

ALAGAPPA UNIVERSITY
(Accredited with ‘A+’ Grade by NAAC (with CGPA: 3.64) in the Third Cycle and Graded

as category - I University by MHRD-UGC)

(A State University Established by the Government of Tamilnadu)

KARAIKUDI – 630 003

DIRECTORATE OF DISTANCE EDUCATION

M.Sc. (INFORMATION TECHNOLOGY)

Second Year – Third Semester

31334 – Open Source Lab

 Copy Right Reserved For Private Use only

Author:

Dr. M. Illayaraja

Assistant Professor

Department of computer Application Technology,

Kalasailingam Academy of Research and Education.

Krishnankoil-626126

The Copyright shall be vested with Alagappa University”

All rights reserved. No part of this publication which is material protected by this copyright notice may be reproduced

or transmitted or utilized or stored in any form or by any means now known or hereinafter invented, electronic, digital

or mechanical, including photocopying, scanning, recording or by any information storage or retrieval system, without

prior written permission from the Alagappa University, Karaikudi, Tamil Nadu.

LAB PROGRAMMING IN OPEN SOURCE SOFTWARE

 Syllabi Page No.

BLOCK 1

1. Kernel Configuration, compilation and installation 1-4

2. Install various software on Linux, Install and Configure XAMP,

3. Unix Commands and Shell Programming 5-25

BLOCK 2

4. Creating simple table with constraints 26-27

5. Demonstration of joining tables 28-40

6. Database connectivity in PHP with MYSQL 41-77

BLOCK 3

7. PHP Simple Programs 77-79

8. PHP Web programs arrays and functions 80-95

9. File manipulation using PHP 95-104

BLOCK 4

10. PERL programs 105-117

11. Python Programming 118-131

12. Python Programming: String 132-139

13. Python Programming: Arrays 140-157

BLOCK 5

14. Connect to a MYSQL database with PHP, PERL and Python 157-183

 Developing simple applications using PHP and MYSQL

1

Open source software

Notes

Self- instructional Material

1. KERNEL CONFIGURATION,

COMPILATION AND INSTALLATION

AIM:

To learn how to configure, compile and install Linux kernel from source.

Configure, compile and install the latest kernel from source.

INTRODUCTION:

The Linux kernel in the distributions are configured to work correctly in a

wide variety of hardware and there is usual y no need to use any other

kernel.

A user may want to rebuild the kernel for various reasons. The main reason

was once to optimize the kernel to the environment (hardware and usage

patterns). With modern hardware there is rarely a need to recompile unless

there is a particular feature of a new kernel that is required. The

performance gains are probably not noticeable unless specific benchmarks

are being run.

DESCRIPTION:

Students willl compile a custom kernel using the new kernel source

available in the FOSS Lab server. The students should be able to boot the

system using the newly compiled kernel.

Pre-requisites:

The latest kernel source from the FOSS Lab server. It is located in

http://<fosslab-server

ip>/content/packages/Linux_Kernel/v2.6/linux-2.6.39.2.tar.bz2

The exercise:

All actions are performed as root.

> su

We need to ensure that all tools required for compiling the kernel are

installed.

yum install kernel-devel

This command willl ensure that all packages required to compile the

current running kernel willl be installed. We willl be using the same tools

to compile the newer custom kernel.

 2

Open source software

Notes

Self- instructional Material

Remove traces of old kernel source if they exist. Be very carefull with the

rm command as you can completely trash the system if you are careless.

rm -rf /usr/src/linux/

rm -rf /usr/src/linux-2.6/

The kernel source is usual y kept under /usr/src. Copy the downloaded

kernel source to /usr/src.

cp linux-2.6.39.2.tar.bz2 /usr/src

cd /usr/src/

tar -xjvf linux-2.6.39.2.tar.bz2

cd linux-2.6.39.2

We now create two symlinks to the kernel tree.

ln -s /usr/src/linux-2.6.39.2 /usr/src/linux

ln -s /usr/src/linux-2.6.39.2 /usr/src/linux-2.6

 Now we clean out all previous configurations and reset the source

directory to a pristine state. The main reason for doing this is that some

files do not automatically get rebuilt, which can lead to failed builds, or at

worst, a buggy kernel

make mrproper

 Now we configure the kernel. The build system is intelligent enough to

take most of the current configuration from the currently running kernel.

There are thousands of options and usually the current options willl be

suitable to create a working kernel. We can experiment with modifying the

kernel options after compiling the kernel successful y with the default

configuration.

make xconfig

(or)

make menuconfig

3

Open source software

Notes

Self- instructional Material

Save and exit the tool.

Now we are ready to build the kernel.

make clean

make all

This can take up anywhere from 10 minutes to upto 2 hours depending on

the hardware. Once the compilation is completed we can instal the kernel

and its modules.

make modules_install

make install

The newly created kernel will be in /boot

Now we need to check that the instal process has configured the boot

loader to point to the new kernel.

vi /boot/grub/menu.lst

The new kernel will have an entry at the top of the kernel list. It can be

identified by the kernel version number.Change the lines containing

default, timeout to the values shown and comment out the hidden menu

entry.

default=0

timeout=5

#hiddenmenu

Now reboot the computer and the computer will boot into the new kernel.

If it fails, reboot the machine and select the previously running kernel

to boot successful y and redo the exercise careful y.

To check the version of the running kernel, use the uname command.

uname -r

2.6.39.2

Now the process can be repeated with different kernel configuration

options.

 Result:

Thus to download / access the latest kernel source code from kernel.org,

compiling the kernel and install it in the local system and trying to view

the source code of the kernel is done successfully.

 4 Self- instructional Material

Open source software

Notes

2 . INSTALL VARIOUS SOFTWARE ON

LINUX

AIM:

 To learn and install various software‟s in Linux platform

Procedure

A package manager is a sub-system on Linux that, as the title says,

manages the packages (software) on your computer. It‟s a crucial

component of Linux, in that it keeps track of everything installed;

downloads packages; ensures all packages are installed in a common

location; helps to upgrade packages; resolves dependencies; and keeps

users from having to install from source code.

The biggest point of confusion is that there are numerous package

managers available, but only one can be used on a distribution. In fact,

distributions are differentiated, primarily, on which package manager they

choose. For example: Debian and Ubuntu (and its derivatives) use apt; Red

Hat Enterprise Linux, CentOS, and Fedora use yum; SUSE and openSUSE

use zypper; and Arch Linux uses pacman. There are more package

managers out there, but this is a good place to start.

Each package manager works with a different file type. For example, apt

works with .deb files and yum and zypper work with .rpm files. The apt

package manager cannot install .rpm files and neither yum or zypper can

install .deb files. To make matters even more confusing, Ubuntu (and its

derivatives) uses the dpkg command for installing local .deb files, and Red

Hat (and its derivatives) use the rpm command to install local .rpm files.

Most package managers have GUI front ends. These front ends are similar

to the Apple App Store. It should be no surprise that there are numerous

such GUI front ends available. The good news here is that most of them are

similarly titled (such as GNOME Software, Ubuntu Software, Elementary

AppCenter). These app stores allow you to easily search for a software title

and install it with the click of a button (more on this in a bit).

There is one other issue with package managers: repositories. Repositories

are a key aspect of package managers, but for new users the concept can

add yet another level of confusion we don‟t want. For a quick overview,

however, consider this: Out of the box you only have a certain selection of

software titles available. That selection is dictated by the repositories that

are configured. There are numerous third-party repositories you can add to

the system. Once added, you can then install any software titles associated

with those third-party repositories. Software repositories can be added

either from a GUI tool or the command line.

5

Self- instructional Material

Open source software

Notes

In any case, repositories are an issue for a different day, and not necessary

to understand for the type of software downloads discussed in this article.

Installing a downloaded file

I know, I know… I said one of the benefits of modern Linux operating

systems is that you don‟t need to install from a downloaded file. That being

said, I want to start here. Why? There may be times when you find a piece

of software not available in your distribution‟s “app store.” When that

occurs, you‟ll need to know how to install that application manually. I will

say that, for every day, average use, it‟s a rare occasion that you‟ll need to

do this. And even if you never do install using this method, at least you‟ll

have a very basic understanding of how it works.

Here, we‟ll demonstrate using the latest release of Ubuntu Linux (as of this

writing, 17.10). Most package managers install in similar fashion (with

slight variations on the commands used). Let‟s say you want to install the

Google Chrome browser on Ubuntu. You won‟t find this particular

browser in the Ubuntu Software tool. To install it from the command line,

you must download the correct file. As stated earlier, the correct file for

Ubuntu will be a .deb file. So point your browser to the Chrome download

page and click the Download Chrome button. The good news here is that

your browser will be detected and the Chrome download page will know

which file you need. Click the ACCEPT AND INSTALL button and a new

window will appear, giving you two options

You can either save the file to your hard drive (and then install via the

command line), or open the file with the Software Installer. It is important

to understand that not every distribution includes the latter. If you do not

get the Open with option, then you‟ll have to install from the command

line.

Let‟s first use the Open with option. Make sure Software Install (default) is

selected and click OK. The file will download and then Ubuntu Software

will open, giving you the option to install

 6 Self- instructional Material

Open source software

Notes

Click Install and you will be prompted for your user password. The

installation will complete and Chrome is ready to use. You can close the

Ubuntu Software tool and open Chrome from the Dash.

But what if you don‟t get the option to install with the GUI tool? Then you

have to select the Save File and run the installation from the command line.

Don‟t worry, it‟s not that hard. Here are the steps to install the latest release

of Chrome, on Ubuntu Linux, from the command line:

1. Click on the square of dots at the bottom of the desktop

2. When the Dash opens, type terminal

3. Change into the Downloads directory with the command cd

~/Downloads

4. Install Chrome with the command sudo dpkg -i google-

chrome*.deb

5. When prompted (see below), type your user password and hit Enter

on your keyboard

6. Allow the installation to complete

7

Self- instructional Material

Open source software

Notes

Installing from the GUI

This is where things get very easy. To install from your distribution‟s GUI,

you only need open up the tool, search for the software you want, and click

Install. Say, for instance, you want to install the GIMP Image editor. To do

that, open Ubuntu Software and type gimp in the search bar. When the

results appear, click on the GIMP entry, click the Install button (see

below), and (when prompted) type your user password. Wait for the

installation to complete and your new software is ready to be opened and

used.

 8 Self- instructional Material

Open source software

Notes

Bottom line: it’s all easier than it seems

Installing software on Linux isn‟t nearly as hard as you might have

thought. Yes, there may be the rare occasion when you need to install

something from the command line, but even that isn‟t much of a challenge.

Besides, chances are, you‟ll never have to install software outside of the

GUI front end.

Do remember, if you use a distribution other than Ubuntu (or its

derivatives), you‟ll want to do a quick bit of googling to make sure you

understand the differences between the apt package manager and the one

used on your desktop.

Result:

Thus the software‟s on Linux are installed

INSTALL AND CONFIGURE XAMP

AIM:

To install and configure Xamp in Linux

Procedure

1. Open the XAMPP download page. Go to

https://www.apachefriends.org/index.html in your computer's web browser.

This is the official download site for XAMPP.

9

Self- instructional Material

Open source software

Notes

2. Click XAMPP for Linux. It's in the middle of the page. This will

prompt the XAMPP setup file to begin downloading onto your computer.

You may have to click Save File or select the "Downloads" folder as your

save location before proceeding.

3.Allow the download to complete. Once XAMPP's installation file

finishes downloading onto your computer, you can proceed.

4.Open Terminal. Click the Terminal app icon, which resembles a black

box with a white ">_" inside of it.You can also just press Alt+Ctrl+T to

open a new Terminal window.

 10 Self- instructional Material

Open source software

Notes

5. Change over to the "Downloads" directory. Type in cd Downloads and

press ↵ Enter.Make sure you capitalize "Downloads”. If your default

downloads location is in a different folder, you'll have to change the

directory to that folder.

6. Make the downloaded file executable. Type in chmod +x xampp-linux-

x64-7.2.9-0-installer.run and press ↵ Enter.If you download a different

version of XAMPP (e.g., version 5.9.3), you'll replace "7.2.9" with your

XAMPP version's number.

7. Enter the installation command. Type in sudo ./xampp-

linux-x64-7.2.9-0-installer.run and press ↵ Enter .

11

Self- instructional Material

Open source software

Notes

8. Enter your password when prompted. Type in the password you use to

log into your computer, then press ↵ Enter . The installation window will

pop up.You won't see the characters appear in Terminal when you type.

9. Follow the installation prompts. Once the installation window appears,

do the following:

 Click Next three times.

 Uncheck the "Learn more about Bitnami for XAMPP" box.

 12 Self- instructional Material

Open source software

Notes

 Click Next, then click Next again to begin installing XAMPP.

10. Uncheck the "Launch XAMPP" box. It's in the middle of the final

installation window. Since XAMPP needs a few extra steps to actually run

on Linux, you'll need to finish the installation without automatically

running XAMPP.

11. Click Finish. This option is at the bottom of the window. Doing so will

close the installation window. At this point, you're ready to run XAMPP.

Running XAMPP

1.Re-open Terminal if necessary. If you closed the Terminal window that

you used to install XAMPP, re-open Terminal.XAMPP doesn't have any

desktop files, so you'll need to launch it from within its installation

directory via Terminal each time you want to run it.

https://www.wikihow.com/Install-XAMPP-on-Linux#/Image:Install-XAMPP-on-Linux-Step-11.jpg
https://www.wikihow.com/Install-XAMPP-on-Linux#/Image:Install-XAMPP-on-Linux-Step-11.jpg

13

Self- instructional Material

Open source software

Notes

2. Switch to the XAMPP installation directory. Type in cd

/opt/lampp and press ↵ Enter

3, Enter the "Open" command. Type in sudo ./manager-linux-

x64.runand press ↵ Enter .

 14 Self- instructional Material

Open source software

Notes

4. Enter your password when prompted. Type in the password you usually

use to log into your computer, then press ↵ Enter.

5. Click the Manage Servers tab. This option is at the top of the window.

6.Click Start All. It's at the bottom of the window. Doing so prompts any

active components of XAMPP to begin running.

15

Self- instructional Material

Open source software

Notes

7. Open your computer's localhost page. Go to 127.0.0.1 in your

computer's web browser. You should see the XAMPP dashboard here; at

this point, you're able to begin using XAMPP as you please.

UNIX COMMANDS

AIM:

To study basic Unix commands.

File and Directory Related commands

1. pwd

This command prints the current working directory

2. ls

This command displays the list of files in the current working directory.

$ls –l Lists the files in the long format

$ls –t Lists in the order of last modification time

$ls –d Lists directory instead of contents

$ls -u Lists in order of last access time

3. cd

This command is used to change from the working directory to any other

directory specified.

 16 Self- instructional Material

Open source software

Notes

$cd directoryname

4. cd ..

This command is used to come out of the current working directory.

$cd ..

5. mkdir

This command helps us to make a directory.

$mkdir directoryname

6. rmdir

This command is used to remove a directory specified in the command

line. It requires the specified directory to be empty before removing it.

$rmdir directoryname

7. cat

This command helps us to list the contents of a file we specify.

$cat [option][file]

cat > filename – This is used to create a new file.

cat >>filename – This is used to append the contents of the file

8. cp

This command helps us to create duplicate copies of ordinary files.

$cp source destination

9. mv

This command is used to move files.

$mv source destination

10. ln

This command is to establish an additional filename for the same ordinary

file.

$ln firstname secondname

11. rm

This command is used to delete one or more files from the directory.

$rm [option] filename

17

Self- instructional Material

Open source software

Notes

$rm –i Asks the user if he wants to delete the file mentioned.

$rm –r Recursively delete the entire contents of the directory as well as the

directory itself.

Process and status information commands

1) who

This command gives the details of who all have logged in to the UNIX

system currently.

$ who

2) who am i

This command tells us as to when we had logged in and the system‟s name

for the connection being used.

$who am i

3) date

This command displays the current date in different formats.

+%D mm/dd/yy +%w Day of the week

+%H Hr-00 to 23 +%a Abbr.Weekday

+%M Min-00 to 59 +%h Abbr.Month

+%S Sec-00 to 59 +%r Time in AM/PM

+%T HH:MM:SS +%y Last two digits of the year

4) echo

This command will display the text typed from the keyboard.

$echo

Eg : $echo Have a nice day

O/p : Have a nice day

Text related commands

1. head

This command displays the initial part of the file. By default it displays

first ten lines of the file.

$head [-count] [filename]

2. tail

 18 Self- instructional Material

Open source software

Notes

This command displays the later part of the file. By default it displays last

ten lines of the file.

$tail [-count] [filename]

3. wc

This command is used to count the number of lines, words or characters in

a file.

$wc [-lwc] filename

4. find

The find command is used to locate files in a directory and in a

subdirectory.

The –name option

This lists out the specific files in all directories beginning from the named

directory. Wild cards can be used.

The –type option

This option is used to identify whether the name of files specified are

ordinary files or directory files. If the name is a directory then use "-type d

" and if it is a file then use “-type f”.

The –mtime option

This option will allow us to find that file which has been modified before

or after a specified time. The various options available are –mtime n(on a

particular day),-mtime +n(before a particular day),-mtime –n(after a

particular day)

The –exec option

This option is used to execute some commands on the files that are found

by the find command.

 File Permission commands

1. chmod

Changes the file/directory permission mode: $ chmod 777 file1

Gives full permission to owner, group and others

$ chmod o-w file1

Removes write permission for others.

 Useful Commands:
1. Exit - Ends your work on the UNIX system.

19

Self- instructional Material

Open source software

Notes

SHELL PROGRAMS

Sum of n numbers

AIM:

To write a shell script to find the sum of n numbers.

ALGORITHM

 Step 1: Start the program

Step 2: Enter the value of n

Step 3: Declare the variables of i and sum and both are initialized to zero.

Step 4: Perform the addition of n numbers using while loop

 Step 5: Print the sum.

 Step 6 : Stop the program

Program

echo "Sum of n natural numbers \n”

echo "Enter the value of n "

read n

i = 0

sum = 0

while[$i –lt $n]

do

sum=‟expr $sum + expr $i‟

i = „expr $i + 1‟

done

echo "Sum of n natural numbers are : $sum”

OUTPUT

[csestaff@localhost csestaff]$ sh sum.sh

Sum of n natural numbers

Enter the value of n : 3

Sum of n natural numbers are : 6

 20 Self- instructional Material

Open source software

Notes

Result:

Thus, the shell script to find the sum of n natural numbers is entered

and its output was verified.

SWAPPING

AIM:

To write a shell program for swapping of two numbers.

ALGORITHM

1. Start the program.

2. Read the variables a, b.

3. Interchange the values of a and b using another temporary variable c as

follows:

 c=a

 a=b

 b=c

4. Print the a and b.

5. Stop the program.

Program

echo “swapping using temporary variable”

echo “enter a”

read a

echo “enter b”

read b

c=$a

a=$b

b=$c

echo “after swapping”

echo “$a”

echo “$b”

OUTPUT

Enter a

10

Enter b

21

Self- instructional Material

Open source software

Notes

20

After swapping

20

10

Result:

Thus, the shell script to swap two numbers is entered and its output

was verified.

LEAP YEAR

AIM:

 To write a shell program to check whether the given year is leap

year or not.

