerfeld in the year 1915 
by introducing elliptical orbits for the electrons in atoms.

	 •	 In the case of motion of electron in circular orbits, the number of 
degrees of freedom is only one and the angular momentum l = mvr is 
a constant of motion.

	 •	 The displacement of the particle from the equilibrium position at any 
instant t is given by x = a sin w0t

		 where a is amplitude and w0 is the natural frequency related to the force 

constant according to w0 = 
	 •	 The potential energy of the oscillator is given by

	          = = w w2 2 2 2
0 0

1 1 sin ( )
2 2

V kx m a t 	 ...(7.6)
	 •	 The kinetic energy of the oscillator is

	            T = 
2

2 2 2
0 0

1 1 1 cos ( )
2 2 2

dxmv m ma t
dt

2Ê ˆ= = w wÁ ˜Ë ¯

	 •	 Thus the quantization rule applied to linear harmonic oscillator gives 
the energy of the oscillator to be zero or an integral multiple of hw0 
and not continuous.

	 •	According to the Schrödinger formulation of quantum mechanics, 
the physical state at any time t, say, of a particle of mass m moving in 
one dimension in a potential field V(q), q being the coordinate of the 
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particle which can take values from – • to + •, is described, in general 
by a complex valued function y (q, t) called the wave function in the 
position or coordinate representation.

	 •	According to Max Born and Jordan, ​| y(q, t) |​2 dq gives the probability of 
finding the particle between the position q and q + dq if a measurement 
is made.

	 •	 In Dirac’s formulation, quantum mechanics is developed without using 
any specific representation and instead it uses the concept of vectors 
in a space that may have a finite or an infinite dimension.

	 •	Since y’s are, in general, complex valued functions, the vector 
representing the state is not an ordinary vector in real space.

	 •	 For Dirac, we call such a state-vector in a complex vector-space a ket 
vector or simply a ket and denote it by the symbol ​| Ò ​​. The particular 
vector whose components are y(q1), y(q2), etc., is called ket y and is 
written as ​| y ​​Ò.

	 •	With each state of a dynamical system is associated a ket vector. A general 
ket is denoted by the symbol ​| Ò ​​. The ket vectors with labels inside such as ​| aÒ ​​,  
​| bÒ, ​​ etc., designate particular states.

	 •	The state ket is postulated to contain complete information about the 
physical state.

	 •	The dimensionality of ket space is determined by the number of linearly 
independent kets in the space, i.e., the number of independent states 
of the system under consideration.

	 •	The scalar product of ​​ ·  f  |​ and ​| aÒ ​​ is written as · f ​| aÒ ​​ and it is a complex 
number.

	 •	 It is assumed that each ket is associated with a single bra in a unique 
way. Hence bra is given the same status as the ket to which it is 
associated. ·a | is the bra associated with the ket ​| aÒ ​​.

	 •	 Since there exists unique correspondence between bras and kets, the 
direction of a bra vector represents the state of a quantum system as 
does the direction of the associated ket. Hence, they are said to be dual 
of one another.

	 •	Consider two kets ​| aÒ ​​ and ​| bÒ ​​ and the bras ​​ ·a |​ and ​​ ·b |​ associated with 
them, respectively. We can form four numbers, namely 

		  ·a |aÒ,  ·a |bÒ,  ·b |bÒ  and  ·b | aÒ
	 •	 In the case of kets and bras, the vectors ​| aÒ ​​ and ​| bÒ ​​ are orthogonal if 

their scalar product is zero, i.e., if ​​​·a|bÒ = 0.
	 •	 If with each ket ​|aÒ ​​ in the ket space we can associate another ket ​| bÒ​,​

then this association may be used to define an operator say aˆ which 
we may write in the form
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		   in the above might mean multiplication, differentiation, integration, 

etc., operations.
	 •	 An operator always appears to the left of the ket on which it operates.
	 •	 A linear Operator  is said to be an identity operator if

			    ​|aÒ ​​ = ​|aÒ ​​  for all ​| aÒ ​
	 •	 Eigenvalue problem formulated in terms of bras is 
	        ·b​​ a |​ b

ˆ = ba ·b​​ a |​.
	 •	 Any dynamical variable of a system that can be measured is called an 

observable of that system.
	 •	 When a single measurement of a is made on the system in an arbitrary 

state, we obtain one of the eigen values of  .

7.7	 KEY WORDS

	 •	 Dirac’s Formulation: In quantum mechanics it is developed without 
using any specific representation and instead it uses the concept of 
vectors in a space that may have a finite or an infinite dimension.

	 •	 Ket Vector: With each state of a dynamical system is associated a ket 
vector. A general ket is denoted by the symbol |  .

	 •	 Duality of Ket and Bra: Since there exists unique correspondence 
between bras and kets, the direction of a bra vector represents the state 
of a quantum system as does the direction of the associated ket. Hence, 
they are said to be dual of one another.

7.8	 SELF ASSESSMENT QUESTIONS AND 
EXERCISES

Short Answer Questions

	 1.	Define the term harmonic oscillator.
	 2.	What is the total energy of the oscillator? 
	 3.	What are Dirac’s bra ket vectors?
	 4.	When ket and bra are dual of one another?
	 5.	How the linear operator is completely defined?
	 6.	What is Hermitian operator?
	 7.	Define angular momentum.
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Long Answer Questions

	 1.	Discuss the concept of harmonic oscillator giving appropriate examples.
	 2.	Briefly explain Dirac’s bra ket vectors.
	 3.	Explain the wavefunction that describes the state of a particle moving 

in one dimension at the time t.
	 4.	Discuss the norms essential for a ket.
	 5.	Explain linear operator in ket space.
	 6.	Discuss the operation of linear operator performed on bra.
	 7.	Prove that the eigenvalues of a linear Hermitian operator are real.
	 8.	Explain angular momentum with the help of examples.
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Quantum Dynamics

UNIT 8 QUANTUM DYNAMICS

Structure
8.0 Introduction
8.1 Objectives
8.2 Schrödinger, Heisenberg and Interaction Pictures

8.2.1 Schrödinger Picture
8.2.2 Heisenberg Picture
8.2.3 Interaction Picture

8.3 Answers to Check Your Progress Questions
8.4 Summary
8.5 Key Words
8.6 Self Assessment Questions and Exercises
8.7 Further Readings

8.0 INTRODUCTION

In physics, quantum dynamics is the quantum version of classical dynamics. Quantum
dynamics deals with the motions, and energy and momentum exchanges of systems
whose behavior is governed by the laws of quantum mechanics.

In quantum mechanics, the interaction picture, also known as the Dirac
picture named after Paul Dirac, is an intermediate representation between the
Schrödinger picture and the Heisenberg picture. However in the other two pictures
either the state vector or the operators carry time dependence, in the interaction
picture both carry part of the time dependence of observables. The interaction
picture is advantageous since it consider the changes to the wave functions and
observables due to interactions. Most field-theoretical calculations typically use
the interaction representation because they provide the solution to the various
Schrödinger equations as the solution to the free-particle problem and also for
some unknown interaction parts.

In this unit, you will learn about the Schrödinger, Heisenberg and interaction
pictures.

8.1 OBJECTIVES

After going through this unit, you will be able to:
• Explain what quantum dynamics is
• Discuss Schrödinger picture
• Understand Heisenberg picture
• Define interaction picture
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8.2 SCHRÖDINGER, HEISENBERG AND
INTERACTION PICTURES

In physics, quantum dynamics is referred as the quantum version of classical
dynamics. Quantum dynamics deals with the motions, and energy and momentum
exchanges of systems whose behaviour is governed by the laws of quantum
mechanics. Quantum dynamics is significant for fields, such as quantum computing
and atomic optics.

Pictures in quantum mechanics are different points of view in describing a
quantum system. In the general Schrödinger picture, the operators are time
independent and the state vectors (wave functions) are time dependent. In
Heisenberg picture, the operators are rendered time dependent and the state vectors
become time independent. The Interaction (Dirac) picture, is a hybrid view-point
where both operators and state vectors are time dependent, evolving in time by
different unitary operators.

Quantum systems are considered as wave functions which solve the
Schrödinger equation. Observables are represented by Hermitian operators which
act on the wave function. In the Schrödinger picture, the operators stay fixed
while the Schrödinger equation changes the basis with time.

In the Dirac or interaction picture, both the basis and the operators carry
time-dependence. The interaction picture allows for operators to act on the state
vector at different times and forms the basis for quantum field theory and many
other newer methods.

In the Heisenberg picture, it is the operators which change in time while the
basis of the space remains fixed. Heisenberg’s matrix mechanics actually came
before Schrödinger’s wave mechanics but were too mathematically different to
catch on. A fixed basis is, in some ways, more mathematically pleasing. This
formulation also generalizes more easily to relativity - it is the nearest analog to
classical physics.

8.2.1 Schrödinger Picture

In physics, the Schrödinger picture, also termed as the Schrödinger representation
is a formulation of quantum mechanics in which the state vectors evolve in time,
but the operators (observables and others) are constant with respect to time. This
differs from the Heisenberg picture which keeps the states constant while the
observables evolve in time, and from the interaction picture in which both the
states and the observables evolve in time. The Schrödinger and Heisenberg pictures
are related as active and passive transformations and commutation relations between
operators are preserved in the passage between the two pictures.

In the Schrödinger picture, the state of a system evolves with time. The
evolution for a closed quantum system is brought about by a unitary operator, the
time evolution operator.
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Quantum DynamicsFor time evolution from a state vector at time t0 to a state
vector at time t, the time-evolution operator is commonly written ,

and one has, 
In the case where the Hamiltonian of the system does not vary with time, the

time-evolution operator has the form,

Where the exponent is evaluated via its Taylor series.
The Schrödinger picture is useful when dealing with a time-independent

Hamiltonian H; that is,

In elementary quantum mechanics, the state of a quantum-mechanical system
is represented by a complex-valued wavefunction ψ(x, t). More abstractly, the

state may be represented as a state vector, or ket . This ket is an element of

a Hilbert space, a vector space containing all possible states of the system. A

quantum-mechanical operator is a function which takes a and returns

some other 

The differences between the Schrödinger and Heisenberg pictures of quantum
mechanics revolve around how to deal with systems that evolve in time: the time-
dependent nature of the system must be carried by some combination of the state
vectors and the operators. For example, a quantum harmonic oscillator may be in
a state for which the expectation value of the momentum, oscillates
sinusoidally in time. One can then ask whether this sinusoidal oscillation should be

reflected in the state vector , the momentum operator , or both. All three of
these choices are valid; the first gives the Schrödinger picture, the second the
Heisenberg picture, and the third the interaction picture.

The Time Evolution Operator

The time-evolution operator U(t, t0) is defined as the operator which acts on the
ket at time t0 to produce the ket at some other time t:

For Bras, we instead have,
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Properties

Unitarity: The time evolution operator must be unitary. This is because we demand
that the norm of the state ket must not change with time. That is,

Therefore,

Identity: When t = t0, U is the identity operator, since

Closure: Time evolution from t0 to t may be viewed as a two-step time evolution,
first from t0 to an intermediate time t1, and then from t1 to the final time t. Therefore,

8.2.2 Heisenberg Picture

In physics, the Heisenberg picture, also called the Heisenberg representation, is a
formulation given by Werner Heisenberg in 1925, of quantum mechanics in which
the operators (observables and others) incorporate a dependency on time, but the
state vectors are time-independent, an arbitrary fixed basis rigidly underlying the
theory.

It stands in contrast to the Schrödinger picture in which the operators are
constant, instead, and the states evolve in time. The two pictures only differ by a
basis change with respect to time-dependency, which corresponds to the difference
between active and passive transformations. The Heisenberg picture is the
formulation of matrix mechanics in an arbitrary basis, in which the Hamiltonian is
not necessarily diagonal. It further serves to define a third hybrid picture, the
interaction picture.

In the Heisenberg picture of quantum mechanics the state vectors, |ψ(t), do
not change with time, while observables A satisfy,

Where H is the Hamiltonian and [•,•] denotes the commutator of two
operators (in this case H and A). Taking expectation values automatically yields
the Ehrenfest theorem, featured in the correspondence principle.

By the Stone–von Neumann theorem, the Heisenberg picture and the
Schrödinger picture are unitarily equivalent, just a basis change in Hilbert space.
In some sense, the Heisenberg picture is more natural and convenient than the
equivalent Schrödinger picture, especially for relativistic theories. Lorentz invariance
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time or space.

This approach also has a more direct similarity to classical physics: by simply
replacing the commutator above by the Poisson bracket, the Heisenberg equation
reduces to an equation in Hamiltonian mechanics.

Equivalence of Heisenberg’s Equation to the Schrödinger Equation

For the sake of pedagogy, the Heisenberg picture is introduced here from the
subsequent, but more familiar, Schrödinger picture.

The expectation value of an observable A, which is a Hermitian linear
operator, for a given Schrödinger state |ψ(t) >, is given by,

In the Schrödinger picture, the state |ψ(t) > at time t is related to the state
|ψ(0) > at time 0 by a unitary time-evolution operator, U(t),

In the Heisenberg picture, all state vectors are considered to remain constant
at their initial values |ψ(0)>, whereas operators evolve with time according to,

The Schrödinger equation for the time-evolution operator is,

Where H is the Hamiltonian and –h is the reduced Planck constant.
It follows that,

Where differentiation was carried out according to the product rule. Note
that the Hamiltonian that appears in the final line above is the Heisenberg Hamiltonian
H(t), which may differ from the Schrödinger Hamiltonian.
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8.2.3 Interaction Picture

In quantum mechanics, the interaction picture, also known as the Dirac picture
named after Paul Dirac, is an intermediate representation between the Schrödinger
picture and the Heisenberg picture. While the other two pictures either the state
vector or the operators carry time dependence, the interaction picture carry both
the part of the time dependence of observables (probability amplitudes). The
interaction picture is advantageous since it consider the changes to the wave
functions and observables due to interactions. Most field-theoretical calculations
typically use the interaction representation because they provide the solution to
the various Schrödinger equations as the solution to the free-particle problem and
also for some unknown interaction parts.

Equations that include operators at different times, which hold in the
interaction picture, do not necessarily hold either in the Schrödinger picture or in
the Heisenberg picture. This is because time dependent unitary transformations
relate operators in one picture to the analogous operators in the others.

Operators and state vectors in the interaction picture are related by a change
of basis (unitary transformation) to those same operators and state vectors in the
Schrödinger picture.

To switch into the interaction picture, we divide the Schrödinger picture
Hamiltonian into two parts:

Any possible choice of parts will yield a valid interaction picture; but in
order for the interaction picture to be useful in simplifying the analysis of a problem,
the parts will typically be chosen so that H0,S is well understood and exactly solvable,
while H1,S contains some harder-to-analyze perturbation to this system.

If the Hamiltonian has explicit time-dependence (for example, if the quantum
system interacts with an applied external electric field that varies in time), it will
usually be advantageous to include the explicitly time-dependent terms with H1,S,
leaving H0,S time-independent. We proceed assuming that this is the case. If there
is a context in which it makes sense to have H0,S be time-dependent, then one can
proceed by replacing by the corresponding time-evolution operator in
the definitions below.