ALGORITHM

1. Start the program.

2. Read the year.

3. Check whether year%4,year%100,year%400 is zero.

4. If zero then print year is leap year.

5. Else print year is not leap year.

6. Stop the program.

 Program

echo "Finding Leap Year"

echo "enter any year"

read y

a=`expr $y % 4`

b=`expr $y % 100`

c=`expr $y % 400`

if [$a -eq 0 -a $b -ne 0 -o $c -eq 0]

then

echo "$y is a leap year "

else

echo "$y is not a leap year "

fi

OUTPUT

 22 Self- instructional Material

Open source software

Notes

Enter a year:

2000

Year is leap year

Result:

Thus, the shell script to check whether the given year is leap year or

not is entered and its output was verified.

FACTORIAL OF A NUMBER

AIM:

 To write a shell program for finding the factorial of a number.

ALGORITHM

1. Start the program.

2. Read the number as n.

3. For every iteration until n<1 compute f=f*n.

4. Print the factorial of the given number as f.

5. Stop the program.

Program

echo “enter a positive number”

read n

f=1

until [$n -lt 1]

do

f=`expr $f * $n`

n=`expr $n - 1`

done

echo “factorial is $f”

OUTPUT

Enter positive number

4

Factorial is 24

23

Self- instructional Material

Open source software

Notes

Result:

 Thus, the shell script to find the factorial of a given number

is entered and its output was verified

SUM OF DIGITS OF A GIVEN NUMBER

AIM:

To write a shell program for finding the sum of digits of a given number.

ALGORITHM

1. Start the program.

2. Read the number as n.

3. Initialise sum=0

4. For every iteration n> 0 compute

 rem=n%10

 n=n/10

 sum=sum + rem

5. Print the sum of digits of the given number as sum.

6. Stop the program.

Program

echo “enter the number”

read n

sum=0

while [$n -gt 0]

do

rem=`expr $n % 10`

n=`expr $n / 10`

sum=`expr $sum + $rem`

done

echo “sum of digits is:$sum”

OUTPUT

Enter a number:1234

Sum of digits is:10

 24 Self- instructional Material

Open source software

Notes

Result:

 Thus, the shell script to find the sum the digits of a given number is

entered and its output was verified.

GREATEST AMONG THREE NUMBERS

AIM:

To write a shell program for finding the greatest among three numbers.

ALGORITHM

1. Start the program.

2. Read the three numbers a, b, c.

3. Check whether a is greater than b and c.

4. If yes then print a is big.

5. Else check whether b is greater than c.

6. If yes then print b is big.

7. Else print c is big.

8. Stop the program.

Program

echo “enter a b c”

read a

read b

read c

if [$a -gt $b] && [$a -gt $c]

then

echo “$a big”

elif [$b -gt $c]

then

echo “$b big”

else

echo “$c big”

25

Self- instructional Material

Open source software

Notes

fi

OUTPUT

Enter a b c

10

20

30

C big

Result:

 Thus, the shell script to find the sum the digits of a given number is

entered and its output was verified.

 26

Open source software

Notes

Self- instructional Material

CREATING SIMPLE TABLES WITH

CONSTRAINTS

AIM:

To create tables using Sql Commads

Procedure

After logging into the MySQL server, you are ready to do some work on

your database creation.

You have a database space allocated to your use on the MySQL server.

To get to your database space, type:

use MIS3500_YourUserID;

 (replace „YourUserID‟ with your user ID as before)

The system response should be: Database changed .

To check if you are in the right place, type: \s .

To see if there is any table already in the database, type:

show tables;

The system response should be “Empty set”. Remember this command for

the latter use, once you will have some tables created and want to make

sure they exist.

Now you can create your first table using the SQL statements below. You

will be using a CREATE query. Note that the system will assume a

continuous input as long as it does not encounter the semi-colon character

(;). You can copy and paste the statements, although entering them

manually for a bit will help you learn about the query structure. Note that

the format of statement is given for the clarity purposes and not because

the system requires it as such.

create table Customer

(

CustomerID int NOT NULL AUTO_INCREMENT PRIMARY KEY,

CustFirstName varchar(25),

CustMidName varchar(10),

CustLastName varchar(25)

)

;

=================

NOTE: Commands can be written either in the lower or upper case.

Although the UNIX standard is lower case and MySQL runs on the UNIX

operating system, the MySQL database engine is apparently not that

restrictive. But, names of database objects are case sensitive! To do the

work in an orderly fashion, you may decide to always enter system

commands in the lower case, while the database objects must be addressed

with the original case(s).

27

Self- instructional Material

Open source software

Notes

=================

To see how the table looks like type:

desc Customer;

Output:

But in accord with the Note above, the command addressing the table name

with a lower „c‟ (desc customer) would cause an error message.

Move to creating the next table by entering the statements below.

create table SalesOrder

(

 OrderID int NOT NULL AUTO_INCREMENT PRIMARY KEY,

 OrderDate date,

 CustomerID int,

 FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID)

);

The next table is Product:

create table Product

(

ProductID int NOT NULL AUTO_INCREMENT PRIMARY KEY,

ProductName varchar(25),

UnitPrice decimal,

NumberInStock int

);

Then create the table OrderLine:

create table OrderLine

(OrderLineID int NOT NULL AUTO_INCREMENT PRIMARY KEY,

OrderID int,

ProductID int,

QuantityOrdered varchar(15),

FOREIGN KEY (OrderID) REFERENCES SalesOrder(OrderID),

FOREIGN KEY (ProductID) REFERENCES Product(ProductID)

);

To see all the tables type:

 28

Open source software

Notes

Self- instructional Material

show tables;

INSERT UPDATE AND DELETE ROWS IN TABLE

AIM:

To insert, Update and delete rows in a table

Procedure

Now you are ready to insert some records into these tables. Insert records

into the tables without foreign key first, then insert records into tables with

foreign keys.

INSERT INTO Customer (CustFirstName, CustLastName)

VALUES ('John', 'Doe');

Note that the first line names columns, while the second inputs the data.

The system checks (a) that the number of items is the same across these

lines, and (b) the data types.

Check: select * from Customer;

Note the NULL value for the missing middle name.

Insert another record into table Customer:

INSERT INTO Customer (CustFirstName, CustMidName, CustLastName)

VALUES ('Bob', 'R.', 'Travis');

Check: select * from Customer;

Work then with other tables as follows.

INSERT INTO Product (ProductID, ProductName, UnitPrice,

NumberInStock)

VALUES (1, 'Strawberry', 4.99, 16);

Check:

select * from Product;

OUTPUT:

mysql> select * from Product;

+-----------+-------------+-----------+---------------+

| ProductID | ProductName | UnitPrice | NumberInStock |

+-----------+-------------+-----------+---------------+

| 1 | Strawberry | 5 | 16 |

29

Self- instructional Material

Open source software

Notes

+-----------+-------------+-----------+---------------+

1 row in set (0.00 sec)

You can see that one record has been created, however, the price is 5

instead of 4.99. It is because the data type was set with no decimal digits.

You need to change it so that 2 decimal places are allocated. Run this alter

table procedure:

alter table Product

modify UnitPrice decimal (5, 2);

Check that result is as shown below.

Check the content of table Product. The incorrect price is still in it (5). So,

you need to update the price:

UPDATE Product

SET UnitPrice =4.99 WHERE ProductID =1;

Check that the right price is now inserted.

Keep entering data into SalesOrder:

mysql> INSERT INTO SalesOrder (OrderDate, CustomerID)

 -> VALUES (DATE '2006-10-11', 1);

Query OK, 1 row affected (0.06 sec)

Check:

mysql> select * from SalesOrder;

Output:

+---------+------------+------------+

| OrderID | OrderDate | CustomerID |

+---------+------------+------------+

| 1 | 2006-10-11 | 1 |

+---------+------------+------------+

1 row in set (0.00 sec)

Check:

mysql> select * from SalesOrder;

 30

Open source software

Notes

Self- instructional Material

Output:

+---------+------------+------------+

| OrderID | OrderDate | CustomerID |

+---------+------------+------------+

| 1 | 2006-10-11 | 1 |

+---------+------------+------------+

1 row in set (0.00 sec)

Finally, enter a row into table OrderLine:

INSERT INTO OrderLine (OrderLineID, OrderID, ProductID,

QuantityOrdered)

VALUES (1,1,1,‟3kg‟);

Check:

 Useful Row and Table Commands

These commands are compliant with the SQL standard that works across

DBMSes.

Table Copying

To copy a table, there are several options, with regard to what is copied

(just the structure (metadata) o the structure and indexes – all without data,

or all these with the data). Below is that last total copy options shown via

screen copies.

mysql> create table Customer2 as select * from Customer;

Query OK, 2 rows affected (0.04 sec)

Records: 2 Duplicates: 0 Warnings: 0

Check:

mysql> select * from Customer2;

+------------+---------------+-------------+--------------+

| CustomerID | CustFirstName | CustMidName | CustLastName |

+------------+---------------+-------------+--------------+

| 1 | John | NULL | Doe |

| 2 | Bob | R. | Travis |

+------------+---------------+-------------+--------------+

31

Self- instructional Material

Open source software

Notes

2 rows in set (0.00 sec)

Table Deletion

The syntax is: drop table [table name];

For example: drop table Customer2;

Row Deletion

A delete query works as in any relational DBMS supporting SQL. So, the

syntax is:

delete from [table name] where [condition] .

Let‟s assume a table Customer5 is created via the copy statement above,

and then we want to delete the row for the customer Bob. The screenshot

below demonstrates all these steps.

Note: Error is reported because of disrespecting the upper case in the table

name.

Clear Screen

Type \c .

For example, you use this command when you want to exit a sequence of

command lines before typing the semi-colon symbol because you made

some error that cannot be corrected.

Exit MySQL

Type exit or quit or \q .

SEARCHING OF DATA

AIM:

Searching More than One Table

Procedure

The SELECT query of multiple tables works in a MySQL system as in any

other database system supporting the SQL standard. The INNER JOIN and

OUTER JOINS work as with, say, MS Access.Try the simplest query first

on tables Customer and SalersOrder, as shown below.

mysql> select * from Customer

 -> inner join SalesOrder on

 -> Customer.CustomerID=SalesOrder.CustomerID

 -> ;

 32

Open source software

Notes

Self- instructional Material

The LEFT JOIN works too:

 The old SQL syntax should also works:

 How about joining more than 2 tables (something students really like!)

Let us see who likes strawberrie. A join of 4 tables is needed as follows.

SELECT Customer.CustFirstName, CustLastName, Product.ProductName

As 'Bought product'

FROM Product INNER JOIN

 (

 (OrderLine INNER JOIN

 (Customer INNER JOIN SalesOrder ON Customer.CustomerID

=SalesOrder.CustomerID)

 ON OrderLine.OrderID=SalesOrder.OrderID

)

)

 ON Product.ProductID=OrderLine.ProductID

WHERE Product.ProductName LIKE 'Strawb%' ;

Screen shot of the statement and output:

 Analysis:

1. The schema is: Customer---SalesOrder---OrderLine---Product. The

INNER JOIN works the same way as in MS Access. Starting from the

innermost part of the query, the first join references tables Customer to

SalesOrder, the result of the next join references OrderLine, and the result

of this join references Product.

2. The LIKE operator for strings is supported as in MS Access. Quotes

must be used.

3. The wild card symbol replacing any character and any number of

characters is a „%‟.

The old SQL syntax also works:

SELECT Customer.CustFirstName, CustLastName, Product.ProductName

As 'Bought product'

FROM Product, OrderLine, SalesOrder, Customer

WHERE

 Product.ProductID=OrderLine.ProductID AND

33

Self- instructional Material

Open source software

Notes

 OrderLine.OrderID=SalesOrder.OrderID AND

 SalesOrder.CustomerID=Customer.CustomerID

 AND

 Product.ProductName LIKE 'Strawb%' ;

SORTING DATA

AIM:

To sort data in a table

Procedure

We have seen the SQL SELECT command to fetch data from a MySQL

table. When you select rows, the MySQL server is free to return them in

any order, unless you instruct it otherwise by saying how to sort the result.

But, you sort a result set by adding an ORDER BY clause that names the

column or columns which you want to sort.

Syntax

The following code block is a generic SQL syntax of the SELECT

command along with the ORDER BY clause to sort the data from a

MySQL table.

SELECT field1, field2,...fieldN table_name1, table_name2...

ORDER BY field1, [field2...] [ASC [DESC]]

You can sort the returned result on any field, if that field is being listed

out.You can sort the result on more than one field.You can use the

keyword ASC or DESC to get result in ascending or descending order. By

default, it's the ascending order.You can use the WHERE...LIKE clause in

the usual way to put a condition.

Using ORDER BY clause at the Command Prompt

This will use the SQL SELECT command with the ORDER BY clause to

fetch data from the MySQL table – tutorials_tbl.

Example

Try out the following example, which returns the result in an ascending

order.

root@host# mysql -u root -p password;

Enter password:*******

mysql> use TUTORIALS;

 34

Open source software

Notes

Self- instructional Material

Database changed

mysql> SELECT * from tutorials_tbl ORDER BY tutorial_author ASC

+-------------+----------------+-----------------+-----------------+

| tutorial_id | tutorial_title | tutorial_author | submission_date |

+-------------+----------------+-----------------+-----------------+

| 2 | Learn MySQL | Abdul S | 2007-05-24 |

| 1 | Learn PHP | John Poul | 2007-05-24 |

| 3 | JAVA Tutorial | Sanjay | 2007-05-06 |

+-------------+----------------+-----------------+-----------------+

3 rows in set (0.42 sec)

mysql>

Verify all the author names that are listed out in the ascending order.

Using ORDER BY clause inside a PHP Script

You can use a similar syntax of the ORDER BY clause into the PHP

function – mysql_query(). This function is used to execute the SQL

command and later another PHP function mysql_fetch_array() can be used

to fetch all the selected data.

Example

Try out the following example, which returns the result in a descending

order of the tutorial authors.

<?php

 $dbhost = 'localhost:3036';

 $dbuser = 'root';

 $dbpass = 'rootpassword';

 $conn = mysql_connect($dbhost, $dbuser, $dbpass);

 if(! $conn) {

 die('Could not connect: ' . mysql_error());

 }

 $sql = 'SELECT tutorial_id, tutorial_title,

 tutorial_author, submission_date

35

Self- instructional Material

Open source software

Notes

 FROM tutorials_tbl

 ORDER BY tutorial_author DESC';

 mysql_select_db('TUTORIALS');

 $retval = mysql_query($sql, $conn);

 if(! $retval) {

 die('Could not get data: ' . mysql_error());

 }

 while($row = mysql_fetch_array($retval, MYSQL_ASSOC)) {

 echo "Tutorial ID :{$row['tutorial_id']}
 ".

 "Title: {$row['tutorial_title']}
 ".

 "Author: {$row['tutorial_author']}
 ".

 "Submission Date : {$row['submission_date']}
 ".

 "--------------------------------
";

 }

 echo "Fetched data successfully\n";

 mysql_close($conn);

?>

USAGE OF SUBQUERIES IN SQL

AIM:

To implement subqueries in mysql commands

Procedure

A Subquery or Inner query or a Nested query is a query within another

SQL query and embedded within the WHERE clause.A subquery is used to

return data that will be used in the main query as a condition to further

restrict the data to be retrieved.

 36

Open source software

Notes

Self- instructional Material

Subqueries can be used with the SELECT, INSERT, UPDATE, and

DELETE statements along with the operators like =, <, >, >=, <=, IN,

BETWEEN, etc.

There are a few rules that subqueries must follow

Subqueries must be enclosed within parentheses.

A subquery can have only one column in the SELECT clause, unless

multiple columns are in the main query for the subquery to compare its

selected columns.

An ORDER BY command cannot be used in a subquery, although the main

query can use an ORDER BY. The GROUP BY command can be used to

perform the same function as the ORDER BY in a subquery.

Subqueries that return more than one row can only be used with multiple

value operators such as the IN operator.

The SELECT list cannot include any references to values that evaluate to a

BLOB, ARRAY, CLOB, or NCLOB.

A subquery cannot be immediately enclosed in a set function.

The BETWEEN operator cannot be used with a subquery. However, the

BETWEEN operator can be used within the subquery.Subqueries with the

SELECT Statement

Subqueries are most frequently used with the SELECT statement. The

basic syntax is as follows

SELECT column_name [, column_name]

FROM table1 [, table2]

WHERE column_name OPERATOR

 (SELECT column_name [, column_name]

 FROM table1 [, table2]

 [WHERE])

Example

Consider the CUSTOMERS table having the following records −

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 2000.00 |

37

Self- instructional Material

Open source software

Notes

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Now, let us check the following subquery with a SELECT statement.

SQL> SELECT *

 FROM CUSTOMERS

 WHERE ID IN (SELECT ID

 FROM CUSTOMERS

 WHERE SALARY > 4500) ;

This would produce the following result.

+----+----------+-----+---------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+---------+----------+

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+---------+----------+

Subqueries with the INSERT Statement

Subqueries also can be used with INSERT statements. The INSERT

statement uses the data returned from the subquery to insert into another

table. The selected data in the subquery can be modified with any of the

character, date or number functions.

The basic syntax is as follows.

INSERT INTO table_name [(column1 [, column2])]

 SELECT [*|column1 [, column2]

 38

Open source software

Notes

Self- instructional Material

 FROM table1 [, table2]

 [WHERE VALUE OPERATOR]

Example

Consider a table CUSTOMERS_BKP with similar structure as

CUSTOMERS table. Now to copy the complete CUSTOMERS table into

the CUSTOMERS_BKP table, you can use the following syntax.

SQL> INSERT INTO CUSTOMERS_BKP

 SELECT * FROM CUSTOMERS

 WHERE ID IN (SELECT ID

 FROM CUSTOMERS) ;

Subqueries with the UPDATE Statement

The subquery can be used in conjunction with the UPDATE statement.

Either single or multiple columns in a table can be updated when using a

subquery with the UPDATE statement.

The basic syntax is as follows.

UPDATE table

SET column_name = new_value

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Example

Assuming, we have CUSTOMERS_BKP table available which is backup

of CUSTOMERS table. The following example updates SALARY by 0.25

times in the CUSTOMERS table for all the customers whose AGE is

greater than or equal to 27.

SQL> UPDATE CUSTOMERS

 SET SALARY = SALARY * 0.25

 WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

 WHERE AGE >= 27);

This would impact two rows and finally CUSTOMERS table would have

the following records.

39

Self- instructional Material

Open source software

Notes

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 35 | Ahmedabad | 125.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 2125.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+-----------+----------+

Subqueries with the DELETE Statement

The subquery can be used in conjunction with the DELETE statement like

with any other statements mentioned above.

The basic syntax is as follows.

DELETE FROM TABLE_NAME

[WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME

 FROM TABLE_NAME)

 [WHERE)]

Example

Assuming, we have a CUSTOMERS_BKP table available which is a

backup of the CUSTOMERS table. The following example deletes the

records from the CUSTOMERS table for all the customers whose AGE is

greater than or equal to 27.

SQL> DELETE FROM CUSTOMERS

 WHERE AGE IN (SELECT AGE FROM CUSTOMERS_BKP

 WHERE AGE >= 27);

This would impact two rows and finally the CUSTOMERS table would

have the following records.