State Vectors

A state vector in the interaction picture is defined as,

Where |ψS(t)> is the state vector in the Schrödinger picture.
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An operator in the interaction picture is defined as,

Note that AS(t) will typically not depend on t and can be rewritten as just
AS. It only depends on t if the operator has ‘explicit time dependence’, for example,
due to its dependence on an applied external time-varying electric field.

Hamiltonian Operator

For the operator H0 itself, the interaction picture and Schrödinger picture coincide:

This is easily seen through the fact that operators commute with differentiable
functions of themselves. This particular operator then can be called H0 without
ambiguity.

For the perturbation Hamiltonian H1,I, however,

Where the interaction picture perturbation Hamiltonian becomes a time-
dependent Hamiltonian, unless [H1,S, H0,S] = 0.

It is possible to obtain the interaction picture for a time-dependent
Hamiltonian H0,S(t) as well, but the exponentials need to be replaced by the unitary
propagator for the evolution generated by H0,S(t), or more explicitly with a time-
ordered exponential integral.

Expectation Values

For a general operator A, the expectation value in the interaction picture is given
by,

Using the density-matrix expression for expectation value, we will get,

The purpose of the interaction picture is to shunt all the time dependence
due to H0 onto the operators, thus allowing them to evolve freely, and leaving only
H1,I to control the time-evolution of the state vectors.
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The interaction picture is convenient when considering the effect of a small
interaction term, H1,S, being added to the Hamiltonian of a solved system, H0,S. By
utilizing the interaction picture, one can use time-dependent perturbation theory to
find the effect of H1,I, for example, in the derivation of Fermi’s golden rule, or
the Dyson series in quantum field theory: in 1947, Shin’ichirö Tomonaga and Julian
Schwinger appreciated that covariant perturbation theory could be formulated
elegantly in the interaction picture, since field operators can evolve in time as free
fields, even in the presence of interactions, now treated perturbatively in such a
Dyson series.

Comparison of Evolution in all the Three Pictures

Table 8.1 illustrates the comparative evaluation of all the three pictures, viz.,
Schrödinger, Heisenberg and interaction pictures for a time-independent
Hamiltonian HS,

Table 8.1 Comparative Evaluation of Schrödinger, Heisenberg and
Interaction Pictures

Check Your Progress

1. Define the term quantum dynamics.
2. What are pictures in quantum mechanics?
3. What are quantum systems?
4. Define the term the Schrödinger picture.
5. When is Schrödinger picture useful?
6. In elementary quantum mechanics, how is the state of a quantum-mechanical

system represented?
7. Explain the term the Heisenberg picture.
8. What are the state vectors in the Heisenberg picture of quantum mechanics?
9. What is Schrödinger picture? When it is useful?

10.  Give the Schrödinger equation for the time-evolution operator.
11.  Define the term the interaction picture.
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8.3 ANSWERS TO CHECK YOUR PROGRESS

QUESTIONS

1. In physics, quantum dynamics is referred as the quantum version of classical
dynamics. Quantum dynamics deals with the motions, and energy and
momentum exchanges of systems whose behaviour is governed by the laws
of quantum mechanics.

2. Pictures in quantum mechanics are different points of view in describing a
quantum system. In the general Schrödinger picture, the operators are time
independent and the state vectors (wave functions) are time dependent. In
Heisenberg picture, the operators are rendered time dependent and the
state vectors become time independent. The Interaction (Dirac) picture, is
a hybrid view-point where both operators and state vectors are time
dependent, evolving in time by different unitary operators.

3. Quantum systems are considered as wave functions which solve the
Schrödinger equation. Observables are represented by Hermitian operators
which act on the wave function. In the Schrödinger picture, the operators
stay fixed while the Schrödinger equation changes the basis with time.

4. In physics, the Schrödinger picture, also termed as the Schrödinger
representation is a formulation of quantum mechanics in which the state
vectors evolve in time, but the operators (observables and others) are
constant with respect to time. In the Schrödinger picture, the state of a
system evolves with time. The evolution for a closed quantum system is
brought about by a unitary operator, the time evolution operator.

5. The Schrödinger picture is useful when dealing with a time-independent
Hamiltonian H; that is, 

6. In elementary quantum mechanics, the state of a quantum-mechanical system
is represented by a complex-valued wavefunction ψ(x, t). More abstractly,

the state may be represented as a state vector, or ket . This ket is an

element of a Hilbert space, a vector space containing all possible states of
the system. A quantum-mechanical operator is a function which takes a

ket and returns some other ket .

7. In physics, the Heisenberg picture, also called the Heisenberg representation,
is a formulation given by Werner Heisenberg in 1925, of quantum mechanics
in which the operators (observables and others) incorporate a dependency
on time, but the state vectors are time-independent, an arbitrary fixed basis
rigidly underlying the theory. The Heisenberg picture is the formulation of
matrix mechanics in an arbitrary basis, in which the Hamiltonian is not
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necessarily diagonal. It further serves to define a third hybrid picture, the
interaction picture.

8. In the Heisenberg picture of quantum mechanics the state vectors, |ψ(t), do
not change with time, while observables A satisfy,

Where H is the Hamiltonian and [•,•] denotes the commutator of two
operators (in this case H and A). Taking expectation values automatically
yields the Ehrenfest theorem, featured in the correspondence principle.

9. In the Schrödinger picture, the state of a system evolves with time. The
evolution for a closed quantum system is brought about by a unitary operator,
the time evolution operator. The Schrödinger picture is useful when dealing
with a time-independent Hamiltonian H; that is, 

10. The Schrödinger equation for the time-evolution operator is,

Where H is the Hamiltonian and –h  is the reduced Planck constant.
11. In quantum mechanics, the interaction picture, also known as the Dirac

picture named after Paul Dirac, is an intermediate representation between
the Schrödinger picture and the Heisenberg picture. While the other two
pictures either the state vector or the operators carry time dependence, the
interaction picture carry both the part of the time dependence of observables
(probability amplitudes). The interaction picture is advantageous since it
consider the changes to the wave functions and observables due to
interactions.

8.4 SUMMARY

• In physics, quantum dynamics is referred as the quantum version of classical
dynamics. Quantum dynamics deals with the motions, and energy and
momentum exchanges of systems whose behaviour is governed by the laws
of quantum mechanics. Quantum dynamics is significant for fields, such as
quantum computing and atomic optics.

• Pictures in quantum mechanics are different points of view in describing a
quantum system. In the general Schrödinger picture, the operators are time
independent and the state vectors (wave functions) are time dependent.

• In Heisenberg picture, the operators are rendered time dependent and the
state vectors become time independent.
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Quantum Dynamics• The Interaction (Dirac) picture, is a hybrid view-point where both operators
and state vectors are time dependent, evolving in time by different unitary
operators.

• Quantum systems are considered as wave functions which solve the
Schrödinger equation. Observables are represented by Hermitian operators
which act on the wave function. In the Schrödinger picture, the operators
stay fixed while the Schrödinger equation changes the basis with time.

• In the Dirac or interaction picture, both the basis and the operators carry
time-dependence. The interaction picture allows for operators to act on the
state vector at different times and forms the basis for quantum field theory
and many other newer methods.

• In the Heisenberg picture, it is the operators which change in time while the
basis of the space remains fixed. Heisenberg’s matrix mechanics actually
came before Schrödinger’s wave mechanics but were too mathematically
different to catch on.

• In physics, the Schrödinger picture, also termed as the Schrödinger
representation is a formulation of quantum mechanics in which the state
vectors evolve in time, but the operators (observables and others) are
constant with respect to time. This differs from the Heisenberg picture which
keeps the states constant while the observables evolve in time, and from the
interaction picture in which both the states and the observables evolve in
time.

• The Schrödinger and Heisenberg pictures are related as active and passive
transformations and commutation relations between operators are preserved
in the passage between the two pictures.

• In the Schrödinger picture, the state of a system evolves with time. The
evolution for a closed quantum system is brought about by a unitary operator,
the time evolution operator.

• The Schrödinger picture is useful when dealing with a time-independent

Hamiltonian H; that is, 

• In elementary quantum mechanics, the state of a quantum-mechanical system
is represented by a complex-valued wavefunction ψ(x, t). More abstractly,

the state may be represented as a state vector, or ket . This ket is an

element of a Hilbert space, a vector space containing all possible states of
the system.

• A quantum-mechanical operator is a function which takes a and

returns some other.
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• In physics, the Heisenberg picture, also called the Heisenberg representation,
is a formulation given by Werner Heisenberg in 1925, of quantum mechanics
in which the operators (observables and others) incorporate a dependency
on time, but the state vectors are time-independent, an arbitrary fixed basis
rigidly underlying the theory.

• It stands in contrast to the Schrödinger picture in which the operators are
constant, instead, and the states evolve in time. The two pictures only differ
by a basis change with respect to time-dependency, which corresponds to
the difference between active and passive transformations.

• In the Heisenberg picture of quantum mechanics the state vectors, |ψ(t),
do not change with time, while observables A satisfy,

Where H is the Hamiltonian and [•,•] denotes the commutator of two
operators (in this case H and A). Taking expectation values automatically
yields the Ehrenfest theorem, featured in the correspondence principle.

• By the Stone–von Neumann theorem, the Heisenberg picture and the
Schrödinger picture are unitarily equivalent, just a basis change in Hilbert
space.

• The expectation value of an observable A, which is a Hermitian linear
operator, for a given Schrödinger state |ψ(t) , is given by,,

• In the Schrödinger picture, the state |ψ(t)  at time t is related to the state
|ψ(0)  at time 0 by a unitary time-evolution operator,, U(t),

• In the Heisenberg picture, all state vectors are considered to remain constant
at their initial values |ψ(0) , whereas operators evolve with time according
to, 

• The Schrödinger equation for the time-evolution operator is,

Where H is the Hamiltonian and –h  is the reduced Planck constant.
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Quantum Dynamics• In quantum mechanics, the interaction picture, also known as the Dirac
picture named after Paul Dirac, is an intermediate representation between
the Schrödinger picture and the Heisenberg picture.

• While the other two pictures either the state vector or the operators carry
time dependence, the interaction picture carry both the part of the time
dependence of observables (probability amplitudes).

• The interaction picture is advantageous since it consider the changes to the
wave functions and observables due to interactions.

• Equations that include operators at different times, which hold in the
interaction picture, do not necessarily hold either in the Schrödinger picture
or in the Heisenberg picture. This is because time dependent unitary
transformations relate operators in one picture to the analogous operators
in the others.

• Operators and state vectors in the interaction picture are related by a change
of basis (unitary transformation) to those same operators and state vectors
in the Schrödinger picture.

8.5 KEY WORDS

• Quantum dynamics: It deals with the motions, and energy and momentum
exchanges of systems whose behaviour is governed by the laws of quantum
mechanics.

• Quantum systems: These are considered as wave functions which solve
the Schrödinger equation.

• Schrödinger picture: Also termed as the Schrödinger representation, it is
a formulation of quantum mechanics in which the state vectors evolve in
time, but the operators (observables and others) are constant with respect
to time.

• Heisenberg picture: Also called the Heisenberg representation, is a
formulation given by Werner Heisenberg in 1925, of quantum mechanics in
which the operators (observables and others) incorporate a dependency
on time, but the state vectors are time-independent, an arbitrary fixed basis
rigidly underlying the theory.

• Interaction picture: Also known as the Dirac picture named after Paul
Dirac, is an intermediate representation between the Schrödinger picture
and the Heisenberg picture, as the interaction picture carry both the part of
the time dependence of observables (probability amplitudes).
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8.6 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What is the significance of quantum dynamics?
2. Define the terms picture, observables and operators.
3. Explain Schrödinger picture.
4. What is Heisenberg picture?
5. How Schrödinger and Heisenberg pictures are related?
6. What is interaction picture?

Long Answer Questions

1. Briefly discuss the significance of quantum dynamics and quantum systems
giving appropriate examples.

2. Explain the how the three pictures Schrödinger, Heisenberg and interaction
are related to each other.

3. Discuss the Schrödinger picture giving its relevance in quantum physics.
4. Analyse the Heisenberg picture and state that how it is different from the

Schrödinger picture.
5. Briefly discuss the differences between the Schrödinger and Heisenberg

pictures of quantum mechanics giving appropriate examples.
6. Explain the significance of interaction pictures in quantum mechanics.
7. Give the equations for state vector, operator and Hamiltonian operator for

the interaction pictures.

8.7 FURTHER READINGS
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9.0 INTRODUCTION

In quantum mechanics, perturbation theory is a set of approximation schemes
directly related to mathematical perturbation for describing a complicated quantum
system in terms of a simpler one. Perturbation theory is applicable if the problem
at hand cannot be solved exactly, but can be formulated by adding a ‘small’
term to the mathematical description of the exactly solvable problem. For example,
by adding a perturbative electric potential to the quantum mechanical model of
the hydrogen atom, tiny shifts in the spectral lines of hydrogen caused by the
presence of an electric field (the Stark effect) can be calculated. This is only
approximate because the sum of a Coulomb potential with a linear potential is
unstable (has no true bound states) although the tunneling time (decay rate) is
very long. Time independent perturbation theory is observed to be useful because
of its importance in experimental solid state physics in general and transport
properties in particular.

In this unit, you will study about the perturbation theory (first order), the
time independent perturbation theory and stark effect in hydrogen atom.

9.1 OBJECTIVES

After going through this unit, you will be able to:
• Explain the time independent perturbation theory
• Discuss the perturbation theory of first order
• Understand the stark effect in hydrogen atom
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9.2 TIME INDEPENDENT PERTURBATION
THEORY

In quantum mechanics, perturbation theory is a set of approximation schemes
directly related to mathematical perturbation for describing a complicated quantum
system in terms of a simpler one. Perturbation theory is applicable if the problem
at hand cannot be solved exactly, but can be formulated by adding a ‘small’
term to the mathematical description of the exactly solvable problem. For example,
by adding a perturbative electric potential to the quantum mechanical model of
the hydrogen atom, tiny shifts in the spectral lines of hydrogen caused by the
presence of an electric field (the Stark effect) can be calculated. This is only
approximate because the sum of a Coulomb potential with a linear potential is
unstable (has no true bound states) although the tunneling time (decay rate) is
very long.

The expressions produced by perturbation theory are not exact, but they
can lead to accurate results as long as the expansion parameter, say α, is very
small. Typically, the results are expressed in terms of finite power series in α
that seem to converge to the exact values when summed to higher order. After
a certain order n ~ 1/α however, the results become increasingly worse since
the series are usually divergent (being asymptotic series). There exist ways to
convert them into convergent series, which can be evaluated for large expansion
parameters, most efficiently by the variational method.

Time independent perturbation theory is one of two categories of
perturbation theory, the other being time dependent perturbation. In time
independent perturbation theory the perturbation Hamiltonian is static, i.e.,
possesses no time dependence. The time independent perturbation theory was
presented by Erwin Schrödinger in a 1926 paper, shortly after he produced his
theories in wave mechanics. In this paper Schrödinger referred to earlier work
of Lord Rayleigh, who investigated harmonic vibrations of a string perturbed by
small in-homogeneities. This is why this perturbation theory is often referred to
as Rayleigh–Schrödinger perturbation theory.