 40

Open source software

Notes

Self- instructional Material

+----+----------+-----+---------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+---------+----------+

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

| 7 | Muffy | 24 | Indore | 10000.00 |

+----+----------+-----+---------+----------+

 AGGREGATE FUNCTIONS IN SQL

AIM:

To implement and learn aggregate functions and its usage in queries

Procedure

Aggregate Functions are the Functions where the value of input is grouped

together and fetches the output as a single value. Following is single line

Explanation of the Aggregate functions:

SQL Aggregate functions

AVG() – Returns the average value

COUNT() – Returns the number of rows

MAX() – Returns the largest value

MIN() – Returns the smallest value

SUM() – Returns the sum

UCASE() – Converts a field to upper case

LCASE() – Converts a field to lower case

SUBSTR() – Extract characters from a text field

LEN()/LENGTH() – Returns the length of a text field

ROUND() – Rounds a numeric field to the number of decimals specified

1. The AVG () Function:The AVG () function returns the average value

of a numeric column.

41

Self- instructional Material

Open source software

Notes

Syntax:

SELECT AVG (Column_Name)

FROM <Table_Name>;

Scenario: How to Find Average salary from Employee Table

departmentwise?

Example:

SELECT AVG (Salary)

 FROM Employee;

SELECT DeptNo, AVG (Sal) FROM EMP

GROUP BY DeptNo;

SELECT DeptNo, AVG (Sal) AS AvgSal FROM EMP

GROUP BY DeptNo

ORDER BY DeptNo;

SELECT EMPNo, Ename, Job, Sal, DeptNo FROM EMP

WHERE Sal > (SELECT AVG (Sal) FROM EMP);

2) The COUNT () Function:The COUNT () function returns the number

of rows that matches a specified criteria.We Can count the Number of rows

using following 3 types:

1) COUNT (Column_Name)

2) COUNT (*)

3) COUNT (DISTINCT Column_Name)

1) Syntax:

SELECT COUNT (Column_Name)

FROM <Table_Name>;

Scenario : How to find the count of names of Employees who are doing job

as CLERK?

Example:

SELECT COUNT (Ename) FROM Employee;

SELECT Job, COUNT (Job) FROM Employee

WHERE Job=‟CLERK‟

 42

Open source software

Notes

Self- instructional Material

GROUP BY Job;

“The COUNT (Column_Name) function returns the number of values

(NULL values will not be counted) of the specified column.”

2) Syntax:

SELECT COUNT (*)

FROM <Table_Name>;

Example:

SELECT COUNT (*) FROM Employee;

“The COUNT (*) function returns the total number of records in a table,

counts NULL values also”

3) Syntax:

SELECT COUNT (DISTINCT Column_Name)

FROM <Table_Name>;

Example:

SELECT COUNT (DISTINCT Job) FROM EMP;

SELECT COUNT (DISTINCT (Ename)) FROM EMP;

SELECT Ename, COUNT (DISTINCT (Ename)) FROM EMP GROUP

BY Ename;

SELECT Job, COUNT (DISTINCT (Job)) FROM EMP GROUP BY Job;

“The COUNT (DISTINCT column_name) function returns the number of

distinct values of the specified column.”

3) The MAX () Function:The MAX () function returns the largest value of

the selected column.

Syntax:

SELECT MAX (Column_Name)

FROM <Table_Name>;

SELECT MAX (Sal) FROM EMP;

 SELECT DeptNo, Max (Sal) FROM EMP

GROUP BY DeptNo

ORDER BY DeptNo;

43

Self- instructional Material

Open source software

Notes

4) The MIN () Function:The MIN () function returns the smallest value of

the selected column.

Syntax:

SELECT MIN (Column_Name) FROM <Table_Name>;

SELECT MIN (Sal) FROM EMP;

SELECT DeptNo, Min (Sal) FROM EMP

GROUP BY DeptNo

ORDER BY DeptNo;

5) The SUM () Function:The SUM () function returns the total sum of

a numeric column.

Syntax:

SELECT SUM (Column_Name) FROM <Table_Name>;

Example:

SELECT SUM (Sal) FROM EMP;

SELECT DeptNo, Sum (Sal) FROM EMP

GROUP BY DeptNo

ORDER BY DeptNo;

Types of SQL Functions

6) The UPPER () Function:The UPPER () function converts the value of

a field to Upper-Case.

Syntax:

SELECT UPPER (Column_Name) FROM <Table_Name>;

Example :

SELECT UPPER (Ename) FROM EMP;

7) The LOWER () Function:The LOWER () function converts the value

of a field to Lower-Case.

Syntax:

SELECT LOWER (Column_Name) FROM <Table_Name>;

Example:

SELECT LOWER (Ename) FROM EMP;

 44

Open source software

Notes

Self- instructional Material

8) The INITCAP () Function: The INITCAP () function converts the

value of a field to Initial-Case.

Syntax:

SELECT INITCAP (Column_Name) FROM <Table_Name>;

SELECT INITCAP (Ename) FROM EMP;

9) The SUBSTR () Function:The SUBSTR () function is used to extract

characters from a text field.

Syntax:

SELECT SUBSTR (Column_Name, Start Position, Length)

FROM <Table_Name>;

Here is the description of parameters of Substr function.Substring function

is widely used functions in SQL and PLSQL development.

Parameter Description

column_name Required. The field to extract characters from

Start Required. Specifies the starting position (starts at 1)

Length Optional. The number of characters to return. If omitted, the MID()

function returns the rest of the text

Example:

SELECT Substr (Ename, 1, 3) FROM EMP;

10) The LENGTH () Function:

The LENGTH () function returns the length of the value in a text field.

Syntax:

SELECT LENGTH (Column_Name)

FROM <Table_Name>;

SELECT LENGTH (Ename) FROM EMP;

11) The ROUND () Function:

The ROUND () function is used to round a numeric field to the number of

decimals specified.

Syntax:

SELECT ROUND (Column_Name, Decimals)

FROM EMP;

45

Self- instructional Material

Open source software

Notes

Following are Parameter and its description for Round Function:

Parameter Description

column_name Required. The field to round.

Decimals Required. Specifies the number of decimals to be returned.

Example:

SELECT ROUND (Comm, 2) FROM EMP;

WORKING OF SET OPERATIONS IN MYSQL

AIM:

To learn and implement the set operations in mysql

Procedure

Set operators allow you to combine the results of multiple separate queries

into a single result set.The following two queries will be used for most of

the examples in this article. The first returns the departments 10, 20 and 30.

The second returns the departments 20, 30 and 40. As you can see,

departments 20 and 30 are common to both result sets.

-- Department 10, 20 and 30.

SELECT department_id, department_name

FROM departments

WHERE department_id <= 30;

DEPARTMENT_ID DEPARTMENT_NAM

------------- --------------

 10 ACCOUNTING

 20 RESEARCH

 30 SALES

3 rows selected.

SQL>

--Department 20, 30 and 40.

SELECT department_id, department_name

FROM departments

 46

Open source software

Notes

Self- instructional Material

WHERE department_id >= 20;

DEPARTMENT_ID DEPARTMENT_NAM

------------- --------------

 20 RESEARCH

 30 SALES

 40 OPERATIONS

3 rows selected.

SQL>

You will see, these are not real-world examples, but they serve to

demonstrate how each of the set operators work

UNION

The UNION set operator returns all distinct rows selected by either query.

That means any duplicate rows will be removed.In the example below,

notice there is only a single row each for departments 20 and 30, rather

than two each.

SELECT department_id, department_name

FROM departments

WHERE department_id <= 30

UNION

SELECT department_id, department_name

FROM departments

WHERE department_id >= 20

ORDER BY 1;

DEPARTMENT_ID DEPARTMENT_NAM

------------- --------------

 10 ACCOUNTING

 20 RESEARCH

 30 SALES

 40 OPERATIONS

4 rows selected.

47

Self- instructional Material

Open source software

Notes

SQL>

The removal of duplicates requires extra processing, so you should

consider using UNION ALL if possible

UNION ALL

The UNION ALL set operator returns all rows selected by either query.

That means any duplicates will remain in the final result set.In the example

below, notice there are two rows each for departments 20 and 30.

SELECT department_id, department_name

FROM departments

WHERE department_id <= 30

UNION ALL

SELECT department_id, department_name

FROM departments

WHERE department_id >= 20

ORDER BY 1;

DEPARTMENT_ID DEPARTMENT_NAM

------------- --------------

 10 ACCOUNTING

 20 RESEARCH

 20 RESEARCH

 30 SALES

 30 SALES

 40 OPERATIONS

6 rows selected.

SQL>

INTERSECT

The INTERSECT set operator returns all distinct rows selected by both

queries. That means only those rows common to both queries will be

present in the final result set. In the example below, notice there is one row

each for departments 20 and 30, as both these appear in the result sets for

their respective queries.

 48

Open source software

Notes

Self- instructional Material

SELECT department_id, department_name

FROM departments

WHERE department_id <= 30

INTERSECT

SELECT department_id, department_name

FROM departments

WHERE department_id >= 20

ORDER BY 1;

DEPARTMENT_ID DEPARTMENT_NAM

------------- --------------

 20 RESEARCH

 30 SALES

2 rows selected.

SQL>

MINUS

The MINUS set operator returns all distinct rows selected by the first query

but not the second. This is functionally equivalent to the ANSI set operator

EXCEPT DISTINCT. In the example below, the first query would return

departments 10, 20, 30, but departments 20 and 30 are removed because

they are returned by the second query. This leaves a single rows for

department 10.

SELECT department_id, department_name

FROM departments

WHERE department_id <= 30

MINUS

SELECT department_id, department_name

FROM departments

WHERE department_id >= 20

ORDER BY 1;

DEPARTMENT_ID DEPARTMENT_NAM

------------- --------------

49

Self- instructional Material

Open source software

Notes

 10 ACCOUNTING

1 row selected.

SQL>

ORDER BY

The ORDER BY clause is applied to all rows returned in the final result

set. Columns in the ORDER BY clause can be referenced by column

names or column aliases present in the first query of the statement, as these

carry through to the final result set. Typically, you will see people use the

column position as it is less confusing when the data is sourced from

different locations for each query block.

-- Column name.

SELECT employee_id, employee_name

FROM employees

WHERE department_id = 10

UNION ALL

SELECT department_id, department_name

FROM departments

WHERE department_id >= 20

ORDER BY employee_id;

EMPLOYEE_ID EMPLOYEE_NAME

----------- --------------

20 RESEARCH

30 SALES

40 OPERATIONS

7782 CLARK

7839 KING

7934 MILLER

6 rows selected.

SQL>

-- Column Alias

SELECT employee_id AS emp_id, employee_name

 50

Open source software

Notes

Self- instructional Material

FROM employees

WHERE department_id = 10

UNION ALL

SELECT department_id, department_name

FROM departments

WHERE department_id >= 20

ORDER BY emp_id;

EMP_ID EMPLOYEE_NAME
---------- --------------

 20 RESEARCH

 30 SALES

 40 OPERATIONS

 7782 CLARK

 7839 KING

 7934 MILLER

6 rows selected.

SQL>

-- Column position

SELECT employee_id, employee_name

FROM employees

WHERE department_id = 10

UNION ALL

SELECT department_id, department_name

FROM departments

WHERE department_id >= 20

ORDER BY 1;

EMPLOYEE_ID EMPLOYEE_NAME

----------- --------------

 20 RESEARCH

 30 SALES

51

Self- instructional Material

Open source software

Notes

 40 OPERATIONS

 7782 CLARK

 7839 KING

 7934 MILLER

6 rows selected.

SQL>

WORKING WITH STRINGS IN MYSQL

AIM:

To implement string operations in mysql

String Functions

ASCII()-Ascii code value will come as output for a character expression.

Example

The following query will give the Ascii code value of a given character.

Select ASCII ('word')

CHAR()-Character will come as output for given Ascii code or integer.

Example

The following query will give the character for a given integer.

Select CHAR(97)

NCHAR()-Unicode character will come as output for a given integer.

Example

The following query will give the Unicode character for a given integer.

Select NCHAR(300)

CHARINDEX()-Starting position for given search expression will come

as output in a given string expression.

Example

The following query will give the starting position of 'G' character for

given string expression 'KING'.

Select CHARINDEX('G', 'KING')

 52

Open source software

Notes

Self- instructional Material

LEFT()-Left part of the given string till the specified number of characters

will come as output for a given string.

Example

The following query will give the 'WORL' string as mentioned 4 number of

characters for given string 'WORLD'.

Select LEFT('WORLD', 4)

RIGHT()-Right part of the given string till the specified number of

characters will come as output for a given string.

Example

The following query will give the 'DIA' string as mentioned 3 number of

characters for given string 'INDIA'.

Select RIGHT('INDIA', 3)

SUBSTRING()-Part of a string based on the start position value and length

value will come as output for a given string.

Example

The following queries will give the 'WOR', 'DIA', 'ING' strings as we

mentioned (1,3), (3,3) and (2,3) as start and length values respectively for

given strings 'WORLD', 'INDIA' and 'KING'.

Select SUBSTRING ('WORLD', 1,3)

Select SUBSTRING ('INDIA', 3,3)

Select SUBSTRING ('KING', 2,3)

LEN()-Number of characters will come as output for a given string

expression.

Example

The following query will give the 5 for the 'HELLO' string expression.

Select LEN('HELLO')

LOWER()-Lowercase string will come as output for a given string data.

Example

The following query will give the 'sqlserver' for the 'SQLServer' character

data.

Select LOWER('SQLServer')

UPPER()-Uppercase string will come as output for a given string data.

Example

53

Self- instructional Material

Open source software

Notes

The following query will give the 'SQLSERVER' for the 'SqlServer'

character data.

Select UPPER('SqlServer')

LTRIM()

String expression will come as output for a given string data after removing

leading blanks.

Example

The following query will give the 'WORLD' for the ' WORLD' character

data.

Select LTRIM(' WORLD')

RTRIM()-String expression will come as output for a given string data

after removing trailing blanks.

Example

The following query will give the 'INDIA' for the 'INDIA ' character data.

Select RTRIM('INDIA ')

REPLACE()-String expression will come as output for a given string data

after replacing all occurrences of specified character with specified

character.

Example

The following query will give the 'KNDKA' string for the 'INDIA' string

data.

Select REPLACE('INDIA', 'I', 'K')

REPLICATE()-Repeat string expression will come as output for a given

string data with specified number of times.

Example

The following query will give the 'WORLDWORLD' string for the

'WORLD' string data.

Select REPLICATE('WORLD', 2)

REVERSE()-Reverse string expression will come as output for a given

string data.

Example

The following query will give the 'DLROW' string for the 'WORLD' string

data.

 54

Open source software

Notes

Self- instructional Material

Select REVERSE('WORLD')

SOUNDEX()-Returns four-character (SOUNDEX) code to evaluate the

similarity of two given strings.

Example

The following query will give the 'S530' for the 'Smith', 'Smyth' strings.

Select SOUNDEX('Smith'), SOUNDEX('Smyth')

DIFFERENCE()-Integer value will come as output of given two

expressions.

Example

The following query will give the 4 for the 'Smith', 'Smyth' expressions.

Select Difference('Smith','Smyth')

SPACE()-String will come as output with the specified number of spaces.

Example

The following query will give the 'I LOVE INDIA'.

Select 'I'+space(1)+'LOVE'+space(1)+'INDIA'

STUFF()-String expression will come as output for a given string data

after replacing from starting character till the specified length with

specified character.

Example

The following query will give the 'AIJKFGH' string for the 'ABCDEFGH'

string data as per given starting character and length as 2 and 4 respectively

and 'IJK' as specified target string.

Select STUFF('ABCDEFGH', 2,4,'IJK')

STR()-Character data will come as output for the given numeric data.

Example

The following query will give the 187.37 for the given 187.369 based on

specified length as 6 and decimal as 2.

Select STR(187.369,6,2)

UNICODE()-Integer value will come as output for the first character of

given expression.

Example

The following query will give the 82 for the 'RAMA' expression.

55

Self- instructional Material

Open source software

Notes

Select UNICODE('RAMA')

QUOTENAME()-Given string will come as output with the specified

delimiter.

Example

The following query will give the "RAMA" for the given 'RAMA' string as

we specified double quote as delimiter.

Select QUOTENAME('RAMA','"')

PATINDEX()-Starting position of the first occurrence from the given

expression as we specified 'I' position is required.

Example

The following query will give the 1 for the 'INDIA'.

Select PATINDEX('I%','INDIA')

FORMAT()-Given expression will come as output with the specified

format.

Example

The following query will give the ' Monday, November 16, 2015' for the

getdate function as per specified format with 'D' refers weekday name.

SELECT FORMAT (getdate(), 'D')

CONCAT()-Single string will come as output after concatenating the

given parameter values.

Example

The following query will give the 'A,B,C' for the given parameters.

Select CONCAT('A',',','B',',','C')

NUMERIC FUNCTIONS IN MYSQL

AIM:

To implement numeric functions in Mysql

Numeric Functions

ABS(X)-The ABS() function returns the absolute value of X. Consider the

following example

SQL> SELECT ABS(2);

+---+

 56

Open source software

Notes

Self- instructional Material

| ABS(2) |

+---+

| 2 |

+---+

1 row in set (0.00 sec)

SQL> SELECT ABS(-2);

+---+

| ABS(2) |

+---+

| 2 |

+---+

1 row in set (0.00 sec)

ACOS(X)-This function returns the arccosine of X. The value of X must

range between -1 and 1 or NULL will be returned. Consider the following

example −

SQL> SELECT ACOS(1);

+---+

| ACOS(1) |

+---+

| 0.000000 |

+---+

1 row in set (0.00 sec)

ASIN(X)-The ASIN() function returns the arcsine of X. The value of X

must be in the range of -1 to 1 or NULL is returned.

SQL> SELECT ASIN(1);

+---+

| ASIN(1) |

+---+

| 1.5707963267949 |

+---+

57

Self- instructional Material

Open source software

Notes

1 row in set (0.00 sec)

ATAN(X)-This function returns the arctangent of X.

SQL> SELECT ATAN(1);

+---+

| ATAN(1) |

+---+

| 0.78539816339745 |

+---+

1 row in set (0.00 sec)

ATAN2(Y,X)-This function returns the arctangent of the two arguments: X

and Y. It is similar to the arctangent of Y/X, except that the signs of both

are used to find the quadrant of the result.