First Order Corrections

Consider an unperturbed Hamiltonian, H0, which is also assumed to have no
time dependence. It has known energy levels and eigenstates, arising from the
time independent Schrödinger equation of the form:

  

For simplicity, assume that the energies are discrete. The (0) superscripts
denote that these quantities are associated with the unperturbed system. Note
the use of bra–ket notation.
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We now introduce a perturbation to the Hamiltonian. Let V be a
Hamiltonian representing a weak physical disturbance, such as a potential energy
produced by an external field. Thus, V is formally a Hermitian operator. Let λ be
a dimensionless parameter that can take on values ranging continuously from 0
(no perturbation) to 1 (the full perturbation). The perturbed Hamiltonian is
represented as,

  

The energy levels and eigenstates of the perturbed Hamiltonian are again
given by the Schrödinger equation:

  

The objective is to express En and  in terms of the energy levels and

eigenstates of the old Hamiltonian. If the perturbation is sufficiently weak, we
can write them as a (Maclaurin) power series in λ:

   

Where,

  

When k = 0, these reduce to the unperturbed values, which are the first
term in each series. Since the perturbation is weak, the energy levels and
eigenstates should not deviate too much from their unperturbed values, and the
terms should rapidly become smaller as we go to higher order.

Substituting the power series expansion into the Schrödinger equation, we
obtain,

  

Expanding this equation and comparing coefficients of each power
of λ results in an infinite series of simultaneous equations. The zeroth-order
equation is simply the Schrödinger equation for the unperturbed system. The
first order equation is,
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Operating through by , the first term on the left-hand side cancels
the first term on the right-hand side as per the unperturbed Hamiltonian is
Hermitian. This leads to the first order energy shift:

This is simply the expectation value of the perturbation Hamiltonian while
the system is in the unperturbed state.

The Stark Effect for n = 2 Hydrogen

The Stark effect for the n = 2 states of hydrogen requires the use of degenerate
state perturbation theory since there are four states with (nearly) the same
energies. In the first calculation, we will not consider the hydrogen fine structure
and assume that the four states are exactly degenerate, each with unperturbed
energy of E0. That is .

The degenerate states are φ200, φ211, φ210 and φ21(−1).

The perturbation due to an electric field in the z direction is .

So the first order degenerate state perturbation theory equation is, 

      

This is essentially a 4 x 4 matrix eigenvalue equation. There are 4
eigenvalues , distinguished by the index  .

Because of the exact degeneracy  , the H0 and E0

can be eliminated from the equation.

This is just the eigenvalue equation for H1 which we can write in (pseudo)
matrix form as follows, 
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Now, in fact, most of the matrix elements of H1 are zero. We can define
that because  , hence all the matrix elements between states of
unequal   are zero. Another way of saying this is that the operator z does not
‘change’ . Here is a little proof.

 

This implies that   unless .
Let us define the one remaining nonzero (real) matrix element to be γ.

 

The equation that is labelled with the basis states to define the order is.

 

We can see by inspection that the eigenfunctions of this operator are φ211,

φ21−1, and   with eigenvalues (of H1) of 0, 0, and .

What remains is to compute γ. Recall   and  .

This is first order in the electric field, as we would expect in first order
(degenerate) perturbation theory.

If the states are not exactly degenerate, we have to leave in the diagonal
terms of H0. Assume that the energies of the two (mixed) states are ,
where ∆ comes from some other perturbation, like the hydrogen fine structure.
The φ211 and φ21 (−1) are still not mixed by the electric field.
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This is correct in both limits, , and  . It is also correct
when the two corrections are of the same order.

Check Your Progress

1. What is perturbation theory? When it is applied?
2. Explain the time independent perturbation theory.
3. What is first order equation?
4. What is stark effect?

9.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. In quantum mechanics, perturbation theory is a set of approximation
schemes directly related to mathematical perturbation for describing a
complicated quantum system in terms of a simpler one. Perturbation
theory is applicable if the problem at hand cannot be solved exactly, but
can be formulated by adding a ‘small’ term to the mathematical description
of the exactly solvable problem. For example, by adding a perturbative
electric potential to the quantum mechanical model of the hydrogen atom,
tiny shifts in the spectral lines of hydrogen caused by the presence of an
electric field (the Stark effect) can be calculated.

2. Time independent perturbation theory is one of two categories of
perturbation theory, the other being time dependent perturbation. In time
independent perturbation theory the perturbation Hamiltonian is static,
i.e., possesses no time dependence.

3. The first order equation is,

4. The stark effect for the n = 2 states of hydrogen requires the use of
degenerate state perturbation theory since there are four states with (nearly)
the same energies. In the first calculation, we will not consider the hydrogen
fine structure and assume that the four states are exactly degenerate, each
with unperturbed energy of E0. That is . The
degenerate states φ200, φ211, φ210 and φ21 (−1).
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• In quantum mechanics, perturbation theory is a set of approximation
schemes directly related to mathematical perturbation for describing a
complicated quantum system in terms of a simpler one.

• Perturbation theory is applicable if the problem at hand cannot be solved
exactly, but can be formulated by adding a ‘small’ term to the mathematical
description of the exactly solvable problem. For example, by adding a
perturbative electric potential to the quantum mechanical model of the
hydrogen atom, tiny shifts in the spectral lines of hydrogen caused by the
presence of an electric field (the Stark effect) can be calculated.

• The expressions produced by perturbation theory are not exact, but they
can lead to accurate results as long as the expansion parameter, say α,
is very small.

• Typically, the results are expressed in terms of finite power series in ± that
seem to converge to the exact values when summed to higher order. After
a certain order n ~ 1/α however, the results become increasingly worse
since the series are usually divergent (being asymptotic series).

• Time independent perturbation theory is one of two categories of
perturbation theory, the other being time dependent perturbation. In time
independent perturbation theory the perturbation Hamiltonian is static,
i.e., possesses no time dependence.

• The time independent perturbation theory was presented by Erwin
Schrödinger in a 1926 paper, shortly after he produced his theories in
wave mechanics. In this paper Schrödinger referred to earlier work of
Lord Rayleigh, who investigated harmonic vibrations of a string perturbed
by small in-homogeneities. This is why this perturbation theory is often
referred to as Rayleigh–Schrödinger perturbation theory.

• The first order equation is,

• The Stark effect for the n = 2 states of hydrogen requires the use of
degenerate state perturbation theory since there are four states with (nearly)
the same energies. In the first calculation, we will not consider the hydrogen
fine structure and assume that the four states are exactly degenerate, each
with unperturbed energy of E0. That is . The
degenerate states φ200, φ211, φ210 and φ21 (−1).
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9.5 KEY WORDS

• Perturbation theory: It is a set of approximation schemes directly related
to mathematical perturbation for describing a complicated quantum system
in terms of a simpler one.

• Time independent perturbation: The theory is one of two categories of
perturbation theory, the other being time dependent perturbation. In time
independent perturbation theory the perturbation Hamiltonian is static, i.e.,
possesses no time dependence.

9.6 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What is perturbation theory?
2. What is perturbation theory of first order?
3. Explain the time independent perturbation theory.
4. What is stark effect in hydrogen atom?

Long Answer Questions

1. Discuss the significance of perturbation theory in quantum mechanics.
2. Explain the perturbation theory that specifies the first order corrections.
3. Discuss the time independent perturbation theory giving appropriate

examples.
4. Explain the concept of stark effect in hydrogen atom.
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10.0 INTRODUCTION

The variational principle is a scientific principle used within the calculus of
variations, which develops general methods for finding functions which extremize
the value of quantities that depend upon those functions. Any physical law which
can be expressed as a variational principle describes a self-adjoint operator.
These expressions are also called Hermitian. Such an expression describes an
invariant under a Hermitian transformation.

In quantum mechanics, the variational method is one way of finding
approximations to the lowest energy eigenstate or ground state, and some
excited states. This allows calculating approximate wavefunctions, such as
molecular orbitals. The basis for this method is the variational principle. The
method consists of choosing a ‘trial wavefunction’ depending on one or more
parameters, and finding the values of these parameters for which the expectation
value of the energy is the lowest possible. The wavefunction obtained by fixing
the parameters to such values is then an approximation to the ground state
wavefunction, and the expectation value of the energy in that state is an upper
bound to the ground state energy. The variational principle states that if we
simply guess the wave function, the expectation value of the Hamiltonian in that
wave function will be greater than the true ground state energy. The emission
spectra of helium (He) consists of a number of series in the visible region of the
spectrum as well as in the near and far UV regions.

In this unit, you will study about the variation method, ground state of
helium atom and the ground state of deuteron.

10.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the significance of variation method
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• Discuss about the ground state of helium atom
• Explain the ground state of deuteron.

10.2 VARIATION METHOD

The variational method is the key approximate method/technique typically used
in quantum mechanics. Compared to perturbation theory, the variational method
can be more robust in situations where it is hard to determine a good unperturbed
Hamiltonian, i.e., one which makes the perturbation small but is still solvable.
On the other hand, in cases where there is a good unperturbed Hamiltonian,
perturbation theory can be more efficient than the variational method.

The variational principle is a scientific principle used within the calculus of
variations, which develops general methods for finding functions which extremize
the value of quantities that depend upon those functions. Any physical law which
can be expressed as a variational principle describes a self-adjoint operator.
These expressions are also called Hermitian. Such an expression describes an
invariant under a Hermitian transformation.

In quantum mechanics, the variational method is one way of finding
approximations to the lowest energy eigenstate or ground state, and some
excited states. This allows calculating approximate wavefunctions, such as
molecular orbitals. The basis for this method is the variational principle. The
method consists of choosing a ‘trial wavefunction’ depending on one or more
parameters, and finding the values of these parameters for which the expectation
value of the energy is the lowest possible. The wavefunction obtained by fixing
the parameters to such values is then an approximation to the ground state
wavefunction, and the expectation value of the energy in that state is an upper
bound to the ground state energy. The variational principle states that if we
simply guess the wave function, the expectation value of the Hamiltonian in that
wave function will be greater than the true ground state energy.

Basically the ‘trial wavefunction’ for the problem consists of some
adjustable parameters called termed as the ‘variational parameters’. These
parameters are adjusted until the energy of the trial wavefunction is minimized.
The resulting trial wavefunction and its corresponding energy are variational
method approximations to the exact wavefunction and energy.

Suppose we are given a Hilbert space and a Hermitian operator over it
called the Hamiltonian, H. Ignoring complications about continuous spectra,
consider the discrete spectrum of H and the corresponding eigenspaces of each
eigenvalue »:
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Where is the Kronecker delta,

And the Hamiltonian is related to » through the typical eigenvalue relation,

Physical states are normalized, meaning that their norm is equal to 1.
Once again ignoring complications involved with a continuous spectrum of H,
suppose it is bounded from below and that its greatest lower bound is E0.
Suppose also that we know the corresponding state |Èé’. The expectation value
of H is then,

Evidently, in order to vary over all possible states with norm 1 trying to
minimize the expectation value of H, the lowest value would be E0 and the
corresponding state would be an eigenstate of E0. Varying over the entire
Hilbert space is usually too complicated for physical calculations, and a subspace
of the entire Hilbert space is chosen, parametrized by some (real) differentiable
parameters ±i (i = 1, 2, ..., N). The choice of the subspace is called the ansatz.
Some choices of ansatzes lead to better approximations than others, therefore
the choice of ansatz is important.

Assume that there is some overlap between the ansatz and the ground
state (otherwise, it is a bad ansatz). We still wish to normalize the ansatz, so we
have the constraints,

And to minimize,

If ψ  (α) is expressed as a linear combination of other functions (αi being
the coefficients), as in the Ritz method, there is only one minimum and the
problem is straightforward.

Although generally limited to calculations of the ground state energy, this
method can be applied in certain cases to calculations of excited states as well.
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If the ground state wavefunction is known, either by the method of variation or
by direct calculation, a subset of the Hilbert space can be chosen which is
orthogonal to the ground state wavefunction.

  

The resulting minimum is usually not as accurate as for the ground state,

as any difference between the true ground state and  results in a lower
excited energy. This defect is worsened with each higher excited state.

In another formulation,

   

This holds for any trial Æ since, by definition, the ground state wavefunction
has the lowest energy, and any trial wavefunction will have energy greater than
or equal to it.

Proof: ϕ can be expanded as a linear combination of the actual
eigenfunctions of the Hamiltonian (which we assume to be normalized and
orthogonal):

   

Then, to find the expectation value of the Hamiltonian,

  

Now, the ground state energy is the lowest energy possible, i.e., .
Therefore, if the guessed wave function Æ is normalized:

  

For a Hamiltonian H that describes the studied system and any normalizable
function ψ  with arguments appropriate for the unknown wave function of the
system, we define the functional,
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Variational Principle

    

The variational principle states that,

• , where E0 is the lowest energy eigenstate (ground state) of the
Hamiltonian.

•  if and only if Ψ  is exactly equal to the wave function of the
ground state of the studied system.

The variational principle formulated above is the basis of the variational
method used in quantum mechanics and quantum chemistry to find
approximations to the ground state.

Another feature in variational principles in quantum mechanics is that since
ψ  and Ψ + can be varied separately (a fact arising due to the complex nature
of the wave function), the quantities can be varied in principle just one at a time.

Helium Atom Ground State

The helium atom consists of two electrons with mass m and electric charge
–e, around an essentially fixed nucleus of mass M >> m and charge +2e. The
Hamiltonian for it, neglecting the fine structure, is:

  

where    is the reduced Planck constant, ε0 is the vacuum
permittivity, ri (for i = 1, 2) is the distance of the ith electron from the nucleus,
and |r1 – r2| is the distance between the two electrons.

If the term Vee = e2/(4πε0|r1 – r2|), representing the repulsion between the
two electrons, were excluded, the Hamiltonian would become the sum of
two hydrogen-like atom Hamiltonians with nuclear charge +2e. The ground
state energy would then be 8E1 = –109 eV, where E1 is the Rydberg constant,
and its ground state wavefunction would be the product of two wavefunctions
for the ground state of hydrogen-like atoms:

  

Where a0 is the Bohr radius and Z = 2, Helium’s nuclear charge. The
expectation value of the total Hamiltonian H (including the term Vee) in the state
described by  ψ 0 will be an upper bound for its ground state energy. <Vee> is
–5E1/2 = 34 eV, so <H> is 8E1 – 5E1/2 = –75 eV.
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A tighter upper bound can be found by using a better trial wavefunction
with ‘tunable’ parameters. Each electron can be thought to see the nuclear
charge partially ‘shielded’ by the other electron, so we can use a trial wavefunction
equal with an ‘effective’ nuclear charge Z < 2: The expectation value of H in this
state is:

  

This is minimal for Z = 27/16 implying shielding reduces the effective
charge to ~1.69. Substituting this value of Z into the expression for H yields
729E1/128 = –77.5 eV, within 2% of the experimental value, –78.975 eV.

Deuteron Ground State

Deuterium or hydrogen-2, symbol D or 2H, also known as heavy hydrogen, is
one of two stable isotopes of hydrogen (the other being protium, or hydrogen-
1). The nucleus of deuterium, called a deuteron, contains one proton and one
neutron, whereas the far more common protium has no neutron in the nucleus.
Deuterium has a natural abundance in Earth’s oceans of about one atom in
6420 of hydrogen. Thus deuterium accounts for approximately 0.02% (or, on
a mass basis, 0.03%) of all the naturally occurring hydrogen in the oceans, while
protium accounts for more than 99.98%.