SQL> SELECT ATAN2(3,6);

+---+

| ATAN2(3,6) |

+---+

| 0.46364760900081 |

+---+

1 row in set (0.00 sec)

BIT_AND(expression)-The BIT_AND function returns the bitwise AND

of all bits in expression. The basic premise is that if two corresponding bits

are the same, then a bitwise AND operation will return 1, while if they are

different, a bitwise AND operation will return 0. The function itself returns

a 64-bit integer value. If there are no matches, then it will return

18446744073709551615. The following example performs the BIT_AND

function on the PRICE column grouped by the MAKER of the car −

SQL> SELECT

 MAKER, BIT_AND(PRICE) BITS

 FROM CARS GROUP BY MAKER

+---+

|MAKER BITS |

 58

Open source software

Notes

Self- instructional Material

+---+

|CHRYSLER 512 |

|FORD 12488 |

|HONDA 2144 |

+---+

1 row in set (0.00 sec)

BIT_COUNT(numeric_value)-The BIT_COUNT() function returns the

number of bits that are active in numeric_value. The following example

demonstrates using the BIT_COUNT() function to return the number of

active bits for a range of numbers −

SQL> SELECT

 BIT_COUNT(2) AS TWO,

 BIT_COUNT(4) AS FOUR,

 BIT_COUNT(7) AS SEVEN

+-----+------+-------+

| TWO | FOUR | SEVEN |

+-----+------+-------+

| 1 | 1 | 3 |

+-----+------+-------+

1 row in set (0.00 sec)

BIT_OR(expression)-The BIT_OR() function returns the bitwise OR of

all the bits in expression. The basic premise of the bitwise OR function is

that it returns 0 if the corresponding bits match and 1 if they do not. The

function returns a 64-bit integer, and if there are no matching rows, then it

returns 0. The following example performs the BIT_OR() function on the

PRICE column of the CARS table, grouped by the MAKER −

SQL> SELECT

 MAKER, BIT_OR(PRICE) BITS

 FROM CARS GROUP BY MAKER

+---+

|MAKER BITS |

+---+

59

Self- instructional Material

Open source software

Notes

|CHRYSLER 62293 |

|FORD 16127 |

|HONDA 32766 |

+---+

1 row in set (0.00 sec)

CEIL(X)

CEILING(X)-These functions return the smallest integer value that is not

smaller than X. Consider the following example −

SQL> SELECT CEILING(3.46);

+---+

| CEILING(3.46) |

+---+

| 4 |

+---+

1 row in set (0.00 sec)

SQL> SELECT CEIL(-6.43);

+---+

| CEIL(-6.43) |

+---+

| -6 |

+---+

1 row in set (0.00 sec)

CONV(N,from_base,to_base)-The purpose of the CONV() function is to

convert numbers between different number bases. The function returns a

string of the value N converted from from_base to to_base. The minimum

base value is 2 and the maximum is 36. If any of the arguments are NULL,

then the function returns NULL. Consider the following example, which

converts the number 5 from base 16 to base 2 −

SQL> SELECT CONV(5,16,2);

+---+

 60

Open source software

Notes

Self- instructional Material

| CONV(5,16,2) |

+---+

| 101 |

+---+

1 row in set (0.00 sec)

COS(X)-This function returns the cosine of X. The value of X is given in

radians.

SQL>SELECT COS(90);

+---+

| COS(90) |

+---+

| -0.44807361612917 |

+---+

1 row in set (0.00 sec)

COT(X)-This function returns the cotangent of X. Consider the following

example −

SQL>SELECT COT(1);

+---+

| COT(1) |

+---+

| 0.64209261593433 |

+---+

1 row in set (0.00 sec)

DEGREES(X)-This function returns the value of X converted from

radians to degrees.

SQL>SELECT DEGREES(PI());

+---+

| DEGREES(PI()) |

+---+

| 180.000000 |

61

Self- instructional Material

Open source software

Notes

+---+

1 row in set (0.00 sec)

EXP(X)-This function returns the value of e (the base of the natural

logarithm) raised to the power of X.

SQL>SELECT EXP(3);

+---+

| EXP(3) |

+---+

| 20.085537 |

+---+

1 row in set (0.00 sec)

FLOOR(X)-This function returns the largest integer value that is not

greater than X.

SQL>SELECT FLOOR(7.55);

+---+

| FLOOR(7.55) |

+---+

| 7 |

+---+

1 row in set (0.00 sec)

FORMAT(X,D)-The FORMAT() function is used to format the number X

in the following format: ###,###,###.## truncated to D decimal places. The

following example demonstrates the use and output of the FORMAT()

function −

SQL>SELECT FORMAT(423423234.65434453,2);

+---+

| FORMAT(423423234.65434453,2) |

+---+

| 423,423,234.65 |

+---+

 62

Open source software

Notes

Self- instructional Material

1 row in set (0.00 sec)

GREATEST(n1,n2,n3,..........)-The GREATEST() function returns the

greatest value in the set of input parameters (n1, n2, n3, a nd so on). The

following example uses the GREATEST() function to return the largest

number from a set of numeric values −

SQL>SELECT GREATEST(3,5,1,8,33,99,34,55,67,43);

+---+

| GREATEST(3,5,1,8,33,99,34,55,67,43) |

+---+

| 99 |

+---+

1 row in set (0.00 sec)

INTERVAL(N,N1,N2,N3,..........)-The INTERVAL() function compares

the value of N to the value list (N1, N2, N3, and so on). The function

returns 0 if N < N1, 1 if N < N2, 2 if N <N3, and so on. It will return .1 if

N is NULL. The value list must be in the form N1 < N2 < N3 in order to

work properly. The following code is a simple example of how the

INTERVAL() function works −

SQL>SELECT INTERVAL(6,1,2,3,4,5,6,7,8,9,10);

+---+

| INTERVAL(6,1,2,3,4,5,6,7,8,9,10) |

+---+

| 6 |

+---+

1 row in set (0.00 sec)

INTERVAL(N,N1,N2,N3,..........)

The INTERVAL() function compares the value of N to the value list (N1,

N2, N3, and so on). The function returns 0 if N < N1, 1 if N < N2, 2 if N

<N3, and so on. It will return .1 if N is NULL. The value list must be in the

form N1 < N2 < N3 in order to work properly. The following code is a

simple example of how the INTERVAL() function works −

SQL>SELECT INTERVAL(6,1,2,3,4,5,6,7,8,9,10);

63

Self- instructional Material

Open source software

Notes

+---+

| INTERVAL(6,1,2,3,4,5,6,7,8,9,10) |

+---+

| 6 |

+---+

1 row in set (0.00 sec)

Remember that 6 is the zero-based index in the value list of the first value

that was greater than N. In our case, 7 was the offending value and is

located in the sixth index slot.

LEAST(N1,N2,N3,N4,......)The LEAST() function is the opposite of the

GREATEST() function. Its purpose is to return the least-valued item from

the value list (N1, N2, N3, and so on). The following example shows the

proper usage and output for the LEAST() function −

SQL>SELECT LEAST(3,5,1,8,33,99,34,55,67,43);

+---+

| LEAST(3,5,1,8,33,99,34,55,67,43) |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

LOG(X)

LOG(B,X)-The single argument version of the function will return the

natural logarithm of X. If it is called with two arguments, it returns the

logarithm of X for an arbitrary base B. Consider the following example −

SQL>SELECT LOG(45);

+---+

| LOG(45) |

+---+

| 3.806662 |

+---+

1 row in set (0.00 sec)

 64

Open source software

Notes

Self- instructional Material

SQL>SELECT LOG(2,65536);

+---+

| LOG(2,65536) |

+---+

| 16.000000 |

+---+

1 row in set (0.00 sec)

LOG10(X)-This function returns the base-10 logarithm of X.

SQL>SELECT LOG10(100);

+---+

| LOG10(100) |

+---+

| 2.000000 |

+---+

1 row in set (0.00 sec)

MOD(N,M)-This function returns the remainder of N divided by M.

Consider the following example −

SQL>SELECT MOD(29,3);

+---+

| MOD(29,3) |

+---+

| 2 |

+---+

1 row in set (0.00 sec)

OCT(N)-The OCT() function returns the string representation of the octal

number N. This is equivalent to using CONV(N,10,8).

SQL>SELECT OCT(12);

+---+

| OCT(12) |

65

Self- instructional Material

Open source software

Notes

+---+

| 14 |

+---+

1 row in set (0.00 sec)

PI()-This function simply returns the value of pi. SQL internally stores the

full double-precision value of pi.

SQL>SELECT PI();

+---+

| PI() |

+---+

| 3.141593 |

+---+

1 row in set (0.00 sec)

POW(X,Y)

POWER(X,Y)-These two functions return the value of X raised to the

power of Y.

SQL> SELECT POWER(3,3);

+---+

| POWER(3,3) |

+---+

| 27 |

+---+

1 row in set (0.00 sec)

RADIANS(X)-This function returns the value of X, converted from

degrees to radians.

SQL>SELECT RADIANS(90);

+---+

| RADIANS(90) |

+---+

 66

Open source software

Notes

Self- instructional Material

|1.570796 |

+---+

1 row in set (0.00 sec)

ROUND(X)

ROUND(X,D)-This function returns X rounded to the nearest integer. If a

second argument, D, is supplied, then the function returns X rounded to D

decimal places. D must be positive or all digits to the right of the decimal

point will be removed. Consider the following example −

SQL>SELECT ROUND(5.693893);

+---+

| ROUND(5.693893) |

+---+

| 6 |

+---+

1 row in set (0.00 sec)

SQL>SELECT ROUND(5.693893,2);

+---+

| ROUND(5.693893,2) |

+---+

| 5.69 |

+---+

1 row in set (0.00 sec)

SIGN(X)-This function returns the sign of X (negative, zero, or positive)

as -1, 0, or 1.

SQL>SELECT SIGN(-4.65);

+---+

| SIGN(-4.65) |

+---+

| -1 |

+---+

67

Self- instructional Material

Open source software

Notes

1 row in set (0.00 sec)

SQL>SELECT SIGN(0);

+---+

| SIGN(0) |

+---+

| 0 |

+---+

1 row in set (0.00 sec)

SQL>SELECT SIGN(4.65);

+---+

| SIGN(4.65) |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

SIN(X)-This function returns the sine of X. Consider the following

example −

SQL>SELECT SIN(90);

+---+

| SIN(90) |

+---+

| 0.893997 |

+---+

1 row in set (0.00 sec)

SQRT(X)-This function returns the non-negative square root of X.

Consider the following example −

SQL>SELECT SQRT(49);

+---+

| SQRT(49) |

 68

Open source software

Notes

Self- instructional Material

+---+

| 7 |

+---+

1 row in set (0.00 sec)

STD(expression)

STDDEV(expression)

The STD() function is used to return the standard deviation of expression.

This is equivalent to taking the square root of the VARIANCE() of

expression. The following example computes the standard deviation of the

PRICE column in our CARS table −

SQL>SELECT STD(PRICE) STD_DEVIATION FROM CARS;

+---+

| STD_DEVIATION |

+---+

| 7650.2146 |

+---+

1 row in set (0.00 sec)

TAN(X)-This function returns the tangent of the argument X, which is

expressed in radians.

SQL>SELECT TAN(45);

+---+

| TAN(45) |

+---+

| 1.619775 |

+---+

1 row in set (0.00 sec)

TRUNCATE(X,D)-This function is used to return the value of X truncated

to D number of decimal places. If D is 0, then the decimal point is

removed. If D is negative, then D number of values in the integer part of

the value is truncated. Consider the following example −

SQL>SELECT TRUNCATE(7.536432,2);

+---+

69

Self- instructional Material

Open source software

Notes

| TRUNCATE(7.536432,2) |

+---+

| 7.53 |

+---+

1 row in set (0.00 sec)

DATE FUNCTIONS

AIM:

To learn date functions in mysql

Procedure

ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days). When

invoked with the INTERVAL form of the second argument, ADDDATE()

is a synonym for DATE_ADD(). The related function SUBDATE() is a

synonym for DATE_SUB(). For information on the INTERVAL unit

argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_ADD('1998-01-02', INTERVAL 31 DAY);

+---+

| DATE_ADD('1998-01-02', INTERVAL 31 DAY) |

+---+

| 1998-02-02 |

+---+

1 row in set (0.00 sec)

mysql> SELECT ADDDATE('1998-01-02', INTERVAL 31 DAY);

+---+

| ADDDATE('1998-01-02', INTERVAL 31 DAY) |

+---+

| 1998-02-02 |

+---+

1 row in set (0.00 sec)

When invoked with the days form of the second argument, MySQL treats it

as an integer number of days to be added to expr.

 70

Open source software

Notes

Self- instructional Material

mysql> SELECT ADDDATE('1998-01-02', 31);

+---+

| DATE_ADD('1998-01-02', INTERVAL 31 DAY) |

+---+

| 1998-02-02 |

+---+

1 row in set (0.00 sec)

ADDTIME(expr1,expr2)-ADDTIME() adds expr2 to expr1 and returns

the result. The expr1 is a time or datetime expression, while the expr2 is a

time expression.

mysql> SELECT ADDTIME('1997-12-31 23:59:59.999999','1

1:1:1.000002');

+---+

| DATE_ADD('1997-12-31 23:59:59.999999','1 1:1:1.000002') |

+---+

| 1998-01-02 01:01:01.000001 |

+---+

1 row in set (0.00 sec)

CONVERT_TZ(dt,from_tz,to_tz)

This converts a datetime value dt from the time zone given by from_tz to

the time zone given by to_tz and returns the resulting value. This function

returns NULL if the arguments are invalid.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');

+---+

| CONVERT_TZ('2004-01-01 12:00:00','GMT','MET') |

+---+

| 2004-01-01 13:00:00 |

+---+

1 row in set (0.00 sec)

71

Self- instructional Material

Open source software

Notes

mysql> SELECT CONVERT_TZ('2004-01-01

12:00:00','+00:00','+10:00');

+---+

| CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00') |

+---+

| 2004-01-01 22:00:00 |

+---+

1 row in set (0.00 sec)

CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD

format, depending on whether the function is used in a string or in a

numeric context.

mysql> SELECT CURDATE();

+---+

| CURDATE() |

+---+

| 1997-12-15 |

+---+

1 row in set (0.00 sec)

mysql> SELECT CURDATE() + 0;

+---+

| CURDATE() + 0 |

+---+

| 19971215 |

+---+

1 row in set (0.00 sec)

CURRENT_DATE and CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for

CURDATE()

CURTIME()

 72

Open source software

Notes

Self- instructional Material

Returns the current time as a value in 'HH:MM:SS' or HHMMSS format,

depending on whether the function is used in a string or in a numeric

context. The value is expressed in the current time zone.

mysql> SELECT CURTIME();

+---+

| CURTIME() |

+---+

| 23:50:26 |

+---+

1 row in set (0.00 sec)

mysql> SELECT CURTIME() + 0;

+---+

| CURTIME() + 0 |

+---+

| 235026 |

+---+

1 row in set (0.00 sec)

CURRENT_TIME and CURRENT_TIME()

CURRENT_TIME and CURRENT_TIME() are synonyms for

CURTIME().

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms

for NOW().

DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');

+---+

| DATE('2003-12-31 01:02:03') |

+---+

| 2003-12-31 |

73

Self- instructional Material

Open source software

Notes

+---+

1 row in set (0.00 sec)

DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 . expr2 expressed as a value in days from one

date to the other. Both expr1 and expr2 are date or date-and-time

expressions. Only the date parts of the values are used in the calculation.

mysql> SELECT DATEDIFF('1997-12-31 23:59:59','1997-12-30');

+---+

| DATEDIFF('1997-12-31 23:59:59','1997-12-30') |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL

expr unit)

These functions perform date arithmetic. The date is a DATETIME or

DATE value specifying the starting date. The expr is an expression

specifying the interval value to be added or subtracted from the starting

date. The expr is a string; it may start with a '-' for negative intervals.A unit

is a keyword indicating the units in which the expression should be

interpreted.

The INTERVAL keyword and the unit specifier are not case sensitive.

mysql> SELECT DATE_ADD('1997-12-31 23:59:59',

 -> INTERVAL '1:1' MINUTE_SECOND);

+---+

| DATE_ADD('1997-12-31 23:59:59', INTERVAL... |

+---+

| 1998-01-01 00:01:00 |

 74

Open source software

Notes

Self- instructional Material

+---+

1 row in set (0.00 sec)

mysql> SELECT DATE_ADD('1999-01-01', INTERVAL 1 HOUR);

+---+

| DATE_ADD('1999-01-01', INTERVAL 1 HOUR) |

+---+

| 1999-01-01 01:00:00 |

+---+

1 row in set (0.00 sec)

DATABASE CONNECTIVITY IN PHP WITH MYSQL

AIM:

To validate a form using PHP with mysql

Program for validation

<?php

// Create connection

$con=mysqli_connect("localhost","userdb","","");

// Check connection

if (mysqli_connect_errno())

 {

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

 }

 else { echo "<h1>You're connected to userdb</h1>"; }

?>

<h2>Enter your username and password</h2>

<h1>Name:</h1> <input type="text" name="name">

<h1>Password:</h1> <input type="text" name="password">

75

Self- instructional Material

Open source software

Notes

</div>

<?php

$name = "";

$pw = "";

?>

<html>

<head>

<style>

#main

{

width: 700px;

margin-left: auto;

margin-right: auto;

}

</style>

</head>

<body>

<div id="main">

<?php

// Create connection

$con=mysqli_connect("localhost","userdb","","");

// Check connection

if (mysqli_connect_errno())

 {

 echo "Failed to connect to MySQL: " . mysqli_connect_error();

 }

 else { echo "<h1>You're connected to userdb</h1>"; }

?>

<?php

 76

Open source software

Notes

Self- instructional Material

$name = "";

$pw = "";

?>

<h2>Enter your username and password</h2>

<h1>Name:</h1> <input type="text" name="name">

<h1>Password:</h1> <input type="text" name="password">

</div>

</body>

</html>

FORMATTING INPUT

AIM:

To format the input in mysql

Program

<?php

$servername = "localhost";

$username = "username";

$password = "password";

$dbname = "myDB";

// Create connection

$conn = mysqli_connect($servername, $username, $password, $dbname);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

$sql = "SELECT id, firstname, lastname FROM MyGuests";

$result = mysqli_query($conn, $sql);

77

Self- instructional Material

Open source software

Notes

if (mysqli_num_rows($result) > 0) {

 // output data of each row

 while($row = mysqli_fetch_assoc($result)) {

 echo "id: " . $row["id"]. " - Name: " . $row["firstname"]. " " .