The deuteron has spin +1 ‘triplet state’ and is thus a boson. The NMR
frequency of deuterium is significantly different from common light hydrogen.
Infrared spectroscopy also easily differentiates many deuterated compounds,
due to the large difference in IR absorption frequency seen in the vibration of
a chemical bond containing deuterium, versus light hydrogen. The two stable
isotopes of hydrogen can also be distinguished by using mass spectrometry.

The triplet deuteron nucleon is barely bound at EB = 2.23 MeV, and none
of the higher energy states are bound. The singlet deuteron is a virtual state, with
a negative binding energy of ~60 keV. There is no such stable particle, but this
virtual particle transiently exists during neutron-proton inelastic scattering,
accounting for the unusually large neutron scattering cross-section of the proton.

Variation method – ground state of helium atom – ground state of Deuteron.

Check Your Progress

1. Define variational principle.
2. What is trial wavefunction?
3. What does variational principle state?
4. Explain the term variational parameters.
5. Explain the structure of helium atom.
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10.3 ANSWERS TO CHECK YOUR PROGRESS

QUESTIONS

1. The variational principle is a scientific principle used within the calculus of
variations, which develops general methods for finding functions which
extremize the value of quantities that depend upon those functions. Any
physical law which can be expressed as a variational principle describes
a self-adjoint operator. These expressions are also called Hermitian. Such
an expression describes an invariant under a Hermitian transformation.

2. In quantum mechanics, the variational method is one way of finding
approximations to the lowest energy eigenstate or ground state, and some
excited states. The basis for this method is the variational principle. The
method consists of choosing a ‘trial wavefunction’ depending on one or
more parameters, and finding the values of these parameters for which
the expectation value of the energy is the lowest possible. The wavefunction
obtained by fixing the parameters to such values is then an approximation
to the ground state wavefunction, and the expectation value of the energy
in that state is an upper bound to the ground state energy.

3. The variational principle states that if we simply guess the wave function,
the expectation value of the Hamiltonian in that wave function will be
greater than the true ground state energy.

4. Basically the ‘trial wavefunction’ for the problem consists of some
adjustable parameters called termed as the ‘variational parameters’. These
parameters are adjusted until the energy of the trial wavefunction is
minimized. The resulting trial wavefunction and its corresponding energy
are variational method approximations to the exact wavefunction and
energy.

5. The helium atom consists of two electrons with mass m and electric
charge –e, around an essentially fixed nucleus of mass M >> m and
charge +2e. The Hamiltonian for it, neglecting the fine structure, is:

where    is the reduced Planck constant, ε0 is the vacuum
permittivity, ri (for i = 1, 2) is the distance of the ith electron from the
nucleus, and |r1 – r2| is the distance between the two electrons.
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10.4 SUMMARY

• The variational principle is a scientific principle used within the calculus
of variations, which develops general methods for finding functions which
extremize the value of quantities that depend upon those functions.

• Any physical law which can be expressed as a variational principle
describes a self-adjoint operator. These expressions are also called
Hermitian. Such an expression describes an invariant under a Hermitian
transformation.

• In quantum mechanics, the variational method is one way of finding
approximations to the lowest energy eigenstate or ground state, and
some excited states. This allows calculating approximate wavefunctions,
such as molecular orbitals. The basis for this method is the variational
principle. The method consists of choosing a ‘trial wavefunction’ depending
on one or more parameters, and finding the values of these parameters
for which the expectation value of the energy is the lowest possible.

• The wavefunction obtained by fixing the parameters to such values is then
an approximation to the ground state wavefunction, and the expectation
value of the energy in that state is an upper bound to the ground state
energy.

• The variational principle states that if we simply guess the wave function,
the expectation value of the Hamiltonian in that wave function will be
greater than the true ground state energy.

• Basically the ‘trial wavefunction’ for the problem consists of some
adjustable parameters called termed as the ‘variational parameters’. These
parameters are adjusted until the energy of the trial wavefunction is
minimized. The resulting trial wavefunction and its corresponding energy
are variational method approximations to the exact wavefunction and
energy.

• The variational principle states that,

1. , where E0 is the lowest energy eigenstate (ground state) of
the Hamiltonian.

2.  if and only if ψ  is exactly equal to the wave function of the
ground state of the studied system.

• The helium atom consists of two electrons with mass m and electric
charge –e, around an essentially fixed nucleus of mass M >> m and
charge +2e. The Hamiltonian for it, neglecting the fine structure, is:
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where    is the reduced Planck constant, ε0 is the vacuum
permittivity, ri (for i = 1, 2) is the distance of the ith electron from the
nucleus, and |r1 – r2| is the distance between the two electrons.

• Deuterium or hydrogen-2, symbol D or 2H, also known as heavy
hydrogen, is one of two stable isotopes of hydrogen (the other being
protium, or hydrogen-1).

• The nucleus of deuterium, called a deuteron, contains one proton and one
neutron, whereas the far more common protium has no neutron in the
nucleus.

• The deuteron has spin +1 ‘triplet state’ and is thus a boson. The NMR
frequency of deuterium is significantly different from common light
hydrogen.

• The triplet deuteron nucleon is barely bound at EB = 2.23 MeV, and none
of the higher energy states are bound. The singlet deuteron is a virtual
state, with a negative binding energy of ~60 keV.

10.5 KEY WORDS

• Variational principle: It is a scientific principle used within the calculus of
variations, which develops general methods for finding functions which
extremize the value of quantities that depend upon those functions.

• Hermitian: Any physical law which can be expressed as a variational
principle describes a self-adjoint operator are also called Hermitian.

• Variational parameters: The trial wavefunction for the problem consists
of some adjustable parameters called termed as the variational parameters.

10.6 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What is variation method?
2. Explain variational parameters.
3. Explain the ground state of helium atom.
4. Explain the ground state of deuteron.
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Long Answer Questions

1. Briefly discuss the variation method giving appropriate examples.
2. Explain the equations involved in expressing and evaluating the ground state.
3. Discuss the ground state of helium atom and deuteron.

10.7 FURTHER READINGS
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UNIT 11 WKB APPROXIMATION

Structure
11.0 Introduction
11.1 Objectives
11.2 WKB Approximation
11.3 Answers to Check Your Progress Questions
11.4 Summary
11.5 Key Words
11.6 Self Assessment Questions and Exercises
11.7 Further Readings

11.0 INTRODUCTION

In mathematical physics, the WKB approximation or WKB method is used for
finding approximate solutions to linear differential equations with spatially varying
coefficients. It is typically used for a semi-classical calculation in quantum mechanics
in which the wavefunction is recast as an exponential function, semi-classically
expanded, and then either the amplitude or the phase is taken to be changing
slowly.

The WKB approximation is named after Wentzel–Kramers–Brillouin. This
method is specifically used for obtaining an approximate solution to a time
independent one-dimensional differential equation, typically the Schrõdinger
equation. Its principal applications include the calculations of bound state energies
and tunnelling rates through barriers.

In this unit, you will study about the WKB approximation and its application
to bound states.

11.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the WKB approximation method
• Define the WKB approximation application to bound states

11.2 WKB APPROXIMATION

In mathematical physics, the WKB approximation or WKB method is a method for
finding approximate solutions to linear differential equations with spatially varying
coefficients. It is typically used for a semi-classical calculation in quantum mechanics
in which the wavefunction is recast as an exponential function, semi-classically
expanded, and then either the amplitude or the phase is taken to be changing slowly.
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The abbreviation WKB approximation refers to Wentzel–Kramers–Brillouin,
i.e.,   the WKB approximation method is named after physicists Gregor Wentzel,
Hendrik Anthony Kramers, and Léon Brillouin, who all developed it in 1926. In
1923, mathematician Harold Jeffreys had developed a general method of
approximating solutions to linear, second order differential equations, a class that
includes the Schrödinger equation. Early texts in quantum mechanics contain any
number of combinations of their initials, including WBK, BWK, WKBJ, JWKB
and BWKJ.

The WKB approximation is specifically used for obtaining an approximate
solution to a time independent one-dimensional differential equation, typically the
Schrõdinger equation. Its principal applications include the calculations of bound
state energies and tunnelling rates through barriers.
WKB Method
The WKB theory is a method typically used for approximating the solution of a
differential equation whose highest derivative is multiplied by a small parameter
‘ε’. The method of approximation is as follows.
For a differential equation,

Assume that following is the solution of the form of an asymptotic series
expansion in the limit δ → 0,

The asymptotic scaling of δ in terms of ε will be determined by the equation,

WKB theory is a special case of multiple scale analysis.
Precision or Exactness of the Asymptotic Series
The asymptotic series for y(x) is typically considered as a divergent series, whose
general term δn Sn(x) starts to increase after a certain value n = nmax. Therefore,
the smallest error attained by the WKB method is the order of the last included
term.
For the equation,
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WKB ApproximationWith Q(x) < 0 an analytic function, the value nmax and the magnitude of the last
term can be estimated as follows:

Where x0 is the point at which y(x0) needs to be evaluated and x* is the
(complex) turning point where Q(x*) = 0, closest to x = x0.

The number nmax can be interpreted as the number of oscillations between
x0 and the closest turning point.
If ∈–1 Q(x) is a slowly changing function,

The number nmax will be large, and the minimum error of the asymptotic
series will be exponentially small.

Derivation of the Schrödinger Equation

Solving the Schrödinger equation is one of the essential problems in quantum
mechanics. Since a non-linear second order Ordinary Differential Equation (ODE)
has, in general, no analytic solution, hence an approximation method is typically
applied. Instead of starting with a simplified potential and adding small terms,
which leads to perturbation theory, the WKB approximation makes an assumption
of a slowly varying potential.
To derive the approximation, consider the Schrödinger equation,

...(11.1)

With the abbreviations,

...(11.2)

If k(x) = Constant is the function has the solution ( ) ikxx e . If k is no longer
constant but varies at a slow rate, then reasonably we can use the solution, with x
dependent k,

( )ie k t dt ...(11.3)
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Substituting it in to the Schrödinger equation gives us,

...(11.4)

Thus the solutions in Equation (11.3) solves the equation only when k′(x) is equal
to 0. However, Equation (11.4) suggests that Equation (11.3) remains a good
approximation, if k′ is negligible, or, more precisely, if

...(11.5)
This is the condition used in the derivation of the WKB approximation.

Application to Bound States

In quantum physics, a bound state is a special quantum state of a particle subject
to a potential such that the particle has a tendency to remain localised in one or
more regions of space. The potential may be external or it may be the result of the
presence of another particle; in the latter case, one can equivalently define a bound
state as a state representing two or more particles whose interaction energy exceeds
the total energy of each separate particle. One consequence is that, given a potential
vanishing at infinity, negative-energy states must be bound. In general, the energy
spectrum of the set of bound states is discrete, unlike free particles, which have a
continuous spectrum.

In a bound state problem with potential V (x), for a given energy E, we can
divide space into classically allowed regions, for which E > V (x), and classically
forbidden regions for which E < V (x). Assume that there are only three regions in
total, classically forbidden for x < a and x > b, and classically allowed
for a < x < b.

In the classically allowed region a < x < b the wave function will be oscillating
and we can write it either as a superposition of right- and left-moving complex
exponentials or as,

ψ(x) = A k(x) cos xk(x2 )dx2  + φ
For the particular case of a well with infinite sides the solution must vanish at

the boundaries, so (taking the lower limit of integration as a for definitness; any
other choice just shifts φ) φ = (n′  + 1 2)π and abk(x′)dx′  + φ = (n′′ + 1 2)π; in
other words abk(x′)dx′ = (n + 1)π, with integer n ≥ 0. Evidently for
constant k this gives k = nπ/(b – a), which is exact.
For a more general potential, outside the classically allowed region we will have
decaying exponentials. If we approximate the potential as linear we can solve the
Schrödinger equation exactly (in terms of Airy functions). For WKB solutions in
the locality of x = a and x = b gives the surprisingly simple result that inside the
well,
ψ(x) = A k(x) cos axk(x′)dx′ – π/4 and ψ(x) = A′ k(x) cos bxk(x′)dx′  + π/4
which can only be satisfied if A′  = ± A and abk(x′ )dx′  = (n + 1 2)π. This latter
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WKB Approximationis the quantisation condition for a finite well; it is diûerent from the infinite well
because the solution can leak into the forbidden region. For a semi-infinite well,
the condition is that the integral equal (n + 3 4)π. This is the appropriate form for
the l = 0 solutions of a spherically symmetric well.

Check Your Progress

1. What is WKB approximation?
2. What does abbreviation WKB approximation refers?
3. When is WKB approximation used?
4. Define WKB theory.
5. What is asymptotic series for y(x)?
6. In quantum physics, what is a bound state?

11.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. In mathematical physics, the WKB approximation or WKB method is a
method for finding approximate solutions to linear differential equations with
spatially varying coefficients. It is typically used for a semi-classical calculation
in quantum mechanics in which the wavefunction is recast as an exponential
function, semi-classically expanded, and then either the amplitude or the
phase is taken to be changing slowly.

2. The abbreviation WKB approximation refers to Wentzel–Kramers–Brillouin,
i.e., the WKB approximation method is named after physicists Gregor
Wentzel, Hendrik Anthony Kramers, and Léon Brillouin, who all developed
it in 1926.

3. The WKB approximation is specifically used for obtaining an approximate
solution to a time independent one-dimensional differential equation, typically
the Schrődinger equation. Its principal applications include the calculations
of bound state energies and tunnelling rates through barriers.

4. The WKB theory is a method typically used for approximating the solution
of a differential equation whose highest derivative is multiplied by a small
parameter ‘ε’. The method of approximation is as follows.
For a differential equation,

Assume that following is the solution of the form of an asymptotic series
expansion in the limit δ → 0,
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The asymptotic scaling of δ in terms of ε will be determined by the equation,

5. The asymptotic series for y(x) is typically considered as a divergent series,
whose general term δn Sn(x) starts to increase after a certain value n = nmax.
Therefore, the smallest error attained by the WKB method is the order of
the last included term.

6. In quantum physics, a bound state is a special quantum state of a particle
subject to a potential such that the particle has a tendency to remain localised
in one or more regions of space. The potential may be external or it may be
the result of the presence of another particle; in the latter case, one can
equivalently define a bound state as a state representing two or more particles
whose interaction energy exceeds the total energy of each separate particle.

11.4 SUMMARY

• In mathematical physics, the WKB approximation or WKB method is a
method for finding approximate solutions to linear differential equations with
spatially varying coefficients.

• WKB approximation is typically used for a semi-classical calculation in
quantum mechanics in which the wavefunction is recast as an exponential
function, semi-classically expanded, and then either the amplitude or the
phase is taken to be changing slowly.

• The abbreviation WKB approximation refers to Wentzel–Kramers–Brillouin,
i.e., the WKB approximation method is named after physicists Gregor
Wentzel, Hendrik Anthony Kramers, and Léon Brillouin, who all developed
it in 1926.

• The WKB approximation is specifically used for obtaining an approximate
solution to a time independent one-dimensional differential equation, typically
the Schrődinger equation. Its principal applications include the calculations
of bound state energies and tunnelling rates through barriers.

• The WKB theory is a method typically used for approximating the solution
of a differential equation whose highest derivative is multiplied by a small
parameter ‘ε’.