$row["lastname"]. "
";

 }

} else {

 echo "0 results";

}

mysqli_close($conn);

?>

PHP SIMPLE PROGRAM –TO PERFORM

ARITHMETIC OPERATION

AIM:

To perform the Arithmetic operations using PHP

Program

<html>

 <head>

 <title>Arithmetical Operators</title>

 </head>

 <body>

 <?php

 $a = 42;

 $b = 20;

 $c = $a + $b;

 echo "Addtion Operation Result: $c
";

 $c = $a - $b;

 echo "Substraction Operation Result: $c
";

 $c = $a * $b;

 78

Open source software

Notes

Self- instructional Material

 echo "Multiplication Operation Result: $c
";

 $c = $a / $b;

 echo "Division Operation Result: $c
";

 $c = $a % $b;

 echo "Modulus Operation Result: $c
";

 $c = $a++;

 echo "Increment Operation Result: $c
";

 $c = $a--;

 echo "Decrement Operation Result: $c
";

 ?>

 </body>

</html>

This will produce the following result −

Addtion Operation Result: 62

Substraction Operation Result: 22

Multiplication Operation Result: 840

Division Operation Result: 2.1

Modulus Operation Result: 2

Increment Operation Result: 42

Decrement Operation Result: 43

ADDING NUMBERS USING FUNCTIONS

AIM:

Add two numbers using function in PHP

Program

<html>

 <head>

 <title>Arithmetical Operators</title>

 </head>

 <body>

79

Self- instructional Material

Open source software

Notes

 <?php

 $a = 42;

 $b = 20;

 $c = $a + $b;

 echo "Addtion Operation Result: $c
";

 $c = $a - $b;

 echo "Substraction Operation Result: $c
";

 $c = $a * $b;

 echo "Multiplication Operation Result: $c
";

 $c = $a / $b;

 echo "Division Operation Result: $c
";

 $c = $a % $b;

 echo "Modulus Operation Result: $c
";

 $c = $a++;

 echo "Increment Operation Result: $c
";

 $c = $a--;

 echo "Decrement Operation Result: $c
";

 ?>

 </body>

</html>

This will produce the following result −

Addtion Operation Result: 62

Substraction Operation Result: 22

Multiplication Operation Result: 840

Division Operation Result: 2.1

Modulus Operation Result: 2

Increment Operation Result: 42

 80

Open source software

Notes

Self- instructional Material

Decrement Operation Result: 43

PHP WEB PROGRAMS ARRAY AND FUNCTIONS

AIM:

To create array functions in PHP

Program

$hatchbacks = array(

 "Suzuki" => "Baleno",

 "Skoda" => "Fabia",

 "Hyundai" => "i20",

 "Tata" => "Tigor"

);// friends who own the above cars

$friends = array("Vinod", "Javed", "Navjot", "Samuel");

// let's merge the two arrays into one

$merged = array_merge($hatchbacks, $friends);

//getting only the values

$merged = array_values($merged);

print_r($merged);

?>

OUTPUT

Array (

[0] => Baleno

[1] => Fabia

[2] => i20

[3] => Tigor

[4] => Vinod

[5] => Javed

[6] => Navjot

[7] => Samuel

)

81

Self- instructional Material

Open source software

Notes
CREATE A SIMPLE WEB PAGE IN PHP

AIM:

To create a simple web page using PHP

Program

<!DOCTYPE html>

<html>

<body>

<h1>My first PHP page</h1>

<?php

echo "Hello World!";

?>

</body>

</html>

<!DOCTYPE html>

<html>

<body>

<?php

ECHO "Hello World!
";

echo "Hello World!
";

EcHo "Hello World!
";

?>

</body>

</html>

<!DOCTYPE html>

<html>

<body>

<?php

$color = "red";

echo "My car is " . $color . "
";

 82

Open source software

Notes

Self- instructional Material

echo "My house is " . $COLOR . "
";

echo "My boat is " . $coLOR . "
";

?>

</body>

</html>

OUTPUT

HELLOWORLD

USE OF CONDITIONAL STATEMENTS IN PHP

AIM:

To create a program with conditional statements in PHP

Program

The if Statement in PHP

 If statement executes some code only if a specified condition is true

Syntax:

if (condition) {

code to be executed if condition is true;

}

The if Statement Example

<html>

<body>

<?php

$i=0;

/* If condition is true, statement is

executed*/

if($i==0)

echo "i is 0";

?>

<body>

83

Self- instructional Material

Open source software

Notes

</html>

OUTPUT of the above given Example is as follows:

i is 0

The if…else Statement in PHP

If…else statement executes some code if a condition is true and some

another code if the condition is false

Syntax:

if (condition) {

code to be executed if condition is true;

}

else {

code to be executed if condition is false;

}

The if…else Statement Example

<html>

<body>

<?php

$i=1;

/* If condition is true, statement1 is

executed, else statement2 is executed*/

if($i==0)

echo "i is 0"; //statement1

else

echo "i is not 0"; //statement2

?>

<body>

</html>

OUTPUT of the above given Example is as follows:

 84

Open source software

Notes

Self- instructional Material

i is not 0

The if…elseif…else Statement in PHP

 If…elseif…else statement selects one of several blocks of code to be

executed

Syntax:

if (condition) {

code to be executed if condition is true;

}

elseif (condition) {

code to be executed if condition is true;

}

else {

code to be executed if condition is false;

}

The if…elseif…else Statement Example (Comparing two numbers)

<html>

<body>

<?php

$i=22;

$j=22;

/* If condition1 is true, statement1 is executed,

if condition1 is false and condition2 is true,

statement2 is executed, if both the conditions

are false statement3 is executed */

if($i>$j)

echo "i is greater"; //statement1

elseif($i<$j)

echo "j is greater"; //statement2

else

85

Self- instructional Material

Open source software

Notes

echo "numbers are equal"; //Statement3

?>

<body>

</html>

OUTPUT of the above given Example is as follows:

numbers are equal

Switch Statement in PHP

Switch statement selects one from multiple blocks of code to be executed

Syntax:

switch (n) {

case label1:

code to be executed if n=label1;

break;

case label2:

code to be executed if n=label2;

break;

 ...

default:

code to be executed if n is different from all labels;

}

Switch Statement Example

<html>

<body>

<?php

$x=3;

/* Expression value is compared with each case

value. If it matches, statements following

case would be executed. Break statement is

 86

Open source software

Notes

Self- instructional Material

used to terminate the execution of

statement.*/

switch ($x)

{

case 1:

echo "Number 1";

break;

case 2:

echo "Number 2";

break;

case 3:

echo "Number 3";

break;

default:

echo "No number between 1 and 3";

}

?>

</body>

</html>

 Integrating PHP with Embedded System

www.researchdesignlab.com Page 28

OUTPUT of the above given Example is as follows:

Number 3

LOOPING STATEMENTS IN PHP

AIM:

To use different loops in PHP

Program

For loop in PHP

PHP for loop executes a block of code, a specified number of times

87

Self- instructional Material

Open source software

Notes

Syntax:

for (initialization; test condition; increment/decrement) {

code to be executed;

}

For loop Example

<html>

<body>

<?php

echo "Numbers from 1 to 20 are:
";

/*in for loop, initialization usually declares

a loop variable, condition is a Boolean

expression such that if the condition is true,

loop body will be executed and after each

iteration of loop body, expression is executed

which usually increase or decrease loop

variable*/

for ($x=0; $x<=20; $x++) {

echo "$x ";

}

?>

</body>

</html>

OUTPUT of the above given Example is as follows:

Numbers from 1 to 20 are:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Declaring multiple variables in for loop Example

<html>

 88

Open source software

Notes

Self- instructional Material

<body>

<?php

/* Multiple variables can be declared in

declaration block of for loop */

for ($x=0,$y=1,$z=2;$x<=3;$x++) {

echo "x = $x, y = $y, z = $z
";

}

?>

</body>

</html>

OUTPUT of the above given Example is as follows:

x = 0, y = 1, z = 2

x = 1, y = 1, z = 2

x = 2, y = 1, z = 2

x = 3, y = 1, z = 2

While Loop in PHP

While loop, loops through a block of code as long as the specified

condition

is true

Syntax:

while (condition) {

code to be executed;

}

While Loop Example

<html>

<body>

<?php

$i=1;

/* here <condition> is a Boolean expression.

89

Self- instructional Material

Open source software

Notes

Loop body is executed as long as condition is

true*/

while($i<5){

echo "i is = $i
";

$i++;

}

?>

</body>

</html>

OUTPUT of the above given Example is as follows:

i is = 1

i is = 2

i is = 3

i is = 4

Do While loop in PHP

Do while loop will always execute the block of code once, it will then

check

the condition, and if the condition is true then it repeats the loop

Syntax:

do {

code to be executed;

} while (condition);

Do While loop Example

<html>

<body>

<?php

$i=1;

/* here <condition> is a Boolean expression. Please

note that the condition is evaluated after executing

 90

Open source software

Notes

Self- instructional Material

the loop body. So loop will be executed at least

once even if the condition is false*/

do

{

echo "i is = $i
";

$i++;

}while($i<5);

?>

</body>

</html>

OUTPUT of the above given Example is as follows:

i is = 1

i is = 2

i is = 3

i is = 4

CREATE USER DEFINED FUNCTIONS

AIM:

To implement user defined functions in PHP

Program

User Defined Function in PHP

Functions are group of statements that can perform a task

Syntax:

function functionName() {

code to be executed;

}

User Defined Function Example

<html>

<body>

<?php

91

Self- instructional Material

Open source software

Notes

// Function definition

function myFunction()

{

echo "Hello world";

}

// Function call

myFunction();

?>

</body>

</html>

OUTPUT of the above given Example is as follows:

Hello world

TYPES OF ARRAYS IN PHP

AIM:

To implement different types of Arrays in PHP

Array in PHP

 An array stores multiple values in one single variable

 In PHP, there are three kinds of arrays:

 Numeric array

 Associative array

 Multidimensional array

 Numeric Array in PHP

Numeric array is an array with a numeric index

Numeric Array Example

<html>

<body>

<?php

 92

Open source software

Notes

Self- instructional Material

/* An array $flower_shop is created with three

Values - rose, daisy,orchid */

$flower_shop = array (

"rose",

"daisy",

"orchid"

);

/* Values of array $flower_shop is displayed based

on index. The starting index of an array is Zero */

echo "Flowers: ".$flower_shop[0].",

".$flower_shop[1].", ".$flower_shop[2]."";

?>

</body>

</html>

OUTPUT of the above given Example is as follows:

Flowers: rose, daisy, orchid

Associative array in PHP

Associative array is an array where each ID key is associated with a value

Associative array Example

<html>

<body>

<?php

/* Here rose, daisy and orchid indicates ID key and

5.00, 4.00, 2.00 indicates their values respectively

*/

$flower_shop = array (

"rose" => "5.00",

"daisy" => "4.00",

93

Self- instructional Material

Open source software

Notes

"orchid" => "2.00"

);

// Display the array values

echo "rose costs

.$flower_shop['rose'].",daisy costs

".$flower_shop['daisy'].",and orchild

costs ".$flower_shop['orchild']."";

?>

</body>

</html>

OUTPUT of the above given Example is as follows:

rose costs 5.00,daisy costs 4.00,and orchild costs

Loop through an Associative Array

<html>

<body>

<?php

$flower_shop=array("rose"=>"5.00",

"daisy"=>"4.00","orchid"=>"2.00");

/* for each loop works only on arrays, and is used

 to loop through each key/value pair in an array */

foreach($flower_shop as $x=>$x_value) {

echo "Flower=" . $x .

", Value=" . $x_value;

echo "
";

}

?>

</body>

 94

Open source software

Notes

Self- instructional Material

</html>

OUTPUT of the above given Example is as follows:

Flower=rose, Value=5.00

Flower=daisy, Value=4.00

Flower=orchid, Value=2.00

Multidimensional array in PHP

Multidimensional array is an array containing one or more arrays

Multidimensional array Example

<html>

<body>

 <?php

 /* Here $flower_shop is an array, where rose, daisy and orchid

are the ID key which indicates rows and points to array which

have column values. */

 $flower_shop = array(

 "rose" => array("5.00", "7 items", "red"),

 "daisy" => array("4.00", "3 items", "blue"),

 "orchid" => array("2.00", "1 item", "white"),

);

/* in the array $flower_shop['rose'][0], „rose‟ indicates row

and „0‟ indicates column */

 echo "rose costs ".$flower_shop['rose'][0].

 ", and you get ".$flower_shop['rose'][1].".
";

 echo "daisy costs ".$flower_shop['daisy'][0].

 ", and you get ".$flower_shop['daisy'][1].".
";

 echo "orchid costs ".$flower_shop['orchid'][0].

 ", and you get ".$flower_shop['orchid'][1].".
";

 ?>

95

Self- instructional Material

Open source software

Notes

</body>

</html>

OUTPUT of the above given Example is as follows:

rose costs 5.00, and you get 7 items.

daisy costs 4.00, and you get 3 items.

orchid costs 2.00, and you get 1 item.

HANDLING COOKIES IN PHP

AIM:

To implement cookies in PHP

Program

Setting new cookie

=============================

<?php

setcookie("name","value",time()+$int);

/*name is your cookie's name

value is cookie's value

$int is time of cookie expires*/

?>

Getting Cookie

=============================

<?php

echo $_COOKIE["your cookie name"];

?>

Updating Cookie

=============================

<?php

setcookie("color","red");

echo $_COOKIE["color"];

/*color is red*/

/* your codes and functions*/

setcookie("color","blue");

echo $_COOKIE["color"];

/*new color is blue*/

?>

Deleting Cookie

==============================

 96

Open source software

Notes

Self- instructional Material

<?php

unset($_COOKIE["yourcookie"]);

/*Or*/

setcookie("yourcookie","yourvalue",time()-1);

/*it expired so it's deleted*/

?>

\HANDLING FILES IN PHP

AIM:

To implement basic file operations such as open close read and write in

PHP

Program

<?php

$fileName = "/doc/myFile.txt";

$fp = fopen($fileName,"r");

if($fp == false)

{

 echo ("Error in opening file");

 exit();

}

?>

<?php

$fileName = "/doc/myFile.txt";

$fp = fopen($fileName,"r");

if($fp == false)

{

 echo ("Error in opening file");

 exit();

}

$fileSize = filesize($fileName);

$fileData = fread($fp, $fileSize);

?>

<?php

$fileName = "/doc/myFile.txt";

$fp = fopen($fileName,"r");

if($fp == false)

{

 echo ("Error in opening file");

 exit();

}

97

Self- instructional Material

Open source software

Notes

while(!feof($fp))

{

 echo fgets($fp). "
";

}

?>

<?php

$fileName = "/doc/myFile.txt";

$fp = fopen($fileName,"w");

if($fp == false)

{

 echo ("Error in opening file");

 exit();

}

fwrite($fp, "This is a sample text to write\n");

?>

<?php

$fileName = "/doc/myFile.txt";

$fp = fopen($fileName,"w");

if($fp == false)

{

 echo ("Error in opening file");

 exit();

}

 //some code to be executed

 fclose($fp);

?>

SESSIONS IN PHP

AIM:

To implement sessions in PHP

Program

Start a session

 98

Open source software

Notes

Self- instructional Material

<?php

// Start the session

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// Set session variables

$_SESSION["favcolor"] = "green";

$_SESSION["favanimal"] = "cat";

echo "Session variables are set.";

?>

</body>

</html>

Session Variables

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// Echo session variables that were set on previous page

echo "Favorite color is " . $_SESSION["favcolor"] . ".
";

echo "Favorite animal is " . $_SESSION["favanimal"] . ".";

?>

</body>

99

Self- instructional Material

Open source software

Notes

</html>

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// to change a session variable, just overwrite it

$_SESSION["favcolor"] = "yellow";

print_r($_SESSION);

?>

</body>

</html>

Destroy a PHP Session

Example:

<?php

session_start();

?>

<!DOCTYPE html>

<html>

<body>

<?php

// remove all session variables

session_unset();

// destroy the session

session_destroy();

?>

 100

Open source software

Notes

Self- instructional Material

</body>

</html>

SIMPLE APPLICATION USING PHP

AIM:

To Implement a student Registration in PHP and Save and Display the

student Records.

Program

<html>

<head>

<title>general form</title>

</head>

<body bgcolor="aakk">

<form action = "<?php $_PHP_SELF ?>" method = "POST">

Name:

<input type = "text" name = "txtname">

Roll no.:

<input type = "text" name = "txtr_no">

Gender:

<input type = "text" name = "txtgen">

PHP With MySQL (2360701) 6

th CE

N. B. Patel Polytechnic, Piludara Prepared By: Bipin Prajapati

36

Address:

<textarea name = "add" type = "textarea"></textarea>

<input type = "Submit" name = "insert" value = "Save">

<input type = "Reset" value = "Cancle">

101

Self- instructional Material

Open source software

Notes

</form>

</body>

</html>

<?php

if(isset($_POST['insert']))

 {

 $con = mysql_connect("localhost","root","");

 if($con)

 {

echo "Mysql connection ok
";

mysql_select_db("studinfo",$con);

$name = strval($_POST['txtname']);

$rollno = intval($_POST['txtr_no']);

$gender = strval($_POST['txtgen']);

$address = strval($_POST['add']);

$insert = "insert into info values('$name',$rollno,'$gender','$address')";

if(mysql_query($insert,$con))

{

echo "Data inserted successfully
";

}

$query = "select * from info";

$sldt = mysql_query($query,$con);

echo "<table border='1'>

<tr>

<th>Name</th>

<th>Roll No</th>

<th>Gender</th>

<th>Address</th>

</tr>";

while($row = mysql_fetch_array($sldt))

 102

Open source software

Notes

Self- instructional Material

PHP With MySQL (2360701) 6

th CE

N. B. Patel Polytechnic, Piludara Prepared By: Bipin Prajapati

37

{

echo "<tr>";

echo "<td>".$row['name']."</td>";

echo "<td>".$row['rollno']."</td>";

echo "<td>".$row['gen']."</td>";

echo "<td>".$row['address']."</td>";

echo "</tr>";

}

echo "</table>";

mysql_close($con);

 }

 }

?>

O/P

103

Self- instructional Material

Open source software

Notes

CREATING TABLES WITH CONSTRAINTS

AIM:

To create tables in PHP

Program

<html>

<head>

<title>Create Database. </title>

</head>

<body>

 <?php

$con = mysql_connect("localhost","root","");

if(!$con)

{

 die("not opened");

}

echo "Connection open"."</br>";

$db = mysql_select_db("studinfo",$con);

if(!$db)

{

 die("Database not found".mysql_error());

}

echo "Database is selected"."</br>";

 $query = "select * from computer";

$sldt = mysql_query($query,$con);

if(!$sldt)

{

 die("data not selected".mysql_error());

}

echo "<table border='1'>

 104

Open source software

Notes

Self- instructional Material

<tr>

<th>ID</th>

<th>Name</th>

<th>Branch</th>

</tr>";

while($row = mysql_fetch_array($sldt))

{

echo "<tr>";

echo "<td>".$row['id']."</td>";

echo "<td>".$row['name']."</td>";

echo "<td>".$row['branch']."</td>";

echo "</tr>";

}

PHP With MySQL (2360701) 6

th CE

N. B. Patel Polytechnic, Piludara Prepared By: Bipin Prajapati

35

echo "</table>";

 ?>

</body>

</html>

O/P:

Connection open

Database is selected

ID Name Branch

9 Anil J Basantani CE

9 Anil J Basantani CE

9 Anil J Basantani CE

105

Self- instructional Material

Open source software

Notes

TEXT PROCESSING WITH PERL

AIM:

To learn how to do some common text processing tasks using Perl.

Introduction:

Perl is a high-level, general-purpose, interpreted, dynamic programming

language. Perl was originally developed by Larry Wall in 1987 as a

general-purpose Unix scripting language to make report processing easier.

Perl borrows features from other programming languages including C,

shell scripting (sh), AWK, and sed. The language provides powerful text

processing facilities without the arbitrary data length limits of many

contemporary Unix tools, facilitating easy manipulation of text files.

Though originally developed for text manipulation, Perl is used for a wide

range of tasks including system administration, web development, network

programming, games, bioinformatics, and GUI development.

The language is intended to be practical (easy to use, efficient, complete)

rather than beautiful (tiny, elegant, minimal). Its major features include

support for multiple programming paradigms (procedural, object-oriented,

and functional styles), reference counting memory management , built-in

support for text processing, and a large collection of third-party modules.

CPAN, the Comprehensive Perl Archive Network, is an archive of over

90,000 modules of software written in Perl, as well as documentation for it.

It has a presence on the World Wide Web at w ww .cpan .o rg and is

mirrored worldwide at more than 200 locations. CPAN can denote either

the archive network itself, or the Perl program that acts as an interface to

the network and as an automated software installer (somewhat like a

package manager). Most software on CPAN is free and open source

software.

This exercise consists of 7 programs of increasing complexity in Perl.

Description:

Students willl write seven programs in Perl and test their results. The

programs willl also use 3rd party modules to the language. The third party

modules willl be installed from the distribution packages rather than

through CPAN.

Pre-requisites:

Perl is installed by default in all Linux distributions. So the students can

start programming with any text editor of their choice. When a program

 106

Open source software

Notes

Self- instructional Material

requires a third-party module and support files it willl be mentioned with

instructions on how to install them.