• WKB theory is a special case of multiple scale analysis.
• The asymptotic series for y(x) is typically considered as a divergent series,

whose general term δn Sn(x) starts to increase after a certain value n = nmax.
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WKB ApproximationTherefore, the smallest error attained by the WKB method is the order of
the last included term.

• Solving the Schrödinger equation is one of the essential problems in quantum
mechanics. Since a non-linear second order Ordinary Differential Equation
(ODE) has, in general, no analytic solution, hence an approximation method
is typically applied.

• In quantum physics, a bound state is a special quantum state of a particle
subject to a potential such that the particle has a tendency to remain localised
in one or more regions of space.

• The potential may be external or it may be the result of the presence of
another particle; in the latter case, one can equivalently define a bound state
as a state representing two or more particles whose interaction energy
exceeds the total energy of each separate particle.

• In a bound state problem with potential V (x), for a given energy E, we can
divide space into classically allowed regions, for which E > V (x), and
classically forbidden regions for which E < V (x). Assume that there are
only three regions in total, classically forbidden for x < a and x > b, and
classically allowed for a < x < b.

11.5 KEY WORDS

• WKB approximation or WKB method: It is a method for finding
approximate solutions to linear differential equations with spatially varying
coefficients. The WKB approximation refers to Wentzel–Kramers–Brillouin.

• Bound state: A bound state is a special quantum state of a particle subject
to a potential such that the particle has a tendency to remain localised in one
or more regions of space.

11.6 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Define WKB approximation.
2. Who developed WKB approximation?
3. Which condition is used in the derivation of the WKB approximation?
4. What is bound state?

Long Answer Questions

1. Discuss the WKB approximation or WKB method giving appropriate
examples.
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2. Briefly explain the WKB theory with relevant equations.
3. Explain the exactness of the asymptotic series.
4. Explain the derivation of the Schrödinger equation.
5. Discuss the bound state for WKB approximation.

11.7 FURTHER READINGS
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New Delhi: Tata McGraw-Hill.

Aruldhas, G. 2009. Quantum Mechanics, 2nd Edition. New Delhi: PHI Learning
Pvt. Ltd.

Devanathan, V. 2005. Quantum Mechanics. Oxford: Alpha Science International
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Hill.
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12.0 INTRODUCTION

In quantum mechanics, perturbation theory is a set of approximation schemes
directly related to mathematical perturbation for describing a complicated quantum
system in terms of a simpler one. The basic notion is to start with a simple system
for which a mathematical solution is known, and then adding an additional
‘perturbing’ Hamiltonian representing a weak disturbance to the system. If the
disturbance is not too large, the various physical quantities associated with the
perturbed system, for example its energy levels and eigenstates, can be expressed
as ‘corrections’ to those of the simple system. These corrections, being small
compared to the size of the quantities themselves, can be calculated using
approximate methods, such as asymptotic series.

The time dependent perturbation theory was developed by Paul Dirac who
proposed that the effect of a time dependent perturbation V(t) can be applied to a
time independent Hamiltonian H0. Since the perturbed Hamiltonian is time-
dependent, so are its energy levels and eigenstates.

The emission of a single photon by an excited atom can be studied using the
time dependent perturbation theory to find the transition probability for atom. The
atoms those exist in higher energy state (by stimulated absorption) can make a
transition to ground state (lower energy state) through the emission of
electromagnetic radiation by two ways, the spontaneous emission and the stimulated
emission.

In this unit, you will study about the time dependent perturbation theory, the
golden rule and applications, spontaneous emission and stimulated emission.
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12.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the time dependent perturbation theory
• Explain the golden rule and its applications for time dependent perturbation

theory
• Discuss about the spontaneous emission and stimulated emission

12.2 TIME DEPENDENT PERTURBATION THEORY

In quantum mechanics, perturbation theory is a set of approximation schemes
directly related to mathematical perturbation for describing a complicated quantum
system in terms of a simpler one. The basic notion is to use a simple system
for which a mathematical solution is known, and then adding an additional
‘Perturbing’ Hamiltonian representing a weak disturbance to the system. If the
disturbance is not too large, then the various physical quantities associated with
the perturbed system, for example its energy levels and eigenstates, can be
expressed as ‘Corrections’ to those of the simple system. These corrections,
being small compared to the size of the quantities themselves, can be calculated
using approximate methods, such as asymptotic series. The complicated system
can consequently be studied based on the simpler one.

Time dependent perturbation theory, developed by Paul Dirac, typically
explains the effect of a time dependent perturbation V(t) applied to a time
independent Hamiltonian, H0. Since the perturbed Hamiltonian is time dependent,
accordingly are its energy levels and eigenstates. Thus, the goals of time dependent
perturbation theory are slightly different from time independent perturbation
theory. Following are the two significant quantities of the time dependent
perturbation:

1. The time dependent expectation value of some observable A, for a given
initial state.

2. The time dependent amplitudes of those quantum states that are energy
eigenkets (eigenvectors) in the unperturbed system.

General Time Dependent Perturbations

Assume that the unperturbed energy eigenvalue problem is exactly of the
form .

To this is added a perturbation that depends on time,ν (t). To solve the
time dependent problems we use the following time dependent Schrödinger
equation. 
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Perturbation TheoryThen we expand   in terms of the eigenfunctions as,

   with  .

The time dependent Schrödinger equations is then given as,

Now dot   into this equation to get the time dependence of one
coefficient.

Assuming that at t = 0, we are in an initial state   and

hence all the other  are equal to zero as .

Next we calculate the transition rates. Considering that for the first order,
all the are small in comparison to , therefore the sum can be
neglected.

This equation is used to calculate transition probabilities for a general time
dependent perturbation. This can also be used as a basis to calculate the
transition rates for the specific problem of harmonic potentials.

Assuming again that ‘t’ is small enough hence the   may not have
changed much.

Remember that, if there is a large energy difference between the initial and
the final states, then a slowly varying perturbation can average to zero.
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Subsequently we can find that the perturbation may require frequency
components that are compatible with   in order to cause transitions.

If the first order term is zero or higher accuracy is required, then the
second order term can be calculated. In second order, first a transition is made
to an intermediate state   and then a transition to  . We simply put the

first order   into the sum.

The Golden Rule and its Applications

In quantum physics, Fermi’s golden rule is a formula that describes the transition
rate (probability of transition per unit time) from one energy eigenstate of a
quantum system to a group of energy eigenstates in a continuum, as a result of
a weak perturbation. This transition rate is effectively independent of time (so
long as the strength of the perturbation is independent of time) and is proportional
to the strength of the coupling between the initial and final states of the system,
typically described by the square of the matrix element of the perturbation,
along with the density of states. It is also applicable when the final state is not
part of a continuum if there is some de-coherence in the process, like relaxation
of the atoms or like noise in the perturbation, in which case the density of states
is replaced by the reciprocal of de-coherence bandwidth.

Fermi’s Golden Rule, also referred to as, the Golden Rule of time
dependent perturbation theory, is an equation for calculating transition rates.
The result is obtained by applying the time dependent perturbation theory to a
system that undergoes a transition from an initial statei〉 to a final state f〉 that
is part of a continuum of states.

Fermi’s golden rule describes a system which begins in an eigenstate,i〉,
of an unperturbed Hamiltonian, H0 and considers the effect of a perturbing
Hamiltonian, H′ applied to the system. If H′is considered time independent, then
the system goes only into those states in the continuum that have the same
energy as the initial state. If H′ is oscillating sinusoidally as a function of time,
i.e., it is a harmonic perturbation, with an angular frequency É, then the transition
is into states with energies that differ by ‘É from the energy of the initial state.
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In both cases, the transition probability per unit of time from the initial
statei〉 to a set of final statesf〉 is essentially constant. It is given, to first order
approximation, by,

Where is the matrix element (in bra–ket notation) of the

perturbation H′ between the final and initial states and is the density of
states (number of continuum states in an infinitesimally small energy interval E
+ dE at the energy Ef of the final states. This transition probability is also called
‘Decay Probability’ and is related to the inverse of the mean lifetime. Thus, the
probability of finding the system in statef〉 is proportional to .

The standard way to derive the equation is to start with time dependent
perturbation theory and to take the limit for absorption under the assumption
that the time of the measurement is much larger than the time needed for the
transition.

Check Your Progress

1. What is time dependent perturbation theory?
2. Define the two significant quantities of the time dependent perturbation.
3. When the perturbation can average to zero?
4. What is Fermi's golden rule?
5. What does Fermi’s golden rule describes?

12.3 SPONTANEOUS AND STIMULATED EMISSION

One of the most outstanding developments of science and technology in 20th
century is laser. Laser first made in 1960. The term laser is the abbreviation of
‘Light Amplification by Stimulated Emission of Radiation’. So the term reflects the
crucial role of the technology of stimulated emission for quantum oscillators and
amplifiers of coherent light source. This field of science and technology first came
into light when Albert Einstein showed that the process stimulated emission must
exist.

Any atomic system is characterized by different discrete energy state.
Normally, the atoms are lying in the lowest energy state (say, ground state). An
atom lying in a ground state may be excited by variety of processes to a higher
energy state. It may occur by the collisions with other particles or through the
absorption of electromagnetic radiation of particular frequencies; such a way is
known as stimulated absorption.
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On the other hand, the atoms those exist in higher energy state (by stimulated
absorption) can make a transition to ground state (lower energy state) through the
emission of electromagnetic radiation by two ways — (a) Spontaneous Emission
and (b) Stimulated Emission.

Optical Coherence

If light waves from different sources, which are always in phase is called coherent
light. Such waves are responsible for interference effects. Actual light waves consist
of different photons with different states. So, the photons emitted from different
sources have their different energy, different direction of momentum, and
polarization. These light waves are made of ‘disordered’ photons. Only the waves
from coherence sources can produce an interference pattern. The ability of a
wave to produce an interference pattern may be measured by the fringe contrast,
i.e., fringe visibility. The visibility of an interference pattern is defined by the relation,

V   = max min

max min

I I
I I

where Imax is the maximum intensity of bright fringes and Imin is the minimum intensity
of dark fringe (~ 0). From the above relation we see that when Imin = 0, the
visibility is maximum, i.e., V = 1. Visibility will be minimum when Imax = Imin , i.e.,
when simply no interference pattern is evident.

The ability of light waves to produce interference depends on the ‘Degree
of Coherence’ of the light wave. An increase in the ‘Degree of Coherence’ of a
light beam corresponds to a contrast interference pattern, i.e., visibility will be
higher.

Spontaneous and Stimulated Emission

The energy level of an atom or molecule has with definite (discrete) energy. The
transition of an atom or molecule from one energy of lower and upper level to
other happens by quantum transition. The transition occurs when atoms or molecules
interact with molecular radiation.

Before the discussion of spontaneous and stimulated emission we must
discuss about absorption (stimulated) of light. Let the energies of lower and upper
level are E1 and E2. If the atoms are in lower energy state, then one say that a
photon having energy E12 = E2 – E1 travels to the atoms. The atoms can absorb
this photonic energy and jump from level E1 to E2 (Refer Figure (12.1)).

Fig. 12.1 Absorption of Photon
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If Wab be the probability of absorption of light (photon) from E1 to E2
transition in atoms per unit time, the probability is proportional to the numbers of
incident photons and can be written as,

Wab   = BNE12 ...(12.1)
where N is the numbers of photons per unit volume and B is a constant.
Spontaneous Emission: When an atom that are in excited state (higher energy
state) of energy E2 will tend to come to ground state (or lower energy state) of
energy E1 spontaneously, i.e., without any stimulus. The photon emitted the energy
E12 = E2 – E1 spontaneously (Refer Figure (12.2)). If the probability of spontaneous
emission is Wsp , then we can say,

 Wsp = A ...(12.2)
The probability of spontaneous emission depends only on the properties of

the transition.

Fig. 12.2 Spontaneous Emission

Stimulated Emission: When the atoms that are in the excited state (higher energy
level), then the same incident photon can play the role of a trigger, i.e., it can
induce the atom to come back to lower energy state (or ground state). So, the
transition takes place from E2 level to E1 level. Due to this transition photon emitted
some energy of E12 = E2 – E1. Both the inducing and induced photon has the same
energy E12. This phenomenon is known as stimulated emission (Refer Figure
(12.3)). The rate of stimulated emission (as well as absorption) depends on the
intensity of the field applied (external) and on the numbers of atoms in the excited
state (higher energy level). The total stimulated transition (stimulated emission and
absorption) depends on the difference of atoms in the ground state (lower energy
state) and excited state (higher energy state). But for the case of spontaneous emission,
the transition depends on the numbers of atoms in the excited state (higher energy
state).

If the probability of stimulated emission is Wst per unit time, then we have
Wst = BNE12 ...(12.3)

Fig. 12.3 Stimulated Emission
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Check Your Progress

6. How any atomic system is characterized?
7. Explain the ‘Degree of Coherence’.
8. What is spontaneous emission?
9. On what the probability of spontaneous emission depends?

10. Explain stimulated emission.

12.4 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. Time dependent perturbation theory, developed by Paul Dirac, typically
explains the effect of a time dependent perturbation V(t) applied to a time
independent Hamiltonian, H0. Since the perturbed Hamiltonian is time
dependent, accordingly are its energy levels and eigenstates.

2. Following are the two significant quantities of the time dependent
perturbation:
• The time dependent expectation value of some observable A, for a given

initial state.
• The time dependent amplitudes of those quantum states that are energy

eigenkets (eigenvectors) in the unperturbed system.
3. If there is a large energy difference between the initial and the final states,

then a slowly varying perturbation can average to zero.
4. Fermi’s Golden Rule, also referred to as, the Golden Rule of time

dependent perturbation theory, is an equation for calculating transition
rates. The result is obtained by applying the time dependent perturbation
theory to a system that undergoes a transition from an initial statei〉 to
a final state f〉 that is part of a continuum of states.

5. Fermi’s golden rule describes a system which begins in an eigenstate,i〉,
of an unperturbed Hamiltonian, H0 and considers the effect of a perturbing
Hamiltonian, H′ applied to the system. If H′is considered time independent,
then the system goes only into those states in the continuum that have the
same energy as the initial state. If H′ is oscillating sinusoidally as a function
of time, i.e., it is a harmonic perturbation, with an angular frequency É,
then the transition is into states with energies that differ by ‘É from the
energy of the initial state.
In both cases, the transition probability per unit of time from the initial
statei〉 to a set of final statesf〉 is essentially constant.
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6. Any atomic system is characterized by different discrete energy state.
Normally, the atoms are lying in the lowest energy state (say, ground
state). An atom lying in a ground state may be excited by variety of
processes to a higher energy state. It may occur by the collisions with
other particles or through the absorption of electromagnetic radiation of
particular frequencies; such a way is known as stimulated absorption.
The atoms those exist in higher energy state (by stimulated absorption)
can make a transition to ground state (lower energy state) through the
emission of electromagnetic radiation by two ways, spontaneous emission
and stimulated emission.

7. The ability of light waves to produce interference depends on the ‘Degree
of Coherence’ of the light wave. An increase in the ‘Degree of Coherence’
of a light beam corresponds to a contrast interference pattern, i.e., visibility
will be higher.

8. The spontaneous emission states that when an atom that are in excited
state (higher energy state) of energy E2 will tend to come to ground state
(or lower energy state) of energy E1 spontaneously, i.e., without any
stimulus. The photon emitted the energy E12 = E2 – E1 spontaneously.

9. The probability of spontaneous emission depends only on the properties
of the transition.

10. The stimulated emission states that when the atoms that are in the excited
state (higher energy level), then the same incident photon can play the
role of a trigger, i.e., it can induce the atom to come back to lower energy
state (or ground state). So, the transition takes place from E2 level to E1
level. Due to this transition photon emitted some energy of E12 = E2 –
E1. Both the inducing and induced photon has the same energy E12. This
phenomenon is known as stimulated emission.

12.5 SUMMARY

• In quantum mechanics, perturbation theory is a set of approximation
schemes directly related to mathematical perturbation for describing a
complicated quantum system in terms of a simpler one.

• The basic notion is to use a simple system for which a mathematical
solution is known, and then adding an additional ‘Perturbing’ Hamiltonian
representing a weak disturbance to the system.

• If the disturbance is not too large, then the various physical quantities
associated with the perturbed system, for example its energy levels and
eigenstates, can be expressed as ‘Corrections’ to those of the simple
system. These corrections, being small compared to the size of the
quantities themselves, can be calculated using approximate methods, such
as asymptotic series.
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• Time dependent perturbation theory, developed by Paul Dirac, typically
explains the effect of a time dependent perturbation V(t) applied to a time
independent Hamiltonian, H0.

• Since the perturbed Hamiltonian is time dependent, accordingly are its
energy levels and eigenstates. Thus, the goals of time dependent
perturbation theory are slightly different from time independent perturbation
theory.

• The time dependent expectation value of some observable A, for a given
initial state.

• The time dependent amplitudes of those quantum states that are energy
eigenkets (eigenvectors) in the unperturbed system.

• If there is a large energy difference between the initial and the final states,
then a slowly varying perturbation can average to zero.

• In quantum physics, Fermi’s golden rule is a formula that describes the
transition rate (probability of transition per unit time) from one energy
eigenstate of a quantum system to a group of energy eigenstates in a
continuum, as a result of a weak perturbation.

• Fermi’s Golden Rule, also referred to as, the Golden Rule of time
dependent perturbation theory, is an equation for calculating transition
rates. The result is obtained by applying the time dependent perturbation
theory to a system that undergoes a transition from an initial statei〉 to
a final state f〉 that is part of a continuum of states.

• Fermi’s golden rule describes a system which begins in an eigenstate,i〉,
of an unperturbed Hamiltonian, H0 and considers the effect of a perturbing
Hamiltonian, H′ applied to the system.

• If H′is considered time independent, then the system goes only into those
states in the continuum that have the same energy as the initial state. If
H′ is oscillating sinusoidally as a function of time, i.e., it is a harmonic
perturbation, with an angular frequency É, then the transition is into states
with energies that differ by ‘É from the energy of the initial state. In both
cases, the transition probability per unit of time from the initial statei〉?to
a set of final statesf〉 is essentially constant.

• The standard way to derive the equation is to start with time dependent
perturbation theory and to take the limit for absorption under the
assumption that the time of the measurement is much larger than the time
needed for the transition.

• Any atomic system is characterized by different discrete energy state.
Normally, the atoms are lying in the lowest energy state (say, ground
state). An atom lying in a ground state may be excited by variety of
processes to a higher energy state. It may occur by the collisions with
other particles or through the absorption of electromagnetic radiation of
particular frequencies; such a way is known as stimulated absorption.
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• The atoms those exist in higher energy state (by stimulated absorption)
can make a transition to ground state (lower energy state) through the
emission of electromagnetic radiation by two ways, spontaneous emission
and stimulated emission.

• The ability of light waves to produce interference depends on the ‘Degree
of Coherence’ of the light wave. An increase in the ‘Degree of Coherence’
of a light beam corresponds to a contrast interference pattern, i.e., visibility
will be higher.

• The energy level of an atom or molecule has with definite (discrete)
energy. The transition of an atom or molecule from one energy of lower
and upper level to other happens by quantum transition. The transition
occurs when atoms or molecules interact with molecular radiation.

• The probability of spontaneous emission depends only on the properties
of the transition.

• The spontaneous emission states that when an atom that are in excited
state (higher energy state) of energy E2 will tend to come to ground state
(or lower energy state) of energy E1 spontaneously, i.e., without any
stimulus. The photon emitted the energy E12 = E2 – E1 spontaneously.

• The stimulated emission states that when the atoms that are in the excited
state (higher energy level), then the same incident photon can play the
role of a trigger, i.e., it can induce the atom to come back to lower energy
state (or ground state). So, the transition takes place from E2 level to E1
level. Due to this transition photon emitted some energy of E12 = E2 –
E1. Both the inducing and induced photon has the same energy E12. This
phenomenon is known as stimulated emission.

• The total stimulated transition (stimulated emission and absorption) depends
on the difference of atoms in the ground state (lower energy state) and
excited state (higher energy state).

12.6 KEY WORDS

• Time dependent perturbation theory: It was developed by Paul Dirac
that typically explains the effect of a time dependent perturbation V(t) applied
to a time independent Hamiltonian, H0.

• Fermi’s golden rule: It is also referred to as the golden rule of time
dependent perturbation theory, is an equation for calculating transition
rates. The result is obtained by applying the time dependent perturbation
theory to a system that undergoes a transition from an initial statei〉 to
a final state f〉 that is part of a continuum of states.

• Degree of Coherence: The ability of light waves to produce interference
depends on the ‘Degree of Coherence’ of the light wave. An increase in
the ‘Degree of Coherence’ of a light beam corresponds to a contrast
interference pattern, i.e., visibility will be higher.
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• Spontaneous emission: When an atom that are in excited state (higher
energy state) of energy E2 will tend to come to ground state (or lower
energy state) of energy E1 spontaneously, i.e., without any stimulus. The
photon emitted the energy E12 = E2 – E1 spontaneously.

• Stimulated emission: When the atoms that are in the excited state
(higher energy level), then the same incident photon can play the role of
a trigger, i.e., it can induce the atom to come back to lower energy state
(or ground state). So, the transition takes place from E2 level to E1 level.
Due to this transition photon emitted some energy of E12 = E2 – E1. Both
the inducing and induced photon has the same energy E12.

12.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What dose time dependent perturbation theory state?
2. State Fermi’s golden rule?
3. Differentiate between spontaneous emission and stimulated emission.

Long Answer Questions

1. Discuss the significance of the time dependent perturbation theory giving
appropriate examples.

2. Briefly explain the fields where the time dependent perturbation theory is
used.

3. Explain the Fermi’s golden rule and its applications for time dependent
perturbation theory.

4. Discuss about the spontaneous emission and stimulated emission giving
appropriate examples and derivations.
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13.0 INTRODUCTION

The theory of the interaction of light with atomic matter reveals enormous in the
historical development of quantum mechanics. This circumstance is simply a
consequence of the fact that the light emitted or absorbed by atomic matter provides
clues into its nature. The synthesis of the quantum theory that resulted from
spectroscopic and other optical investigations and is still developing.

Einstein coefficients are mathematical quantities which are a measure of the
probability of absorption or emission of light by an atom or molecule. The Einstein
A coefficient is related to the rate of spontaneous emission of light, and the Einstein
B coefficients are related to the absorption and stimulated emission of light. The
semi-classical radiation theory states that the electromagnetic radiation is treated
as a classically prescribed field while the atomic matter with which it interacts is
described according to the directives of quantum mechanics. Quantum theory
has, of course, been developed and applied with remarkable success in many
areas of physics, but it is important to remember that it was originally a theory of
the interaction of light with atoms and molecules. In this historical sense, semi-
classical radiation theory strikes at the very roots of quantum mechanics.

In this unit, you will study about the Einstein’s A and B coefficients, semi-
classical and quantum theory of radiation in detail.
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13.1 OBJECTIVES

After going through this unit, you will be able to:
• Explain the Einstein’s A and B coefficients
• Understand semi-classical and quantum theory of radiation

13.2 EINSTEIN’S A & B COEFFICIENTS

Let us consider E(v) as the energy density at equilibrium, where v is the frequency
of photon.

If N1 and N2 are the number of atoms in the lower energy state (ground
state) and higher energy state (excited state) respectively, then we can write,

N1P12 = N1B12E(v) ...(13.1)
where P12 is the probability of absorption proportional to energy density E(v) and
B12 is the Einstein’s coefficient of absorption.

Therefore, we can express the energy state of N2 as follows:
N2P21 = N2[A21 + B21E(v)] ...(13.2)

Where P21 is the probability (stimulated) proportional to energy density E(v) with
addition to A21, A21 is the Einstein’s coefficient of spontaneous and B21 is the
Einstein’s coefficient of stimulated emission.

When thermal equilibrium exists, we can say that the total absorption
probability is equal to the total emission probability.

So, from Equations (13.4) and (13.5), we have
N1B12E(v) = N2[A21 + B21E(v)]

or E(v) = 
21 21

1 12

2 21

/

1

A B
N B
N B

...(13.3)

According to Einstein’s assumption, coefficient of stimulated absorption and
coefficient of stimulated emission are equal, i.e., B12 = B21 = B (say) and if we
consider A21 = A (say), then the Equation (13.3) reduces to,

E(v) = 1

2

/

1

A B
N
N

...(13.4)
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A and B in the above equation are called Einstein’s ‘A’ and ‘B’ coefficients.
According to Planck’s radiation law, we know that

E(v) = 
3

3 /

8
1hv KT

πhv
c e

...(13.5)

By comparing equations (13.4) and (13.5), we can write,

1

2

N
N = ehv/ KT

And
A
B

=  
3

3

8πhv
c

(Ratio of coefficients of spontaneous and stimulated emission, i.e., ratio of
Einstein’s ‘A’ and ‘B’ Coefficient)

Where h is the Planck’s Constant.
K is the Boltzman’s Constant.
c is the Velocity of Light.
T is the Temperature in Kelvin.

13.3 SEMI-CLASSICAL AND QUANTUM THEORY
OF RADIATION

Semi-classical physics, or simply semi-classical refers to a theory in which one
part of a system is described quantum-mechanically whereas the other is treated
classically. For example, external fields will be constant, or when changing will be
classically described. In general, it incorporates a development in powers of
Planck’s constant, resulting in the classical physics of power 0, and the first nontrivial
approximation to the power of (–1). Thus, there is a clear link between the quantum-
mechanical system and the associated semi-classical and classical approximations,
as it is similar in appearance to the transition from physical optics to geometric
optics.

Four examples of a semi-classical approximations include:
• WKB approximation: electrons in classical external electromagnetic fields.
• Semi-classical gravity: quantum field theory within a classical curved

gravitational background (see general relativity).
• Quantum chaos: quantization of classical chaotic systems.
• Quantum field theory: only Feynman diagrams with at most a single closed

loop are considered, which corresponds to the powers of Planck’s
constant.
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The semi-classical radiation theory consists of two elements: the classical
Maxwell equations that is satisfied by the electric ‘E’ and the magnetic ‘B’ fields,
and the ordinary quantum mechanics that is based on the SchrQdinger equation of
a single charged matter particle interacting with the electromagnetic field. The
single particle SchrQdinger quantum mechanics can be modified to take into
account spin or be replaced by the nonrelativistic quantum mechanics of many
particles.

The distribution of energy in the spectrum of radiations of a hot body cannot
be explained by applying the classical concepts of physics. Max Planck gave an
explanation to this observation by his ‘Quantum Theory of Radiation’. His
theory states that,

1. The ‘Radiant Energy’ is always in the form of tiny bundles of light called
‘quanta’, i.e., the energy is absorbed or emitted discontinuously.

2. Each quantum has some definite energy ‘E’, which depends upon the
frequency of the radiations as,
E = hγ

Here, E is the energy of each quantum in Joules, γ is the frequency of the
radiations in s-1, h is known as Planck’s constant (a fundamental constant), whose
value is, h = 6.626 × 10-34 J-s.

Also, E = hcw, where w is known as wave number. w = (1/λ) m-1.
From these equations, it is evident that γ = c/λ = cw.
The energy emitted or absorbed by a body is a multiple of a quantum, i.e.,

a body cannot absorb or emit energy in fractions of quantum. This concept is
known as quantization of energy.

Check Your Progress

1. Explain the Einstein’s coefficient of absorption.
2. What are Einstein’s A and B coefficients?
3. What us semi-classical physics?
4. Give examples of semi-classical approximations.
5. Define semi-classical radiation theory.
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1. If N1 and N2 are the number of atoms in the lower energy state (ground
state) and higher energy state (excited state) respectively, then we can write,

N1P12 = N1B12E(v)
where P12 is the probability of absorption proportional to energy density
E(v) and B12 is the Einstein’s coefficient of absorption.

2. According to Einstein’s assumption, coefficient of stimulated absorption and
coefficient of stimulated emission are equal, i.e., B12 = B21 = B (say) and if
we consider A21 = A (say), then the Equation (13.3) reduces to,

E(v) = 1

2

/

1

A B
N
N

A and B in the above equation are called Einstein’s ‘A’ and ‘B’ coefficients.
3. Semi-classical physics, or simply semi-classical refers to a theory in which

one part of a system is described quantum-mechanically whereas the other
is treated classically. For example, external fields will be constant, or when
changing will be classically described. In general, it incorporates a
development in powers of Planck’s constant, resulting in the classical physics
of power 0, and the first nontrivial approximation to the power of (–1).

4. Four examples of a semi-classical approximations include:
• WKB approximation: electrons in classical external electromagnetic fields.
• Semi-classical gravity: quantum field theory within a classical curved

gravitational background (see general relativity).
• Quantum chaos: quantization of classical chaotic systems.
• Quantum field theory: only Feynman diagrams with at most a single closed

loop are considered, which corresponds to the powers of Planck’s
constant.

5. The semi-classical radiation theory consists of two elements: the classical
Maxwell equations that is satisfied by the electric ‘E’ and the magnetic ‘B’
fields, and the ordinary quantum mechanics that is based on the Schrödinger
equation of a single charged matter particle interacting with the
electromagnetic field.
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13.5 SUMMARY

• If N1 and N2 are the number of atoms in the lower energy state (ground
state) and higher energy state (excited state) respectively, then we can write,

N1P12 = N1B12E(v)
where P12 is the probability of absorption proportional to energy density
E(v) and B12 is the Einstein’s coefficient of absorption.

• When thermal equilibrium exists, we can say that the total absorption
probability is equal to the total emission probability.

• According to Einstein’s assumption, coefficient of stimulated absorption and
coefficient of stimulated emission are equal, i.e., B12 = B21 = B (say) and if
we consider A21 = A (say), then the Equation reduces to,

E(v) = 1

2

/

1

A B
N
N

A and B in the above equation are called Einstein’s ‘A’ and ‘B’ coefficients.
• According to Planck’s radiation law, we know that

E(v) = 
3

3 /

8
1hv KT

πhv
c e

• Semi-classical physics, or simply semi-classical refers to a theory in which
one part of a system is described quantum-mechanically whereas the other
is treated classically.

• In general, Semi-classical incorporates a development in powers of Planck’s
constant, resulting in the classical physics of power 0, and the first nontrivial
approximation to the power of (–1).