The Programs:

The seven programs to be done in this exercise are:

1. Hello World

2. Greeting the user

3. Analysing text from a file and printing some statistics

4. Proper command line processing and analysing a text file to get

word frequency, word size frequency and the type-token ratio.

5. Text analysis and outputting the result to another text file with

proper formatting.

6. Read data from a flat file using Perl‟s database interface and

performing SQL queries on the data.

7. Read rainfall data from a csv file, do some computations and

produce a graph based on the results.

Create a new directory for the programs.

> mkdir perl_exercises

> cd perl_exercises

Download the supporting materials zip file to the newly created directory

and unzip the contents to the directory.

1. Hello World

Create a new file using the gedit text editor.

> gedit hello.pl Use the following code:

#!/usr/bin/env perl

#The above statement tells the system that this is a perl program.

print "Hello World!\n"; #print the text Hello World and a newline. Save the

file.

Now run the program as follows:

> perl hello.pl Hello World! >

The above command asks the perl interpreter to load the file called hello.pl

and execute it. On execution the text “Hello World” is printed on the

screen.

107

Self- instructional Material

Open source software

Notes

2. Greeting the user

This program asks the user‟s name and the year of birth. It then greats the

user and tells the age of the user.

> gedit name.pl

The Code:

#!/usr/bin/env perl

name.pl

print "Enter you name and press return:";

$name=<STDIN>; #read the data

chomp($name); #remove the newline

print "\nEnter your birth year and press return:";

$byear=<STDIN>;

chomp($byear);

#localtime gives the data with 9 distinct values. Collect them. my ($sec,

$min, $hour, $mday, $mon, $year, $wday, $yday, $dst) = localtime time;

$age=($year + 1900) - $byear; #the year starts from 1900 according to

localtime

print

"\nHello, $name!\n";

print "You are $age years old.\n";

On execution:

> perl name.pl

Enter you name and press return:Mickey Mouse

Enter your birth year and press return:1928

Hello, Mickey Mouse! You are 83 years old. >

 108

Open source software

Notes

Self- instructional Material

3. Analysing text and printing the statistics

This programs read the text file given in the command line, asks the user

for the word to search in the text and prints some statistics about the text.

Note that the program will hang if the user fails to give the name of the file

when the program is run. Proper handling of commandline arguments is

explored in the next exercise.

> gedit words . pl

The Code:

#!/usr/bin/env perl

#words.pl word FILE

#if no data filename is given, this program willl hang

print "Enter the word you want to search for an press return:";

$sword=<STDIN>;

chomp($sword);

$scount = 0; #search counter $bcount = 0; #blank line counter

while(<>) #continue reading as long as there is input {

chomp; #remove newline from each line

foreach $w (split) #split each line into words

{

if ($w eq $sword) {

$scount++; #search hit counter

}

$words++;

$char += length($w); }

$bcount++;

}

#if the length of the current line is 0, we have a blank line if (length($_) ==

0)

$avgw = $words/$.; #average words per line including blank lines $avgc

= $char/$words; #average characters per word

109

Self- instructional Material

Open source software

Notes

print "There are $. lines in this file including $bcount blank

lines.\n";

print "There are $words words in this file.\n";

print "There are $char characters in this file.\n";

print "The average number of words per line is $avgw.\n";

print "The average number of characters per word is $avgc.\n";

On execution:

> perl words . pl constitution_preamble.txt

Enter the word you want to search for an press return:the

There are 13 lines in this file including 6 blank lines.

There are 85 words in this file.

There are 470 characters in this file.

The average number of words per line is 6.53846153846154.

print "the word $sword occurs in the text $scount times.\n";

The average number of characters per word is 5.52941176470588. the

word the occurs in the text 4 times.

The file constitution_preamble.txt is part of the support file archive which

was unzipped at the beginning.

4. Command line processing and more text analysis

This program also reads from a text file and analyses the text. Proper

command line handling is now performed. The program converts all input

text into lower case and strips off all the punctuation marks in the text. The

use of hashes is introduced.

> gedit wordcount.pl The Code:

#!/usr/bin/env perl

#wordcount.pl FILE

#if no filename is given, print help and exit

if (length($ARGV[0]) < 1)

 110

Open source software

Notes

Self- instructional Material

{

print "Usage is : words.pl word filename\n";

}

exit;

my $file = $ARGV[0]; #filename given in commandline

open(FILE, $file); #open the mentioned filename

while(<FILE>) #continue reading until the file ends

{

chomp;

tr/A-Z/a-z/; #convert all upper case words to lower case

tr/.,:;!?"(){}//d; #remove some common punctuation symbols

#We are creating a hash with the word as the key.

#Each time a word is encountered, its hash is incremented by 1.

#If the count for a word is 1, it is a new distinct word.

#We keep track of the number of words parsed so far.

#We also keep track of the no. of words of a particular length.

foreach $wd (split) {

$count{$wd}++;

if ($count{$wd} == 1)

{

$dcount++;

}

$wcount++;

$lcount{length($wd)}++; } }

#To print the distinct words and their frequency,

#we iterate over the hash containing the words and their count.

print "\nThe words and their frequency in the text is:\n";

foreach $w (sort keys%count)

111

Self- instructional Material

Open source software

Notes

{

print "$w : $count{$w}\n"; }

#For the word length and frequency we use the word length hash print

"The word length and frequency in the given text is:\n"; foreach $w (sort

keys%lcount) {

print "$w : $lcount{$w}\n"; }

print "There are $wcount words in the file.\n";

print "There are $dcount distinct words in the file.\n";

$ttratio = ($dcount/$wcount)*100; #Calculating the type-token ratio.

On execution:

> perl wordcount.pl constitution_preamble.txt

The words and their frequency in the text is:

1949 : 1

a : 1

adopt : 1

all : 2

among : 1

print "The type-token ratio of the file is $ttratio.\n";

and : 8

assembly : 1 a

ssuring : 1

 belief : 1

 citizens : 1

constituent : 1

constitute : 1

constitution : 1

day : 1

democratic : 1

dignity : 1

 112

Open source software

Notes

Self- instructional Material

do : 1

economic : 1

enact : 1

equality : 1

expression : 1

faith : 1

fraternity : 1

give : 1

having : 1

hereby : 1

in : 1

india : 2

individual : 1

integrity : 1

into : 1

its : 1

 justice : 1

liberty : 1

nation : 1

november : 1 of : 7

opportunity : 1

 our : 1

ourselves : 1

people : 1

political : 1

promote : 1

republic : 1

resolved : 1

secular : 1

113

Self- instructional Material

Open source software

Notes

secure : 1

social : 1

socialist : 1

solemnly : 1

sovereign : 1

status : 1

the : 5

them : 1

this : 2

thought : 1

to : 5

twenty-sixth : 1

unity : 1

we : 1

worship : 1

The word length and frequency in the given text is:

1 : 1

10

11

12

2

3

4

5

6

 114

Open source software

Notes

Self- instructional Material

7

5

2

2 15 18 6 7 8 7 9 5 There are There are 85 words in the file.

61 distinct words in the file.

The type-token ratio of the file is 71.7647058823

 5. Text analysis with results output to another file

This program analyses the text of a file and outputs the results to another

file after formatting the output.

> gedit freqcount.pl

The Code:

#!/usr/bin/env perl

#freqcount.pl FILE

use strict; #using strict mode to help us find errors easily

#all variables being used are declared my $file; my $wd; my %count; my

$w;

if (@ARGV) #Check if the ARGV array exists. This array is poulated with

#the arguments passed to the program.

{

$file = $ARGV[0]; #First argument is the data file name. }

else {

die "Usage : freqcount.pl FILE\n"; #Bail out if no data filename #is given

}

open(FILE, $file);

open(RESULTS, ">freqcount.txt"); #Open the file where the results

#willl be written. If it exists it willl be overwritten.

while(<FILE>) {

115

Self- instructional Material

Open source software

Notes

chomp;

tr/A-Z/a-z/;

tr/.,:;!?"(){}//d;

foreach $wd (split) {

$count{$wd}++; } }

print RESULTS "Word\t\tFrequency\n"; #Writing to newly opened file

foreach $w (sort by_number keys%count) #The result willl be sorted

#using our by_number function

{

write(RESULTS); }

close(RESULTS);

#Our sorting function.

#The <=> is used to sort the result in a descending order of frequency.

#The second <=> is used to sort the result based on the length of the #word

if the frequency is same.

sub by_number {

$count{$b} <=> $count{$a} || length($b) <=> length($a); }

#Formatting the results.

#A @ denotes the values to be printed.

#A < stands for left justify text in that position, > stand for right

#justify.

#The formatting ends with a final .

format RESULTS=

@<<<<<<<<<<<<<<< @>>

 On Execution:

$w, $count{$w}

> perl freqcount.pl constitution_preamble.txt

> cat freqcount.txt

 116

Open source software

Notes

Self- instructional Material

Word Frequency

and 8

of 7

the 5

to 5

india 2

this 2

all 2

twenty-sixth 1

constitution 1

opportunity 1

constituent 1

individual 1

constitute 1

expression 1

democratic 1

fraternity 1

ourselves 1

integrity 1

socialist 1

political 1

sovereign 1

solemnly 1

assembly 1

citizens 1

resolved 1

november 1

economic 1

equality 1

117

Self- instructional Material

Open source software

Notes

assuring 1

republic 1

thought 1

dignity 1

worship 1

liberty 1

 promote 1

justice 1

secular 1

secure 1

social 1

people 1

belief 1

nation 1

status 1

having 1

hereby 1

unity 1

among 1

faith 1

adopt 1

enact 1

give 1

them 1

1949 1

into 1

our 1

day 1

 118

Open source software

Notes

Self- instructional Material

its 1

in 1

do 1

we 1

a 1

PYTHON PROGRAMMING USING CONDITIONAL

SATATEMENTS

AIM:

To implement conditional statements in python programming

Decision making statements (Conditional)

Decision making constructs with Boolean expression, an expression returns

either TRUE or FALSE

(i.e., 0-false and 1-true). Decision making structure is to perform an action

or a calculation only when a certain condition is met. There are four types

of decision making structure. They are,

1. if statement (Conditional statement)

2. if … else statement (Alternative statement)

3. elif statement (Chained condition)

4. nested if statement

 if statement:

The program evaluates the condition and will execute statement(s) or

process only if the test expression is True.

Syntax:

 if (test expression/condition):

 True statement

Program:

num = 3

if num > 0:

 print(num, "is a positive number.")

print("This is always printed.")

119

Self- instructional Material

Open source software

Notes

Output:

3 is a positive number

This is always printed

 if…else statement:

The if else statement evaluates condition and will execute body of if only

when test condition is True. If the condition is False, body of else is

executed.

Syntax:

 if (test expression/condition):

 True statement

 else:

 False statement

Program:

num=3

if (num >= 0):

 print("Positive or Zero")

else:

 print("Negative number")

Output:

Positive or Zero

if…elif…else statement:

The elif is short for else if. It allows us to check for multiple expressions. If

the condition for if is False, it checks the condition of the next elif block

and so on. If all the conditions are False, body of else is executed.

Syntax:

if (test expression/condition):

 True statement 1

elif (test expression/condition):

True statement 2

else:

 120

Open source software

Notes

Self- instructional Material

False statement

Program:

num=3

if num > 0:

 print("Positive number")

elif num = = 0:

 print("Zero")

else:

 print("Negative number")

Output:

Positive number

Nested if statement:

Nested conditional statements are used whenever there is a need to check

for another condition after the first condition has been evaluated as True.

if...else statement inside another if...else statement.

Syntax:

if (test expression/condition 1):

if (test expression/condition 2):

 True statement 1

else:

False statement 1

else:

False statement 2

Program:

num = int(input("Enter a number: "))

if num >= 0:

if num = = 0:

 print("Zero")

 else:

 print("Positive number")

else:

121

Self- instructional Material

Open source software

Notes

 print("Negative number")

Output:

Enter a number: 5

Positive number

PHYTHON LOOPING STATEMENTS

AIM:

To implement loops in Python

(Looping/ Repetition statement)

Loop statement is to execute a specific block of code in multiple numbers

of times. A loop is a programming control structure that facilitates the

repetition execution of a statement or group of statement. There are two

types of loop statement. They are,

1. while loop

2. for loop

2.3.1 while statement:

A while loop statement in Python programming language repeatedly

executes a block of statement until the condition is True. It tests the

condition before executing the loop body.

Syntax:

while (test expression/ condition):

 body of loop

Program:

count = 0

while (count < 5):

 print ('The count is:', count)

 count = count + 1

print ("Good bye!”)

Output:

The count is:0

The count is:1

The count is:2

 122

Open source software

Notes

Self- instructional Material

The count is:3

The count is:4

Good bye!

Nested while loop:

Nesting defined as the placing of one while loop inside the body of another

while loop.

Syntax:

while (test expression/ condition):

while (test expression/ condition):

 body of loop

Program:

count = 1

while (count!=0):

 while(count<5):

 print ('The count is:', count)

 count = count + 1

print ("Good bye!”)

Output:

The count is:1

The count is:2

The count is:3

The count is:4

Good bye!

Using else statement with while loops:

If the else statement is used with a while loop, the else statement is

executed when the condition become false.

Program:

i=0

while i < 5:

 print(i,”is less than 5”)

123

Self- instructional Material

Open source software

Notes

 i=i+1

else:

 print(i,”is not less than 5)

Output

 0 is less than 5

 1 is less than 5

 2 is less than 5

 3 is less than 5

 4 is less than 5

 5 is not less than 5

The Infinite while Loop:

While the loop runs continuously without termination

Program:

while (1):

 num = input("Enter a number :")

 print ("You entered: ", num)

print "Good bye!“

Output

Enter a number: 20

You entered: 20

Enter a number: 25

You entered: 25

 For loop:

for loop executes a sequence of statements that allows a code to be

repeated a certain number of times using “range” function.

Syntax:

 for variableName in <Group of numbers>:

 body of loop

 124

Open source software

Notes

Self- instructional Material

Program:

num = [6, 5, 3, 8, 4, 2, 5, 4, 11]

sum = 0

for v in num:

 sum = sum+v

print("The sum is", sum)

Output:

The sum is 48

Nested for loop:

Nesting defined as the placing of one for loop inside the body of another

for loop.

Syntax:

for variableName in <Group of numbers>:

 for variableName in <Group of numbers>:

body of loop

Program:

 S=0

 for i in range(3):

 for j in range(3):

 S=i+j

 Print(s)

 print(“end”)

Output:

 0

 2

4

End

125

Self- instructional Material

Open source software

Notes

Using else statement with for loops:

If the else statement is used with a for loop, the else statement is executed

when the loop has exhausted iterating the list.

Program:

for i in range(0,5):

 print(i,”is less than 5”)

else:

 print(i,”is not less than 5)

Output:

 0 is less than 5

 1 is less than 5

 2 is less than 5

 3 is less than 5

 4 is less than 5

 5 is not less than 5

 For loop using Range:

The range function specifies a range of integers:

range (start, stop)

The integers between start (inclusive) and stop (exclusive)

Syntax:

 for variableName in range (start, stop):

 statements

Example:

 for x in range(1, 6):

 print (x, "squared is", x * x)

Output:

1 squared is 1

2 squared is 4

3 squared is 9

 126

Open source software

Notes

Self- instructional Material

4 squared is 16

5 squared is 25

How to use range:

range(10) #produces the list: [0,1,2,3,4,5,6,7,8,9]

range(1, 7) #produces the list: [1,2,3,4,5,6]

range(0, 30, 5) #produces the list: [0,5,10,15,20,25]

range(5, -1, -1) #produces the list: [5,4,3,2,1,0]

For loop using Variable name:

Syntax:

for variableName in listname:

statements

Program:

 list=[“apple”,”orange”,”banana”]

 for fruits in list:

 print(“current fruit:”,fruits)

 print(“End”)

Output:

 Current fruit : apple

 Current fruit : orange

 Current fruit : banana

 End

for loop using Length of the list:

Program:

 lst=[“sam”,”abc”,”zara”]

 for i in range(len(lst)):

 print(lst[i])

 print(“End”)

127

Self- instructional Material

Open source software

Notes

Output:

 Sam

 abc

 zara

 End

 Jump statement

Control statements change the execution from normal sequence. It controls

the flow of program execution to get desire behavior or result. There are

three types of control statements. They are,

1. break

2. continue

3. pass

Break Statement:

The break statement terminates the current loop and resumes execution at

the next statement. The most common use for break is when some external

condition is triggered requiring a immediate exit from a loop. The break

statement can be used in both while and for loops.

Syntax:

break;

Program:

for val in range (1,5):

 if (val = = 3):

 break

 print(val)

print("The end")

Output:

1

2

The end

 128

Open source software

Notes

Self- instructional Material

Continue Statement:

The continue statement returns the control to the beginning of the while

loop. The continue statement rejects all the remaining statements in the

current iteration of the loop and moves the control back to the top of the

loop. The continue statement can be used in both while and for loops.

Syntax:

continue

Program:

for val in range (1,5):

 if (val = = 3):

 continue

 print(val)

print("The end")

Output:

1

2

4

The end

2.4.3

Pass Statement:

The pass statement is used when a statement is required syntactically but

you do not want any command or code to execute. The pass statement is a

null operation; nothing happens when it executes.

Syntax:

pass

Program:

for val in range (1,5):

 if (val = = 3):

 pass

 print(val)

print("The end")

129

Self- instructional Material

Open source software

Notes

Output:

1

2

3

4

The end

SAMPLE EXERCISES ON CONDITIONAL AND LOOP

BLOCK

Program 1:

Write a Python program to convert temperatures to and from celsius,

fahrenheit.

temp = input("Input the temperature you like to convert? (e.g., 45F, 102C

etc.) : ")

degree = int(temp[:-1])

i_convention = temp[-1]

if i_convention.upper() == "C":

 result = int(round((9 * degree) / 5 + 32))

 o_convention = "Fahrenheit"

elif i_convention.upper() == "F":

 result = int(round((degree - 32) * 5 / 9))

 o_convention = "Celsius"

else:

 print("Input proper convention.")

 quit()

print("The temperature in", o_convention, "is", result, "degrees.")

Sample Output:

Input the temperature you like to convert? (e.g., 45F, 102C etc.) : 104f

The temperature in Celsius is 40 degrees.

 130

Open source software

Notes

Self- instructional Material

Program 2:

Write a Python program to get the Fibonacci series between 0 to 50.

x,y=0,1

while y<50:

 print(y)

 x,y = y,x+y

Sample Output:

1

1

2

3

5

8

13

21

34

Program 3:

Python code to prints out 0,1,2,3,4

count = 0

while True:

 print(count)

 count += 1

 if count >= 5:

 break

Prints out only odd numbers - 1,3,5,7,9

for x in range(10):

 # Check if x is even

 if x % 2 == 0:

131

Self- instructional Material

Open source software

Notes

 continue

 print(x)

Output:

0

1

2

3

4

1

3

5

7

9

Program 4:

Python code to prints out 0,1,2,3,4 and then it prints "count value reached

5"

count=0

while(count<5):

 print(count)

 count +=1

else:

 print("count value reached %d" %(count))

Prints out 1,2,3,4

for i in range(1, 10):

 if(i%5==0):

 break

 print(i)

else:

 132

Open source software

Notes

Self- instructional Material

 print("this is not printed because for loop is terminated because of break

but not due to fail in condition")

Output:

0

1

2

3

4

count value reached 5

1

2

3

4

STRING HANDLING IN PYTHON

AIM:

To perform string manipulation operations

A string is a sequence of characters.

Strings are the data types in Python.

Python treats single quotes the same as double quotes.

var1 = 'Hello World!'

var2 = "Python Programming"

Simple program

my_string = "Hello“

print(my_string)

Output:

Hello

String Slicing method

Given a string s, the syntax for a slice is:

s[startIndex:pastIndex]

The startIndex is the start index of the string. pastIndex is one past

the end of the slice.

If you omit the first index, the slice will start from the beginning. If

you omit the last index, the slice will go to the end of the string.

133

Self- instructional Material

Open source software

Notes

Program:

var1 = 'Hello World!'

var2 = "Python Programming"

print ("var1[0]: ", var1[0])

print("var2[1:5]: ", var2[1:5])

Output:

var1[0]: H

var2[1:5]: ytho

Program:

str = 'programiz„

print('str = ', str)

print('str[0] = ', str[0])

print('str[-1] = ', str[-1])

print('str[1:5] = ', str[1:5])

print('str[5:-2] = ', str[5:-2])

Output:

str = programiz

str[0] = p

str[-1] = z

str[1:5] = rogr

str[5:-2] = am

String Built in Function

1-lower()

Converts all uppercase letters in string to lowercase.

Syntax:

 s.lower()

Program:

string = "Hello World"

print (string.lower())

Output:

 Hello world

2-upper()

returns uppercase version of the string

Syntax:

 s.upper()

Program:

string = "Hello World"

print (string.upper())

Output:

 134

Open source software

Notes

Self- instructional Material

 HELLO WORLD

3-strip()

returns a string with whitespace removed from the start andend

Syntax:

 s.strip()

Program:

string = "Hello World"

print (string.strip())

Output:

 HelloWorld

4-replace('old', 'new')

returns a string where all occurrences of 'old' have been replaced by

'new„

Syntax:

 s.replace()

Program:

string = "Hello World"

print (string.replace(“Hello”,”Welcome”))

Output:

 Welcome World

5-split('delim') –

returns a list of substrings separated by the given delimiter.

Syntax:

 s.split()

Program:

string = "Hello World"

print (string.split())

Output:

 ['Hello', 'World']

6-join(list) --

opposite of split(), joins the elements in the given list together using

the string as the delimiter.

135

Self- instructional Material

Open source software

Notes

Syntax:

 s.join()

Program:

string = ['Hello', 'World']

print (string.join())

Output:

 "Hello World"

7-capitalize()

Capitalizes first letter of string

Syntax:

 s.capitalize()

Program:

string = "hello world"

print (string.capitalize())

Output:

 Hello world

8-len(string)-

Returns the length of the string

Syntax:

 len(string)

Program:

string = "Hello World"

print (len(string))

Output:

 10

9-isalnum() –

Returns true if string has at least 1 character and all characters are

alphanumeric and false otherwise.

Syntax:

 s.isalnum()

Program:

string = "Hello World"

print (string.isalnum())

 136

Open source software

Notes

Self- instructional Material

Output:

 False

10-isalpha() -

Returns true if string has at least 1 character and all characters are

alphabetic and false otherwise.

Syntax:

 s.alpha()

Program:

string = "Hello World"

print (string.isalpha())

Output:

 True

11-isdigit() -

Returns true if string contains only digits and false otherwise.

Syntax:

 s.isdigit()

Program:

string = "Hello World"

print (string.isdigit())

Output:

 False

12-islower() -

Returns true if string has at least 1 cased character and all cased

characters are in lowercase and false otherwise.

Syntax:

 s.islower()

Program:

string = "Hello World"

print (string.islower())

Output:

 False

13-isnumeric() -

Returns true if a unicode string contains only numeric characters

and false otherwise.

137

Self- instructional Material

Open source software

Notes

Syntax:

 s.isnumeric()

Program:

string = "Hello World"

print (string.isnumeric())

Output:

 False

14-isspace() -

Returns true if string contains only whitespace characters and false

otherwise.

Syntax:

 s.isspace()

Program:

string = "Hello World"

print (string.isspace())

Output:

 --------------True

15-istitle() -

Returns true if string is properly "titlecased" and false otherwise.

Syntax:

 s.istitle()

Program:

string = "Hello World"

print (string.istitle())

Output:

 ------------True

16-isupper()

Returns true if string has at least one cased character and all cased

characters are in uppercase and false otherwise.

Syntax:

 s.isupper()

Program:

string = "Hello World"

print (string.isupper())

 138

Open source software

Notes

Self- instructional Material

Output:

 False

String Module

 String module is a python script file, which contains several

number of related functions to strings that script is used as module without

its extension(.py) in other python program. This is called string module

Program:

import string #importing srting module

text = "Monty Python's Flying Circus"

print ("upper", "=>", string.upper(text))

print ("lower", "=>", string.lower(text))

print ("split", "=>", string.split(text))

print ("join", "=>", string.join(string.split(text), "+"))

print ("replace", "=>", string.replace(text, "Python", "Java"))

print ("find", "=>", string.find(text, "Python"), string.find(text,

"Java"))

Print("count", "=>", string.count(text, "n"))

Output:

upper => MONTY PYTHON'S FLYING CIRCUS

lower => monty python's flying circus

split => ['Monty', "Python's", 'Flying', 'Circus']

join => Monty+Python's+Flying+Circus

replace => Monty Java's Flying Circus

find => 6 -1

count => 3

#1: GCD of Two Numbers:

 defgcd(a,b):

if(b==0):

return a

else:

returngcd(b,a%b)

a=int(input("Enter first number:"))

b=int(input("Enter second number:"))

GCD=gcd(a,b)

print("GCD is: ")

print(GCD)

139

Self- instructional Material

Open source software

Notes

Output:

Case 1:

Enter first number:5

Enter second number:15

GCD is:

5

Case 2:

Enter first number:30

Enter second number:12

GCD is:

6

#2. Exponentiation of a number:

def power(base,exp):

if(exp==1):

return(base)

if(exp!=1):

return(base*power(base,exp-1))

base=int(input("Enter base: "))

exp=int(input("Enter exponential value: "))

print("Result:",power(base,exp))

Output:

Enter base: 2

Enter exponential value: 5

Result: 32

Enter base: 5

Enter exponential value: 3

Result: 125

 140

Open source software

Notes

Self- instructional Material

WORKING WITH ARRAYS IN PYTHON

AIM:

To implement arrays using Python

Program

Python code to demonstrate the working of

array(), append(), insert()

importing "array" for array operations

Import array

initializing array with array values

initializes array with signed integers

arr = array.array('i', [1, 2, 3])

printing original array

print ("The new created array is : ",end=" ")

for i in range (0, 3):

 print (arr[i], end=" ")

 print("\r")

 # using append() to insert new value at end

arr.append(4);

printing appended array

print("The appended array is : ", end="")

for i in range (0, 4):

 print (arr[i], end=" ")

 # using insert() to insert value at specific position

inserts 5 at 2nd position

arr.insert(2, 5)

print("\r")

 # printing array after insertion

print ("The array after insertion is : ", end="")

141

Self- instructional Material

Open source software

Notes

for i in range (0, 5):

 print (arr[i], end=" ")

Output:

The new created array is : 1 2 3

The appended array is : 1 2 3 4

The array after insertion is : 1 2 5 3 4

Pop and Remove in arrays

Python code to demonstrate the working of

pop() and remove()

importing "array" for array operations

import array

 # initializing array with array values

initializes array with signed integers

arr= array.array('i',[1, 2, 3, 1, 5])

printing original array

print ("The new created array is : ",end="")

for i in range (0,5):

 print (arr[i],end=" ")

 print ("\r")

using pop() to remove element at 2nd position

print ("The popped element is : ",end="")

print (arr.pop(2));

printing array after popping

print ("The array after popping is : ",end="")

for i in range (0,4):

 print (arr[i],end=" ")

 print("\r")

 142

Open source software

Notes

Self- instructional Material

 # using remove() to remove 1st occurrence of 1

arr.remove(1)

printing array after removing

print ("The array after removing is : ",end="")

for i in range (0,3):

 print (arr[i],end=" ")

Output:

The new created array is : 1 2 3 1 5

The popped element is : 3

The array after popping is : 1 2 1 5

The array after removing is : 2 1 5

Index and reverse

Python code to demonstrate the working of

index() and reverse()

importing "array" for array operations

import array

 # initializing array with array values

initializes array with signed integers

arr= array.array('i',[1, 2, 3, 1, 2, 5])

printing original array

print ("The new created array is : ",end="")

for i in range (0,6):

 print (arr[i],end=" ")

 print ("\r")

using index() to print index of 1st occurrenece of 2

print ("The index of 1st occurrence of 2 is : ",end="")

print (arr.index(2))

#using reverse() to reverse the array

143

Self- instructional Material

Open source software

Notes

arr.reverse()

printing array after reversing

print ("The array after reversing is : ",end="")

for i in range (0,6):

 print (arr[i],end=" ")

Output:

The new created array is : 1 2 3 1 2 5

The index of 1st occurrence of 2 is : 1

The array after reversing is : 5 2 1 3 2 1

USER DEFINED FUNCTION IN PYTHON

AIM:

To implement user defined functions in python

Program

Program to illustrate

the use of user-defined functions

def add_numbers(x,y):

 sum = x + y

 return sum

num1 = 5

num2 = 6

print("The sum is", add_numbers(num1, num2))

Output

Enter a number: 2.4

Enter another number: 6.5

The sum is 8.9

 144

Open source software

Notes

Self- instructional Material

BUILDING REGISTRATION SYSTEM USING MYSQL

AND PHP

AIM:

To implement a simple application using PHP and Mysql

Procedure

Step 1: Creating the Database Table

Execute the following SQL query to create the users table inside your

MySQL database.

CREATE TABLE users (

 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,

 username VARCHAR(50) NOT NULL UNIQUE,

 password VARCHAR(255) NOT NULL,

 created_at DATETIME DEFAULT CURRENT_TIMESTAMP

);

Step 2: Creating the Config File

After creating the table, we need create a PHP script in order to connect to

the MySQL database server. Let's create a file named "config.php" and put

the following code inside it.

?php

/* Database credentials. Assuming you are running MySQL

server with default setting (user 'root' with no password) */

define('DB_SERVER', 'localhost');

define('DB_USERNAME', 'root');

define('DB_PASSWORD', '');

define('DB_NAME', 'demo');

/* Attempt to connect to MySQL database */

$link = mysqli_connect(DB_SERVER, DB_USERNAME,

DB_PASSWORD, DB_NAME);

145

Self- instructional Material

Open source software

Notes

// Check connection

if($link === false){

 die("ERROR: Could not connect. " . mysqli_connect_error());

}

?>

Step 3: Creating the Registration Form

Let's create another PHP file "register.php" and put the following example

code in it. This example code will create a web form that allows user to

register them. This script will also generate errors if a user tries to submit

the form without entering any value, or if username entered by the user is

already taken by another user.

<?php

// Include config file

require_once "config.php";

// Define variables and initialize with empty values

$username = $password = $confirm_password = "";

$username_err = $password_err = $confirm_password_err = "";

// Processing form data when form is submitted

if($_SERVER["REQUEST_METHOD"] == "POST"){

 // Validate username

 if(empty(trim($_POST["username"]))){

 $username_err = "Please enter a username.";

 } else{

 // Prepare a select statement

 $sql = "SELECT id FROM users WHERE username = ?";

 if($stmt = mysqli_prepare($link, $sql)){

 146

Open source software

Notes

Self- instructional Material

 // Bind variables to the prepared statement as parameters

 mysqli_stmt_bind_param($stmt, "s", $param_username);

 // Set parameters

 $param_username = trim($_POST["username"]);

 // Attempt to execute the prepared statement

 if(mysqli_stmt_execute($stmt)){

 /* store result */

 mysqli_stmt_store_result($stmt);

 if(mysqli_stmt_num_rows($stmt) == 1){

 $username_err = "This username is already taken.";

 } else{

 $username = trim($_POST["username"]);

 }

 } else{

 echo "Oops! Something went wrong. Please try again later.";

 }

 }

 // Close statement

 mysqli_stmt_close($stmt);

 }

 // Validate password

 if(empty(trim($_POST["password"]))){

 $password_err = "Please enter a password.";

 } elseif(strlen(trim($_POST["password"])) < 6){

147

Self- instructional Material

Open source software

Notes

 $password_err = "Password must have atleast 6 characters.";

 } else{

 $password = trim($_POST["password"]);

 }

 // Validate confirm password

 if(empty(trim($_POST["confirm_password"]))){

 $confirm_password_err = "Please confirm password.";

 } else{

 $confirm_password = trim($_POST["confirm_password"]);

 if(empty($password_err) && ($password != $confirm_password)){

 $confirm_password_err = "Password did not match.";

 }

 }

 // Check input errors before inserting in database

 if(empty($username_err) && empty($password_err) &&

empty($confirm_password_err)){

 // Prepare an insert statement

 $sql = "INSERT INTO users (username, password) VALUES (?, ?)";

 if($stmt = mysqli_prepare($link, $sql)){

 // Bind variables to the prepared statement as parameters

 mysqli_stmt_bind_param($stmt, "ss", $param_username,

$param_password);

 // Set parameters

 $param_username = $username;

 148

Open source software

Notes

Self- instructional Material

 $param_password = password_hash($password,

PASSWORD_DEFAULT); // Creates a password hash

 // Attempt to execute the prepared statement

 if(mysqli_stmt_execute($stmt)){

 // Redirect to login page

 header("location: login.php");

 } else{

 echo "Something went wrong. Please try again later.";

 }

 }

 // Close statement

 mysqli_stmt_close($stmt);

 }

 // Close connection

 mysqli_close($link);

}

?>

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Sign Up</title>

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.css">

 <style type="text/css">

149

Self- instructional Material

Open source software

Notes

 body{ font: 14px sans-serif; }

 .wrapper{ width: 350px; padding: 20px; }

 </style>

</head>

<body>

 <div class="wrapper">

 <h2>Sign Up</h2>

 <p>Please fill this form to create an account.</p>

<form action="<?php echo htmlspecialchars($_SERVER["PHP_SELF"]);

?>" method="post">

 <div class="form-group <?php echo (!empty($username_err)) ?

'has-error' : ''; ?>">

 <label>Username</label>

 <input type="text" name="username" class="form-control"

value="<?php echo $username; ?>">

 <?php echo $username_err;

?>

 </div>

 <div class="form-group <?php echo (!empty($password_err)) ?

'has-error' : ''; ?>">

 <label>Password</label>

 <input type="password" name="password" class="form-control"

value="<?php echo $password; ?>">

 <?php echo $password_err;

?>

 </div>

 <div class="form-group <?php echo

(!empty($confirm_password_err)) ? 'has-error' : ''; ?>">

 <label>Confirm Password</label>

 <input type="password" name="confirm_password"

class="form-control" value="<?php echo $confirm_password; ?>">

 150

Open source software

Notes

Self- instructional Material

 <?php echo $confirm_password_err;

?>

 </div>

 <div class="form-group">

 <input type="submit" class="btn btn-primary" value="Submit">

 <input type="reset" class="btn btn-default" value="Reset">

 </div>

 <p>Already have an account? Login

here.</p>

 </form>

 </div>

</body>

</html>

BUILDING THE LOGIN SYSTEM

In this section we'll create a login form where user can enter their

username and password. When user submit the form these inputs will be

verified against the credentials stored in the database, if the username and

password match, the user is authorized and granted access to the site,

otherwise the login attempt will be rejected.

Step 1: Creating the Login Form

Let's create a file named "login.php" and place the following code inside it.

<?php

// Initialize the session

session_start();

// Check if the user is already logged in, if yes then redirect him to

welcome page

if(isset($_SESSION["loggedin"]) && $_SESSION["loggedin"] === true){

 header("location: welcome.php");

 exit;

}

151

Self- instructional Material

Open source software

Notes

// Include config file

require_once "config.php";

// Define variables and initialize with empty values

$username = $password = "";

$username_err = $password_err = "";

// Processing form data when form is submitted

if($_SERVER["REQUEST_METHOD"] == "POST"){

 // Check if username is empty

 if(empty(trim($_POST["username"]))){

 $username_err = "Please enter username.";

 } else{

 $username = trim($_POST["username"]);

 }

 // Check if password is empty

 if(empty(trim($_POST["password"]))){

 $password_err = "Please enter your password.";

 } else{

 $password = trim($_POST["password"]);

 }

 // Validate credentials

 if(empty($username_err) && empty($password_err)){

 // Prepare a select statement

 152

Open source software

Notes

Self- instructional Material

 $sql = "SELECT id, username, password FROM users WHERE

username = ?";

 if($stmt = mysqli_prepare($link, $sql)){

 // Bind variables to the prepared statement as parameters

 mysqli_stmt_bind_param($stmt, "s", $param_username);

 // Set parameters

 $param_username = $username;

 // Attempt to execute the prepared statement

 if(mysqli_stmt_execute($stmt)){

 // Store result

 mysqli_stmt_store_result($stmt);

 // Check if username exists, if yes then verify password

 if(mysqli_stmt_num_rows($stmt) == 1){

 // Bind result variables

 mysqli_stmt_bind_result($stmt, $id, $username,

$hashed_password);

 if(mysqli_stmt_fetch($stmt)){

 if(password_verify($password, $hashed_password)){

 // Password is correct, so start a new session

 session_start();

 // Store data in session variables

 $_SESSION["loggedin"] = true;

 $_SESSION["id"] = $id;

 $_SESSION["username"] = $username;

153

Self- instructional Material

Open source software

Notes

 // Redirect user to welcome page

 header("location: welcome.php");

 } else{

 // Display an error message if password is not valid

 $password_err = "The password you entered was not

valid.";

 }

 }

 } else{

 // Display an error message if username doesn't exist

 $username_err = "No account found with that username.";

 }

 } else{

 echo "Oops! Something went wrong. Please try again later.";

 }

 }

 // Close statement

 mysqli_stmt_close($stmt);

 }

 // Close connection

 mysqli_close($link);

}

?>

<!DOCTYPE html>

 154

Open source software

Notes

Self- instructional Material

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Login</title>

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.css">

 <style type="text/css">

 body{ font: 14px sans-serif; }

 .wrapper{ width: 350px; padding: 20px; }

 </style>

</head>

<body>

 <div class="wrapper">

 <h2>Login</h2>

 <p>Please fill in your credentials to login.</p>

 <form action="<?php echo

htmlspecialchars($_SERVER["PHP_SELF"]); ?>" method="post">

 <div class="form-group <?php echo (!empty($username_err)) ?

'has-error' : ''; ?>">

 <label>Username</label>

 <input type="text" name="username" class="form-control"

value="<?php echo $username; ?>">

 <?php echo $username_err;

?>

 </div>

 <div class="form-group <?php echo (!empty($password_err)) ?

'has-error' : ''; ?>">

 <label>Password</label>

 <input type="password" name="password" class="form-

control">

 <?php echo $password_err;

?>

155

Self- instructional Material

Open source software

Notes

 </div>

 <div class="form-group">

 <input type="submit" class="btn btn-primary" value="Login">

 </div>

 <p>Don't have an account? Sign up

now.</p>

 </form>

 </div>

</body>

</html>

Step 2: Creating the Welcome Page

Here's the code of our "welcome.php" file, where user is redirected after

successful login.