• The semi-classical radiation theory consists of two elements: the classical
Maxwell equations that is satisfied by the electric ‘E’ and the magnetic ‘B’
fields, and the ordinary quantum mechanics that is based on the Schrödinger
equation of a single charged matter particle interacting with the
electromagnetic field.

• The single particle Schrödinger quantum mechanics can be modified to take
into account spin or be replaced by the nonrelativistic quantum mechanics
of many particles.

• The distribution of energy in the spectrum of radiations of a hot body cannot
be explained by applying the classical concepts of physics.

• The ‘Radiant Energy’ is always in the form of tiny bundles of light called
‘quanta’, i.e., the energy is absorbed or emitted discontinuously.



NOTES

Self-Instructional
Material 277

Quantum Theory
of Radiation

• Each quantum has some definite energy ‘E’, which depends upon the
frequency of the radiations as,
E = hγ
Here, E is the energy of each quantum in Joules, γ is the frequency of the
radiations in s-1, h is known as Planck’s constant (a fundamental constant),
whose value is, h = 6.626 x 10-34 J–s.

• The energy emitted or absorbed by a body is a multiple of a quantum, i.e.,
a body cannot absorb or emit energy in fractions of quantum. This concept
is known as quantization of energy.

13.6  KEY WORDS

• Einstein’s assumption: According to Einstein’s assumption, coefficient of
stimulated absorption and coefficient of stimulated emission are equal, i.e.,
B12 = B21 = B.

• Semi-classical radiation theory: It consists of two elements: the classical
Maxwell equations that is satisfied by the electric ‘E’ and the magnetic ‘B’
fields, and the ordinary quantum mechanics that is based on the SchrQdinger
equation of a single charged matter particle interacting with the
electromagnetic field.

• Radiant energy: It is always in the form of tiny bundles of light called
‘quanta’, i.e., the energy is absorbed or emitted discontinuously.

13.7 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. Explain the Einstein’s A and B coefficients.
2. What is semi-classical theory of radiation?
3. What does quantum theory of radiation states?

Long Answer Questions

1. Briefly discuss the Einstein’s A and B coefficients giving relevant examples.
2. Explain the basic concept of semi-classical and quantum theory of radiation.
3. Explain the Max Planck explanation for semi-classical and quantum theory

of radiation.
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UNIT 14 THEORY OF SCATTERING
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14.0 INTRODUCTION

In mathematics and physics, scattering theory is a framework for studying and
understanding the scattering of waves and particles. Wave scattering corresponds
to the collision and scattering of a wave with some material object, for instance
sunlight scattered by rain drops to form a rainbow.

Rayleigh scattering, named after the nineteenth-century British physicist Lord
Rayleigh (John William Strutt), is the predominantly elastic scattering of light or
other electromagnetic radiation by particles much smaller than the wavelength of
the radiation. Rayleigh scattering does not change the state of material and is,
hence, a parametric process. The particles may be individual atoms or molecules.
It can occur when light travels through transparent solids and liquids, and is most
prominently seen in gases. Rayleigh scattering results from the electric polarizability
of the particles. Rayleigh scattering of sunlight in Earth’s atmosphere causes diffuse
sky radiation, which is the reason for the blue color of the daytime and twilight sky,
as well as the yellowish to reddish hue of the low Sun.

Raman scattering or the Raman effect is the inelastic scattering of a photon
by molecules which are excited to higher energy levels. Since this effect was
discovered in 1928 by C. V. Raman hence named so. The Raman effect forms the
basis for Raman spectroscopy which is used by chemists and physicists to gain
information about materials.

In this unit, you will study about the scattering theory basics, Rayleigh
scattering, Raman scattering and selection rules.

14.1 OBJECTIVES

After going through this unit, you will be able to:
• Understand the basics of scattering theory
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• Explain Rayleigh scattering
• Discuss the advantages and limitations of Rayleigh scattering
• Understand what Raman scattering is
• Define the selection rules, advantages and disadvantages of Raman scattering

14.2 THEORY OF SCATTERING

The ‘Scattering Theory’ is significantly used for studying and understanding
the scattering of waves and particles in mathematics and physics. Typically the
wave scattering corresponds to the collision and scattering of a wave with some
material object, for example formation of rainbow is resultant of sunlight scattered by
rain drops. Latest technology of ultrasonic testing is another example of scattering
theory which is used in medical imaging, non-destructive testing of metals and
quantum field theory.

Rayleigh scattering is one commonly known type of scattering which mainly
consists of scattering from atmospheric gases, it occurs when the particles causing
scattering are smaller in size than the radiation wavelengths in contact with them.

Mie scattering, and non-selective scattering are the two other types of wave
scattering. Principally, the Mie scattering is considered to be elastic scattered light
of particles that have a diameter similar to or larger than the wavelength of the
incident light. The Mie signal is proportional to the square of the particle diameter,
where as in case of non-selective scattering also known as Raman scattering, it
occurs in all wavelengths of electromagnetic radiation equally in the atmosphere
and is usually caused by particles which are much larger than the energy
wavelengths.

Definitions of Scattering

1. Scattering, in physics, is defined as a change in the direction of motion of a
particle because of a collision with another particle. As defined in physics, a
collision can occur between particles that repel one another, such as two
positive (or negative) ions, and need not involve direct physical contact of
the particles.

2. Scattering occurs when light or other energy waves pass through an
imperfect medium, such as air filled with particles of some sort, and are
deflected from a straight path. The light is deflected off of its straight path
and scatters in many directions.

3. Scattering is a general physical process where some forms of radiation, such
as light, sound, or moving particles, are forced to deviate from a straight
trajectory by one or more paths due to localized non-uniformities in the
medium through which they pass.

4. As per the Encyclopaedia Britannica, the ‘Scattering, in physics, a change
in the direction of motion of a particle because of a collision with another
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such as two positive (or negative) ions, and need not involve direct physical
contact of the particles.

The physicist Ernest Rutherford passed a stream of alpha particles through a thin
sheet of gold foil. The alpha particles were emitted by a radioactive material and
had enough energy to penetrate an atom; although most passed right through the
gold foil, some were deflected in a way that indicated that the scattering was
produced by a Coulomb force. Because the alpha particles are positively charged
and the electrons in the atom are negatively charged, it followed that there must be
a large positive charge inside the atom to create the Coulomb force by interacting
with the alpha particles. In this way the nucleus of the atom was discovered.

Elastic and Inelastic Scattering

The term ‘Elastic Scattering’ implies that the internal states of the scattering particles
do not change, and hence they emerge unchanged from the scattering process. In
inelastic scattering, by contrast, the particles’ internal state is changed, which may
amount to exciting some of the electrons of a scattering atom, or the complete
annihilation of a scattering particle and the creation of entirely new particles.

When two atoms are scattered off one another, one can understand them as
being the bound state solutions of some differential equation. Thus, for example,
the hydrogen atom corresponds to a solution to the Schrödinger equation with a
negative inverse-power, i.e., attractive Coulombic, central potential. The scattering
of two hydrogen atoms will disturb the state of each atom, resulting in one or both
becoming excited, or even ionized, representing an inelastic scattering process.

14.2.1 Rayleigh Scattering

Rayleigh scattering is named after the nineteenth-century British physicist Lord
Rayleigh (John William Strutt). It is the predominantly elastic scattering of light or
other electromagnetic radiation by particles much smaller than the wavelength of
the radiation. Rayleigh scattering does not change the state of material and is,
hence, a parametric process. The particles may be individual atoms or molecules.
It can occur when light travels through transparent solids and liquids, and is most
prominently seen in gases. Rayleigh scattering results from the electric polarizability
of the particles. The oscillating electric field of a light wave acts on the charges
within a particle, causing them to move at the same frequency. The particle therefore
becomes a small radiating dipole whose radiation we see as scattered light. This
radiation is an integral part of the photon and no excitation or de-excitation occurs.

Rayleigh scattering of sunlight in Earth’s atmosphere causes diffuse sky
radiation, which is the reason for the blue colour of the daytime and twilight sky, as
well as the yellowish to reddish hue of the low Sun.

For wave frequencies that are below the resonance frequency of the scattering
particle (normal dispersion regime), the amount of scattering is inversely proportional
to the fourth power of the wavelength.
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Rayleigh scattering of molecular nitrogen and oxygen in the atmosphere
includes elastic scattering as well as the inelastic contribution from rotational Raman
scattering in air, since the changes in wavenumber of the scattered photon are
typically smaller than 50 cm–1. This can lead to changes in the rotational state of
the molecules. Furthermore, the inelastic contribution has the same wavelengths
dependency as the elastic part.

Scattering by particles similar to, or larger than, the wavelength of light is
typically treated by the Mie scattering theory, the discrete dipole approximation
and other computational techniques. Rayleigh scattering applies to particles that
are small with respect to wavelengths of light, and that are optically ‘soft’ (i.e.,
with a refractive index close to 1).

In 1871, Lord Rayleigh published two papers on the colour and polarization
of skylight to quantify Tyndall’s effect in water droplets in terms of the tiny
particulates’ volumes and refractive indices. In 1881 with the help of James Clerk
Maxwell’s 1865 proof of the electromagnetic nature of light, he exhibited that his
equations followed from electromagnetism.

Small Size Parameter Approximation

The size of a scattering particle is often parameterized by the ratio,

       

Where r is its characteristic length (radius) and λ is the wavelength of the
light. The amplitude of light scattered from within any transparent dielectric is
proportional to the inverse square of its wavelength and to the volume of material
that is to the cube of its characteristic length. The wavelength dependence is
characteristic of dipole scattering and the volume dependence will apply to any
scattering mechanism. Objects with x >> 1 act as geometric shapes, scattering
light according to their projected area. At the intermediate x   1 of Mie scattering,
interference effects develop through phase variations over the object’s surface.
Rayleigh scattering applies to the case when the scattering particle is very small,
i.e., x << 1, with a particle size < 1 /10 wavelength, and the whole surface re-
radiates with the same phase. Because the particles are randomly positioned, the
scattered light arrives at a particular point with a random collection of phases; it
is incoherent and the resulting intensity is just the sum of the squares of the amplitudes
from each particle and therefore proportional to the inverse fourth power of the
wavelength and the sixth power of its size.

In detail, the intensity I of light scattered by any one of the small spheres of
diameter d and refractive index n from a beam of unpolarized light of
wavelength » and intensity I0 is given by,
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this over all angles gives the Rayleigh scattering cross-section,

The fraction of light scattered by a group of scattering particles is the number
of particles per unit volume N times the cross-section. For example, the major
constituent of the atmosphere, nitrogen, has a Rayleigh cross section of 5.1×
10–31 m2 at a wavelength of 532 nm (green light). This means that at atmospheric
pressure, where there are about 2×1025 molecules per cubic meter, about a fraction
10–5 of the light will be scattered for every meter of travel.

The strong wavelength dependence of the scattering (~λ–4) means that
shorter (blue) wavelengths are scattered more strongly than longer (red)
wavelengths.

From Molecules

The above expression can also be written in terms of individual molecules by
expressing the dependence on refractive index in terms of the molecular polarizability
‘α’, proportional to the dipole moment induced by the electric field of the light. In
this case, the Rayleigh scattering intensity for a single particle is given in CGS
units by,

                  

The Rayleigh scattering gives the atmosphere its blue colour as shown in
Figure (14.1).

Fig. 14.1 Blue Light Scattered by the Atmosphere Relative to Red Light

The Rayleigh scattering is mostly seen occurring in nature, and therefore it is
considered to be one of the most commonly observed optical phenomena. Foremost
example for this phenomena is that the sky looks blue because of the intensity of
light scattered by a molecule is inversely proportional to the fourth power of the
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wavelength of the incident light, which means that 10 times more blue light than
red light gets scattered from a molecule. As such, sunlight incident on gas molecules
in the air gets scattered as blue light in every direction, and the sky looks blue.
Therefore, the Rayleigh scattering is the elastic scattering of light by particles which
are much smaller than the wavelength of the light.

Figure (14.1) illustrates the greater proportion of blue light scattered by the
atmosphere relative to red light. This phenomena occurs when radiation or beam
of light interacts with molecules and particles in the atmosphere which happen to
be smaller in diameter than the wavelength of the incoming radiation. Shorter
wavelengths are more quickly and promptly scattered than the longer wavelengths.
Light at shorter wavelengths (blue and violet) are scattered by small particles that
include NO2 and O2. Since blue light is at the short wavelength end of the visible
spectrum, it is more strongly scattered in the atmosphere than longer wavelength
red light. This results in the blue colour of the sky. Rayleigh scatter is also responsible
for haze in the photographic images. In aerial photography special filters are used
to filter out the scatter blue light to reduce haze. In digital images there are different
techniques used to minimize the impacts of Rayleigh scatter.

Effect of Fluctuations

When the dielectric constant — of a certain region of volume V is different from
the average dielectric constant of the medium , then any incident light will be
scattered according to the following equation,

  

Where represents the variance of the fluctuation in the dielectric constant —.

Rayleigh Scattering Theory

Rayleigh scattering theory refers to the scattering of light off of the molecules of
the air, and can be extended to scattering from particles up to about a tenth of the
wavelength of the light. It is Rayleigh scattering off the molecules of the air which
gives us the blue sky. Lord Rayleigh calculated the scattered intensity from dipole
scatterers much smaller than the wavelength to be:

Fig. 14.2 Rayleigh Scattering Theory
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The Rayleigh scattering can be considered to be elastic scattering since the photon
energies of the scattered photons is not changed. Scattering in which the scattered
photons have either a higher or lower photon energy is called Raman scattering.
Usually this kind of scattering involves exciting some vibrational mode of the
molecules, giving a lower scattered photon energy, or scattering off an excited
vibrational state of a molecule which adds its vibrational energy to the incident
photon.

Advantages of Rayleigh Scattering

• It is an easy technique.
• Arbitrary laser wavelength can be used, but shorter wavelengths leads to

stronger signal (the λ−4-dependence).
• Signal is proportional to number concentration → N and/or 1/T.
• Signal is proportional to laser pulse energy, i.e., no quenching or saturation

effects.

Limitations of Rayleigh Scattering

• The technique is not species selective, since all atoms/molecules/particles
scatter at the same wavelength.

• For accurate thermometry, the Rayleigh cross-sections for individual species
must be taken into account, since the mole fraction distribution must be
known in every point.

• It is an incoherent technique.
• Stray light from particles, optics and surfaces can interfere with the Rayleigh

signal.

14.2.2 Raman Scattering

Raman scattering or the Raman effect is the inelastic scattering of a photon by
molecules which are excited to higher energy levels. The effect was discovered in
1928 by C. V. Raman and hence named as Raman scattering or the Raman effect.

When photons are scattered by a material, most of them are elastically
scattered (Rayleigh scattering), such that the scattered photons have the same
energy (frequency and wavelength) as the incident photons but different direction.
However, a small fraction of the scattered photons (approximately 1 in 10 million)
are scattered in-elastically, with the scattered photons having an energy different
from, and usually lower than, those of the incident photons—these are Raman
scattered photons. Because of conservation of energy, the material either gains or
loses energy in the process. Typically this is vibrational energy and the incident
photons are of visible light, although rotational energy (if gas samples are used)
and electronic energy levels (if an X-ray source is used) may also be investigated.
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The Raman effect forms the basis for Raman spectroscopy which is used by
chemists and physicists to gain information about materials.