<?php

// Initialize the session

session_start();

// Check if the user is logged in, if not then redirect him to login page

if(!isset($_SESSION["loggedin"]) || $_SESSION["loggedin"] !== true){

 header("location: login.php");

 exit;

}

?>

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Welcome</title>

 156

Open source software

Notes

Self- instructional Material

 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.css">

 <style type="text/css">

 body{ font: 14px sans-serif; text-align: center; }

 </style>

</head>

<body>

 <div class="page-header">

 <h1>Hi, <?php echo htmlspecialchars($_SESSION["username"]);

?>. Welcome to our site.</h1>

 </div>

 <p>

 Reset Your

Password

 Sign Out of Your

Account

 </p>

</body>

</html>

If data comes from external sources like form filled in by anonymous

users, there is a risk that it may contain malicious script indented to launch

cross-site scripting (XSS) attacks. Therefore, you must escape this data

using the PHP htmlspecialchars() function before displaying it in the

browser, so that any HTML tag it contains becomes harmless.

For example, after escaping special characters the string

<script>alert("XSS")</script> becomes

<script>alert("XSS")</script> which is not executed by the

browser.

Step 3: Creating the Logout Script

Now, let's create a "logout.php" file. When the user clicks on the log out or

sign out link, the script inside this file destroys the session and redirect the

user back to the login page.

157

Self- instructional Material

Open source software

Notes

<?php

// Initialize the session

session_start();

// Unset all of the session variables

$_SESSION = array();

// Destroy the session.

session_destroy();

// Redirect to login page

header("location: login.php");

exit;

?>

CONNECTING MYSQL DATABASE WITH PHP

AIM:

To implement and learn by connecting mysql database with PHP

Procedure

 To connect MYSQL using PHP go to:

http://localhost//phpmyadmin

 Enter the username and password

 Give the database name in the field „create new database‟
 Click on create button
 Create a new table in the database by giving a table name

and number of fields then click on Go

 To give field name to the created table, write the field name in the

„field‟ column,

 select the data types for each fields, specify the length of each field

then click on

 save to save the fields and click on Go

 To insert values in the field, go to insert and enter the values. Then

click on Go

 158

Open source software

Notes

Self- instructional Material

To view the created table, go to browse

To insert the values, go to SQL and write the query to insert the
values and click on Go

SQL query for insert:

Syntax:

Insert into table_name values(„value1‟,‟value2‟,…);

159

Self- instructional Material

Open source software

Notes

Example:

Insert into Login values(„Radha‟,‟hello‟);

To update the values, go to SQL and write the query to update the values

and

click on Go

SQL query for update:

Syntax:

Update table_name set field_name=‟value‟ where field_name=‟value‟;

Example:

Update Login set password=‟abcde‟ where name=‟Radha‟

To delete the values, go to SQL and write the query to delete the values

and click

 160

Open source software

Notes

Self- instructional Material

on go

SQL query for delete:

Syntax:

Delete from table_name where field_name=‟value‟;

Example:

Delete from Login where name=‟Radha‟;

THE FUNCTIONS USED TO CONNECT WEB FORM TO

THE MYSQL DATABASE:

mysql_connect():

This function opens a link to a MySQL server on the specified host (in this

case it's localhost) along with a username (root) and password (q1w2e3r4/).

The result of the connection is stored in the variable $db.

mysql_select_db():

This tells PHP that any queries we make are against the mydb database.

mysql_query():

Using the database connection identifier, it sends a line of SQL to the

MySQL server to be processed. The results that are returned are stored in

the variable $result.

161

Self- instructional Material

Open source software

Notes

mysql_result():

This is used to display the values of fields from our query. Using $result,

we go to the first row, which is numbered 0, and display the value of the

specified fields.

mysql_result($result,0,"position")):

This should be treated as a string and printed.

Display the data from MYSQL database in web form

<html>

<body>

<?php

// Open MYSQL server connection

$db = mysql_connect("localhost", "root","q1w2e3r4/");

// Select the database using MYSQL server connection

mysql_select_db("mydb",$db);

/* Using the database connection identifier, it sends

a line of SQL to the MySQL server to be processed

and the results are stored in the variable

$result. */

$result = mysql_query("SELECT * FROM employees",$db);

// Displaying the details in a table

echo "<table border=1>";

echo "<tr><th>Name</th><th>Position</th></tr>";

while ($myrow = mysql_fetch_row($result)) {

printf("<tr><td>%s %s</td><td>%s</td></tr>",

$myrow[1], $myrow[2],$myrow[4]);

}

echo "</table>";

?>

</body>

 162

Open source software

Notes

Self- instructional Material

</html>

OUTPUT of the above given Example would be:

Insert the data into MYSQL database using web form

<html>

<body>

<?php

if ($submit) {

// Open MYSQL server connection

$db = mysql_connect("localhost", "root","q1w2e3r4/");

// Select the database using MYSQL server connection

mysql_select_db("mydb",$db);

/* Write insert query and assign the query in $sql

Variable */

163

Self- instructional Material

Open source software

Notes

$sql = "INSERT INTO employees (first,last,address,position)

VALUES('$first','$last','$address','$position')";

// Execute the query

$result = mysql_query($sql);

echo "Thank you! Information entered.";

}

else

{

// display form

?>

<form method="post" action="<?php echo $PHP_SELF?>">

First name:<input type="Text" name="first">

Last name:<input type="Text" name="last">

Address:<input type="Text" name="address">

Position:<input type="Text" name="position">

<input type="Submit" name="submit" value="Enter

information">

</form>

<?php

} // end if

?>

</body>

</html>

 164

Open source software

Notes

Self- instructional Material

165

Self- instructional Material

Open source software

Notes

Update the data present in MYSQL

database using web form

<html>

<body>

<?php

// Open MYSQL server connection

$db = mysql_connect("localhost", "root","q1w2e3r4/");

// Select the database using MYSQL server connection

mysql_select_db("mydb",$db);

if ($id) {

if ($submit) {

// Write UPDATE query and assign to $sql Variable

$sql = "UPDATE employees SET

first='$first', last='$last',

address='$address',

position='$position'

WHERE id=$id";

 166

Open source software

Notes

Self- instructional Material

// Execute the query

$result = mysql_query($sql);

echo "Thank you! Information updated.";

}

else

{

// Write query to SELECT data from table

$sql = "SELECT * FROM employees WHERE id=$id";

// Execute the query

$result = mysql_query($sql);

// Fetch the values

$myrow = mysql_fetch_array($result);

?>

<form method="post" action="<?php echo $PHP_SELF?>">

<input type=hidden name="id" value="<?php echo

$myrow["id"] ?>">

First name:<input type="Text" name="first"

value="<?php echo $myrow["first"] ?>">

Last name:<input type="Text" name="last"

value="<?php echo $myrow["last"] ?>">

Address:<input type="Text" name="address"

value="<?php echo $myrow["address"]?>">

Position:<input type="Text" name="position"

value="<?php echo $myrow["position"]?>">

<input type="Submit" name="submit" value="Enter

information">

</form>

Integrating PHP with Embedded System

www.researchdesignlab.com Page 67

167

Self- instructional Material

Open source software

Notes

<?php

}

}

else

{

// display list of employees

$result = mysql_query("SELECT * FROM

employees",$db);

while ($myrow = mysql_fetch_array($result)) {

printf("%s %s
",

$PHP_SELF, $myrow["id"],$myrow["first"],

$myrow["last"]);

}

}

?>

</body>

</html>

 168

Open source software

Notes

Self- instructional Material

Delete the data from MYSQL database using web form

<html>

<body>

<?php

// Open MYSQL server connection

$db = mysql_connect("localhost", "root","q1w2e3r4/");

// Select the database using MYSQL server connection

mysql_select_db("mydb",$db);

if ($id) {

if ($submit) {

// Write DELETE query to delete data from table based on ID

$sql = "DELETE FROM employees WHERE id=$id";

// Execute the query

$result = mysql_query($sql);

echo "Thank you! Information deleted.";

}

else

169

Self- instructional Material

Open source software

Notes

{

// Write SELECT query to select data from table based on ID

$sql = "SELECT * FROM employees WHERE id=$id";

$result = mysql_query($sql);

$myrow = mysql_fetch_array($result);

?>

<form method="post" action="<?php echo $PHP_SELF?>">

<input type=hidden name="id"

value="<?php echo $myrow["id"] ?>">

First name:<input type="Text" name="first"

readonly="readonly"

value="<?php echo $myrow["first"] ?>">

Last name:<input type="Text" name="last"

readonly="readonly"

value="<?php echo $myrow["last"] ?>">

Address:<input type="Text" name="address"

readonly="readonly"

value="<?php echo $myrow["address"]?>">

Position:<input type="Text" name="position"

value="<?php echo $myrow["position"]?>">

<input type="Submit" name="submit"

value="Delete information">

</form>

<?php

}

}

else

{

 170

Open source software

Notes

Self- instructional Material

// display list of employees

$result = mysql_query("SELECT * FROM

employees",$db);

while ($myrow = mysql_fetch_array($result)) {

printf("%s %s
",

$PHP_SELF, $myrow["id"],$myrow["first"],

$myrow["last"]);

}

}

?>

</body>

</html>

OUTPUT of the above given Example would be:

171

Self- instructional Material

Open source software

Notes

CONNECTING MYSQL WITH PERL

AIM:

To implement and learn in connecting to mysqlwith Perl

Procedure

Connecting to MySQL database

Perl MySQL ConnectWhen you connect to a MySQL database, you need

to specify the following information:

First, you need to tell DBI where to find the MySQL database server. This

information is called data source name or DSN. The data source name

specifies which driver to use, what database that you want to connect to.

Perl requires the data source name to begin with dbi: and the name of the

driver, in this case, it is mysql , followed by another colon : e.g.,

dbi:mysql: , and then the database name e.g., dbi:mysql:perlmysqldb .

Second, you need to provide the username and password of the MySQL

account that you connect to the database.

 172

Open source software

Notes

Self- instructional Material

Third, the optional connection attributes specify the way DBI handles

exceptions that may occur when it connects to the MySQL database.

The syntax for creating a connection to the MySQL database is as follows:

$dbh = DBI->connect($dsn,$username,$password,\%attr);

The connect() method returns a database handle if the connection to the

database established successfully. For example to connect to the

perlmysqldb , you use the following script:

#!/usr/bin/perl

use strict;

use warnings;

use v5.10; # for say() function

 use DBI;

say "Perl MySQL Connect Demo";

MySQL database configuration

my $dsn = "DBI:mysql:perlmysqldb";

my $username = "root";

my $password = '';

 # connect to MySQL database

my %attr = (PrintError=>0, # turn off error reporting via warn()

 RaiseError=>1}; # turn on error reporting via die()

 my $dbh = DBI->connect($dsn,$username,$password, \%attr);

 say "Connected to the MySQL database.";

Working of commands

First, to use DBI module, we put the use DBI; statement at the top of the

script.

Next, we defined some variables that hold the data source name, username

and password.

Then, we defined a hash that contains connection‟s attributes. Those

connection attributes will be discussed in the error handling section later.

After that, we passed the corresponding arguments to the connect()

method to create a connection to the perlmysqdb database.

173

Self- instructional Material

Open source software

Notes

Finally, we displayed a message to indicate that the script has been

connected to the MySQL database successfully. The following is the

output of the script:

Perl MySQL Connect Demo

Connected to the MySQL database.

Handling errors

Perl DBI allows you to handle error manually and/or automatically. Perl

DBI detects the error when it occurs and calls either warn() or die()

function with an appropriate error message. The PrintError attribute

instructs DBI to call the warn() function that prints the errors to the screen.

The RaiseError attribute tells DBI to call the die() function upon error and

to abort the script immediately.

Perl DBI enables the PrintError by default. However, we strongly

recommend that you turn the PrintError attribute off and RaiseError

attribute on to instruct DBI to handle the error automatically.If you don‟t

turn the RaiseError on, you have to handle the error manually as follows:

withou RasieError off:

 my $dbh = DBI->connect($dsn,$username,$password) or

 die("Error connecting to the database: $DBI::errstr\n");

When an error occurred, DBI stored the error message in the $DBI::errstr

variable. Basically, the above statement means if the connection to the

database failed, it displays the error message and aborts the script

immediately.Another benefit of turning on the RaiseError attribute is that

the code will look more readable because you don‟t have to include the or

die() statement everywhere you call a DBI method.

Disconnecting from MySQL Database

If you are no longer interacting with the database, you should explicitly

disconnect from it. This is a good programming practice.To disconnect

from a database, you use the disconect() method of the database handle

object as follows:

disconnect from the MySQL database

$dbh->disconnect();

 174

Open source software

Notes

Self- instructional Material

CONNECTING MYSQL WITH PYTHON

AIM:

To implement and learn Mysql with Python

Procedure

Python Database Interfaces and APIs. You must download a separate DB

API module for each database you need to access. For example, if you

need to access an Oracle database as well as a MySQL database, you must

download both the Oracle and the MySQL database modules.

The DB API provides a minimal standard for working with databases using

Python structures and syntax wherever possible. This API includes the

following −

 Importing the API module.

 Acquiring a connection with the database.

 Issuing SQL statements and stored procedures.

 Closing the connection

MySQLdb

MySQLdb is an interface for connecting to a MySQL database server from

Python. It implements the Python Database API v2.0 and is built on top of

the MySQL C API.

Install MySQLdb

Before proceeding, you make sure you have MySQLdb installed on your

machine. Just type the following in your Python script and execute it

#!/usr/bin/python

import MySQLdb

If it produces the following result, then it means MySQLdb module is not

installed Traceback (most recent call last):

 File "test.py", line 3, in <module>

 import MySQLdb

ImportError: No module named MySQLdb

To install MySQLdb module, use the following command −

For Python command prompt, use the following command -

175

Self- instructional Material

Open source software

Notes

pip install MySQL-python

Database Connection

Before connecting to a MySQL database, make sure of the followings −

You have created a database TESTDB.

You have created a table EMPLOYEE in TESTDB.

This table has fields FIRST_NAME, LAST_NAME, AGE, SEX and

INCOME.

User ID "testuser" and password "test123" are set to access TESTDB.

Python module MySQLdb is installed properly on your machine.

You have gone through MySQL tutorial to understand MySQL Basics.

Example:

Following is the example of connecting with MySQL database "TESTDB"

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

execute SQL query using execute() method.

cursor.execute("SELECT VERSION()")

Fetch a single row using fetchone() method.

data = cursor.fetchone()

print "Database version : %s " % data

disconnect from server

db.close()

While running this script, it is producing the following result in my Linux

machine.

 176

Open source software

Notes

Self- instructional Material

Database version : 5.0.45

If a connection is established with the datasource, then a Connection

Object is returned and saved into db for further use, otherwise db is set to

None. Next, db object is used to create a cursor object, which in turn is

used to execute SQL queries. Finally, before coming out, it ensures that

database connection is closed and resources are released.

Creating Database Table

Once a database connection is established, we are ready to create tables or

records into the database tables using execute method of the created cursor.

Example:

Let us create Database table EMPLOYEE −

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Drop table if it already exist using execute() method.

cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

Create table as per requirement

sql = """CREATE TABLE EMPLOYEE (

 FIRST_NAME CHAR(20) NOT NULL,

 LAST_NAME CHAR(20),

 AGE INT,

 SEX CHAR(1),

 INCOME FLOAT)"""

cursor.execute(sql)

disconnect from server

db.close()

INSERT Operation

It is required when you want to create your records into a database table.

177

Self- instructional Material

Open source software

Notes

Example

The following example, executes SQL INSERT statement to create a

record into EMPLOYEE table −

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = """INSERT INTO EMPLOYEE(FIRST_NAME,

 LAST_NAME, AGE, SEX, INCOME)

 VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Above example can be written as follows to create SQL queries

dynamically −

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

 178

Open source software

Notes

Self- instructional Material

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \

 LAST_NAME, AGE, SEX, INCOME) \

 VALUES ('%s', '%s', '%d', '%c', '%d')" % \

 ('Mac', 'Mohan', 20, 'M', 2000)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Example

Following code segment is another form of execution where you can pass

parameters directly −

..................................

user_id = "test123"

password = "password"

con.execute('insert into Login values("%s", "%s")' % \

 (user_id, password))

..................................

READ Operation

READ Operation on any database means to fetch some useful information

from the database.Once our database connection is established, you are

ready to make a query into this database. You can use either fetchone()

179

Self- instructional Material

Open source software

Notes

method to fetch single record or fetchall() method to fetech multiple values

from a database table.

fetchone() − It fetches the next row of a query result set. A result set is an

object that is returned when a cursor object is used to query a table.

fetchall() − It fetches all the rows in a result set. If some rows have already

been extracted from the result set, then it retrieves the remaining rows from

the result set.

rowcount − This is a read-only attribute and returns the number of rows

that were affected by an execute() method.

Example:

The following procedure queries all the records from EMPLOYEE table

having salary more than 1000 −

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

sql = "SELECT * FROM EMPLOYEE \

 WHERE INCOME > '%d'" % (1000)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Fetch all the rows in a list of lists.

 results = cursor.fetchall()

 for row in results:

 fname = row[0]

 lname = row[1]

 age = row[2]

 sex = row[3]

 income = row[4]

 180

Open source software

Notes

Self- instructional Material

 # Now print fetched result

 print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \

 (fname, lname, age, sex, income)

except:

 print "Error: unable to fecth data"

disconnect from server

db.close()

This will produce the following result −

fname=Mac, lname=Mohan, age=20, sex=M, income=2000

Update Operation

UPDATE Operation on any database means to update one or more records,

which are already available in the database.The following procedure

updates all the records having SEX as 'M'. Here, we increase AGE of all

the males by one year.

Example

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to UPDATE required records

sql = "UPDATE EMPLOYEE SET AGE = AGE + 1

 WHERE SEX = '%c'" % ('M')

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

181

Self- instructional Material

Open source software

Notes

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

DELETE Operation

DELETE operation is required when you want to delete some records from

your database. Following is the procedure to delete all the records from

EMPLOYEE where AGE is more than 20

Example

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to DELETE required records

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

 182

Open source software

Notes

Self- instructional Material

Performing Transactions

Transactions are a mechanism that ensures data consistency. Transactions

have the following four properties −

Atomicity − Either a transaction completes or nothing happens at all.

Consistency − A transaction must start in a consistent state and leave the

system in a consistent state.

Isolation − Intermediate results of a transaction are not visible outside the

current transaction.

Durability − Once a transaction was committed, the effects are persistent,

even after a system failure.

The Python DB API 2.0 provides two methods to either commit or rollback

a transaction.

Example

You already know how to implement transactions. Here is again similar

example −

Prepare SQL query to DELETE required records

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

COMMIT Operation

Commit is the operation, which gives a green signal to database to finalize

the changes, and after this operation, no change can be reverted back.Here

is a simple example to call commit method.

db.commit()

183

Self- instructional Material

Open source software

Notes

ROLLBACK Operation

If you are not satisfied with one or more of the changes and you want to

revert back those changes completely, then use rollback() method. Here is

a simple example to call rollback() method.

db.rollback()

Disconnecting Database

To disconnect Database connection, use close() method.

db.close()

If the connection to a database is closed by the user with the close()

method, any outstanding transactions are rolled back by the DB. However,

instead of depending on any of DB lower level implementation details,

your application would be better off calling commit or rollback explicitly.