It is also possible to observe molecular vibrations by an inelastic scattering
process. In the inelastic (Raman) scattering, an absorbed photon is re-emitted
with lower energy; the difference in energy between the incident photons and
scattered photons corresponds to the energy required to excite a molecule to a
higher vibrational mode.

Typically, in Raman spectroscopy high intensity laser radiation with
wavelengths in either the visible or near-infrared regions of the spectrum is passed
through a sample. Photons from the laser beam produce an oscillating polarization
in the molecules, exciting them to a virtual energy state. The oscillating polarization
of the molecule can couple with other possible polarizations of the molecule,
including vibrational and electronic excitations. If the polarization in the molecule
does not couple to these other possible polarizations, then it will not change the
vibrational state that the molecule started in and the scattered photon will have the
same energy as the original photon. This type of scattering is known as Rayleigh
scattering.

When the polarization in the molecules couples to a vibrational state that is
higher in energy than the state they started in, then the original photon and the
scattered photon differ in energy by the amount required to vibrationally excite the
molecule. In perturbation theory, the Raman effect corresponds to the absorption
and subsequent emission of a photon via an intermediate quantum state of a material.
The intermediate state can be either a ‘real’, i.e., stationary state, or a virtual state.

Stokes and Anti-Stokes

The Raman interaction leads to following two possible outcomes:
1. The material absorbs energy and the emitted photon has a lower energy

than the incident photon. This outcome is labeled Stokes Raman scattering
in honour of George Stokes who showed in 1852 that fluorescence is due
to light emission at longer wavelength, now known to correspond to lower
energy, than the absorbed incident light.

2. The material loses energy and the emitted photon has a higher energy than
the absorbed photon. This outcome is labeled anti-Stokes Raman scattering.

The energy difference between the absorbed and emitted photon corresponds to
the energy difference between two resonant states of the material and is independent
of the absolute energy of the photon.

The spectrum of the scattered photons is termed the Raman spectrum. It
shows the intensity of the scattered light as a function of its frequency difference
”½ to the incident photons. The locations of corresponding Stokes and anti-Stokes
peaks form a symmetric pattern around ∆v = 0.

The frequency shifts are symmetric because they correspond to the energy
difference between the same upper and lower resonant states. The intensities of
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of the initial states of the material, which in turn depend on the temperature. In
thermodynamic equilibrium, the lower state will be more populated than the upper
state. Therefore, the rate of transitions from the more populated lower state to the
upper state, the ‘Stokes Transitions’ will be higher than in the opposite direction,
the ‘Anti-Stokes Transitions’. Correspondingly, Stokes scattering peaks are
stronger than anti-Stokes scattering peaks. Their ratio depends on the temperature,
and can therefore be exploited to measure it.

Raman Spectroscopy

Raman spectroscopy is named after Indian physicist Sir C. V. Raman. It is a
spectroscopic technique used to observe vibrational, rotational, and other low-
frequency modes in a system. Raman spectroscopy is commonly used in chemistry
to provide a structural fingerprint by which molecules can be identified. Figure
14.3 illustrates the Energy-level diagram showing the states involved in Raman
spectra.

Fig. 14.3 Energy-Level Diagram Showing the States Involved in Raman Spectra

Raman spectroscopy relies on inelastic scattering, or Raman scattering, of
monochromatic light, usually from a laser in the visible, near infrared, or near
ultraviolet range. The laser light interacts with molecular vibrations, phonons or
other excitations in the system, resulting in the energy of the laser photons being
shifted up or down. The shift in energy gives information about the vibrational
modes in the system. Infrared spectroscopy yields similar, but complementary,
information.

Distinction from Fluorescence

The Raman effect differs from the process of fluorescence in that it is a scattering
process. For fluorescence, the incident light is completely absorbed, transferring
the system to an excited state. After a certain resonance lifetime, the system de-
excites to lower energy states via emission of photons. The result of both processes
is in essence the same.
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A photon with a frequency different from that of the incident photon is
produced and the molecule is brought to a higher or lower energy level. But the
major difference is that the Raman effect can take place for any frequency of
incident light. In contrast to the fluorescence effect, the Raman effect is therefore
not a resonant effect. In practice, this means that a fluorescence peak is anchored
at a specific frequency, whereas a Raman peak maintains a constant separation
from the excitation frequency.

Selection Rules

A Raman transition from one state to another is allowed only if the molecular
polarizability of those states is different. For a vibration, this means that the derivative
of the polarizability with respect to the normal coordinate associated to the vibration
is non-zero:

   

In general, a normal mode is Raman active if it transforms with the same

symmetry of the quadratic forms,  which can be verified

from the character table of the molecule’s symmetry group.
The specific selection rules state that the allowed rotational transitions are

, where ‘J’ is the rotational state.

The allowed vibrational transitions are , where ‘u’ is the vibrational
state.

Advantages of Raman Effect

• Organic and inorganic materials are suitable for Raman analysis. These can
be solids, liquids, polymers or vapours.

• No sample preparation is required.
• It is not interfered by water.
• It is a non-destructive application.
• It is highly specific like a chemical fingerprint of a material.
• Raman spectra are acquired quickly within seconds.
• Samples can be analyzed through glass or a polymer packaging.
• Laser light and Raman scattered light can be transmitted by optical fibers

over long distances for remote analysis.
• In Raman spectroscopy, the region from 4000 cm-1 to 50 cm-1 can be covered

by a single recording.
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diameter).

• Inorganic materials are easily analysable with Raman spectroscopy.

Disadvantages of Raman Effect

• This cannot be used for metals or alloys.
• Raman effect is very weak. The detection needs a sensitive and highly

optimized instrumentation.
• Fluorescence of impurities or of the sample itself can hide the Raman

spectrum. Some compounds fluoresce when irradiated by the laser beam.
• Sample heating through the intense laser radiation can destroy the sample

or cover the Raman spectrum.

Check Your Progress

1. Explain the term scattering theory?
2. How scattering occurs?
3. What is Rayleigh scattering? Why it is named as Rayleigh scattering?
4. Define the size of a scattering particle.
5. What are the two possible outcomes of Raman interaction?
6. Explain Raman scattering or the Raman effect.
7. What is Raman spectrum?
8. What does specific selection rules states?

14.3 ANSWERS TO CHECK YOUR PROGRESS
QUESTIONS

1. The ‘Scattering Theory’ is significantly used for studying and understanding
the scattering of waves and particles in mathematics and physics. Typically
the wave scattering corresponds to the collision and scattering of a wave
with some material object, for example formation of rainbow is resultant of
sunlight scattered by rain drops. Latest technology of ultrasonic testing is
another example of scattering theory which is used in medical imaging, non-
destructive testing of metals and quantum field theory.

2. Scattering occurs when light or other energy waves pass through an imperfect
medium, such as air filled with particles of some sort, and are deflected
from a straight path. The light is deflected off of its straight path and scatters
in many directions.
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3. Rayleigh scattering is named after the nineteenth-century British physicist
Lord Rayleigh (John William Strutt). It is the predominantly elastic scattering
of light or other electromagnetic radiation by particles much smaller than the
wavelength of the radiation. Rayleigh scattering does not change the state
of material and is, hence, a parametric process.

4. The size of a scattering particle is often parameterized by the ratio,

Where r is its characteristic length (radius) and » is the wavelength of the
light.

5. The Raman interaction leads to following two possible outcomes:
• The material absorbs energy and the emitted photon has a lower energy

than the incident photon. This outcome is labeled Stokes Raman
scattering in honour of George Stokes who showed in 1852 that
fluorescence is due to light emission at longer wavelength, now known
to correspond to lower energy, than the absorbed incident light.

• The material loses energy and the emitted photon has a higher energy
than the absorbed photon. This outcome is labeled anti-Stokes Raman
scattering.

6. Raman scattering or the Raman effect is the inelastic scattering of a photon
by molecules which are excited to higher energy levels. The effect was
discovered in 1928 by C. V. Raman and hence named as Raman scattering
or the Raman effect. The Raman effect forms the basis for Raman
spectroscopy which is used by chemists and physicists to gain information
about materials.

7. The spectrum of the scattered photons is termed the Raman spectrum. It
shows the intensity of the scattered light as a function of its frequency
difference ∆v to the incident photons. The locations of corresponding Stokes
and anti-Stokes peaks form a symmetric pattern around ∆v = 0.

8. The specific selection rules state that the allowed rotational transitions are

, where ‘J’ is the rotational state. The allowed vibrational

transitions are , where ‘v’ is the vibrational state.

14.4 SUMMARY

• The ‘Scattering Theory’ is significantly used for studying and understanding
the scattering of waves and particles in mathematics and physics. Typically
the wave scattering corresponds to the collision and scattering of a wave
with some material object.
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Theory of Scattering• Rayleigh scattering is one commonly known type of scattering which mainly
consists of scattering from atmospheric gases, it occurs when the particles
causing scattering are smaller in size than the radiation wavelengths in contact
with them.

• Mie scattering, and non-selective scattering are the two other types of wave
scattering. Principally, the Mie scattering is considered to be elastic scattered
light of particles that have a diameter similar to or larger than the wavelength
of the incident light.

• Scattering, in physics, is defined as a change in the direction of motion of a
particle because of a collision with another particle. As defined in physics, a
collision can occur between particles that repel one another, such as two
positive (or negative) ions, and need not involve direct physical contact of
the particles.

• Scattering occurs when light or other energy waves pass through an
imperfect medium, such as air filled with particles of some sort, and are
deflected from a straight path. The light is deflected off of its straight path
and scatters in many directions.

• Scattering is a general physical process where some forms of radiation, such
as light, sound, or moving particles, are forced to deviate from a straight
trajectory by one or more paths due to localized non-uniformities in the
medium through which they pass.

• As per the Encyclopaedia Britannica, the ‘Scattering, in physics, a change
in the direction of motion of a particle because of a collision with another
particle. A collision can occur between particles that repel one another,
such as two positive (or negative) ions, and need not involve direct physical
contact of the particles.

• The term ‘Elastic Scattering’ implies that the internal states of the scattering
particles do not change, and hence they emerge unchanged from the
scattering process.

• In inelastic scattering, by contrast, the particles’ internal state is changed,
which may amount to exciting some of the electrons of a scattering atom, or
the complete annihilation of a scattering particle and the creation of entirely
new particles.

• Rayleigh scattering is named after the nineteenth-century British physicist
Lord Rayleigh (John William Strutt). It is the predominantly elastic scattering
of light or other electromagnetic radiation by particles much smaller than the
wavelength of the radiation. Rayleigh scattering does not change the state
of material and is, hence, a parametric process.

• Rayleigh scattering of sunlight in Earth’s atmosphere causes diffuse sky
radiation, which is the reason for the blue colour of the daytime and twilight
sky, as well as the yellowish to reddish hue of the low Sun.
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• For wave frequencies that are below the resonance frequency of the
scattering particle (normal dispersion regime), the amount of scattering is
inversely proportional to the fourth power of the wavelength.

• Rayleigh scattering applies to the case when the scattering particle is very
small, i.e., x << 1, with a particle size < 1 /10 wavelength, and the whole
surface re-radiates with the same phase.

• The intensity I of light scattered by any one of the small spheres of diameter d
and refractive index n from a beam of unpolarized light of wavelength » and
intensity I0 is given by,

             

Where R is the distance to the particle and ̧  is the scattering angle.
• The strong wavelength dependence of the scattering (~λ–4) means that

shorter (blue) wavelengths are scattered more strongly than longer (red)
wavelengths.

•  Shorter wavelengths are more quickly and promptly scattered than the
longer wavelengths. Light at shorter wavelengths (blue and violet) are
scattered by small particles that include NO2 and O2.

• Since blue light is at the short wavelength end of the visible spectrum, it is
more strongly scattered in the atmosphere than longer wavelength red light.
This results in the blue colour of the sky.

• Raman scattering or the Raman effect is the inelastic scattering of a photon
by molecules which are excited to higher energy levels. The effect was
discovered in 1928 by C. V. Raman and hence named as Raman scattering
or the Raman effect.

• The Raman effect forms the basis for Raman spectroscopy which is used
by chemists and physicists to gain information about materials.

• The energy difference between the absorbed and emitted photon
corresponds to the energy difference between two resonant states of the
material and is independent of the absolute energy of the photon.

• The spectrum of the scattered photons is termed the Raman spectrum. It
shows the intensity of the scattered light as a function of its frequency
difference ∆v to the incident photons. The locations of corresponding Stokes
and anti-Stokes peaks form a symmetric pattern around ∆v = 0.

• Raman spectroscopy is named after Indian physicist Sir C. V. Raman. It is
a spectroscopic technique used to observe vibrational, rotational, and other
low-frequency modes in a system.

• The Raman effect differs from the process of fluorescence in that it is a
scattering process. For fluorescence, the incident light is completely
absorbed, transferring the system to an excited state.
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Theory of Scattering• A Raman transition from one state to another is allowed only if the molecular
polarizability of those states is different. For a vibration, this means that the
derivative of the polarizability with respect to the normal coordinate
associated to the vibration is non-zero:

   

• In general, a normal mode is Raman active if it transforms with the same

symmetry of the quadratic forms,  which can be

verified from the character table of the molecule’s symmetry group.
• The specific selection rules state that the allowed rotational transitions are ,

where ‘J’ is the rotational state.
The allowed vibrational transitions are, where ‘v’ is the vibrational state.

14.5 KEY WORDS

• Scattering theory: This is significantly used for studying and understanding
the scattering of waves and particles in mathematics and physics.

• Elastic scattering: It implies that the internal states of the scattering particles
do not change, and hence they emerge unchanged from the scattering
process.

• Inelastic scattering: In this the particles’ internal state is changed, which
may amount to exciting some of the electrons of a scattering atom, or the
complete annihilation of a scattering particle and the creation of entirely
new particles.

• Rayleigh scattering: It is named after the nineteenth-century British
physicist Lord Rayleigh (John William Strutt). It is the predominantly elastic
scattering of light or other electromagnetic radiation by particles much smaller
than the wavelength of the radiation. Rayleigh scattering does not change
the state of material and is, hence, a parametric process.

• Raman scattering or the Raman effect: It is the inelastic scattering of a
photon by molecules which are excited to higher energy levels. The effect
was discovered in 1928 by C. V. Raman and hence named as Raman
scattering or the Raman effect.

• Raman spectroscopy: It is named after Indian physicist Sir C. V. Raman,
a spectroscopic technique used to observe vibrational, rotational, and other
low-frequency modes in a system.
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14.6 SELF ASSESSMENT QUESTIONS AND
EXERCISES

Short Answer Questions

1. What is scattering theory?
2. Define elastic scattering.
3. Who developed Rayleigh scattering?
4. What does Rayleigh scattering cross-section mean?
5. What is Raman scattering?

6. Explain the selection rules for Raman scattering.

Long Answer Questions

1. Discuss the significance of term scattering theory giving appropriate
examples.

2. Briefly explain elastic and inelastic scattering.
3. Explain Rayleigh scattering theory and methods.
4. Discuss the small size parameter approximation for Rayleigh scattering

theory.
5. Explain about the Rayleigh scattering cross-section.
6. Explain the advantages and limitations of Rayleigh scattering.
7. Discuss the Raman scattering method.
8. Explain the selection rules, advantages and disadvantages of Raman

scattering.
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