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UNIT I - MARKOV CHAINS AND
MARKOV PROCESSES
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1.2 Definition —Stochastic Processes

1.3 Markov Chains

1.4 Transition Probabilities — Order od Markov Chains
1.5 Higher Transition Probabilities- Computations

1.1

Introduction :

Dealing with uncertainty through random varialdes¢rete and
continuous) is a tedious task for scientists sitee19t" century. For
integral valued random variable s. It is often etswapply powerful
tools likegenerating functions end z- transformsstéad of dealing
with single random variable with correspondingpituiligy
distribution(mass) function known, a family of dom variables
varying with time t(n-diorite)are dame in stochagtrocess

Thus stochastic process is a family of randomaldess, which
varies with inspect to time (the parameter) an@ pecific values in §
setor space.Real time space may be either dismrentinuous. In the
ensuring section, We elucidate the concept of MarRbain and its
transition matrix. We also discuss the order of Mi@. Higher order
transition probabilities are also computed from r{oyorov equation
as well as transition probability matrix.

Definition:

Let { Xn,n € T},Use stochastic process with state sp4
E(discrete or continue) and time space T(discret®otinuous)

A thus a family of random variables { X t :&@T} ,where T
={.....-1,0,1,2.....} or (eo,©) or its subsets, takes its values from t
state space E which is a subsets of real or congplage .

The collection of such processes consist of ald&imf stochastic
processes that can be classified in to four idiffecategories.

1) Discrete time, Discrete state space.

2) Discrete time, Continuous state space.

3) Continuous time, Discrete state space.

4) Continue time, Continuous state space
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{X, :n €N} {X,:n € N} DT
1) (2)
{X;:t €T} {X;:teT} CT
3) (4)

Examplel.

Let X,, denote the number of sixes up to #f& throw of an unbiased
die (6 faces) continuously. Then, cleafkn : n > 0} is a stochasticprocess
with time space T={0, 1, 2 .....}, and state space{, 1, 2 ...... }

Example 2.

Consider the experiment of recording the tempesatiia place at the
end of every day. LeX,, denote the temperature measure omffteday, then
{X, : n = 0} is a stochastic process with state space(¥, ) (sometimes,
the temp freezes beld@f ) .

Example (3)

LetX,denote the number of phone calls received at gphelee
exchange board upto time t, That is the numberali§ ceceived during the
interval [ 0, t), starting with initial time poirit= 0, Then clearly{X; : t € T}
is a stochastic process with continuous time spac¢0, ) and discrete state
space E 0,1,2 ... }.

Example (4)

Consider the experiment of observing the pricgaltl in the whole
sale market with initial time point t = 0. L&t denote the price of gold at time
t (clock time). Then clearlyX,:t € T} in a stochastic process with time space
T=(0, ) and stole spec E(8, ).

All the above examples are taken from real lifauagion and the
classification of stochastic process is vivid friimese examples.Next we see
some of the processes with special properties.

1.2 Stochastic Processes — Independent increaments

Consider a stochastic procdss: t € T} with continuous time space T
=(—o0,00). If for all t;, ty....t, €ETt; <t; <....... < t,. The random
variables,X €;) - X(ty), X(t3) — X (tz).... , X(t, ) - X(t,—,) are
independent thefi;:t € T} is said to be a stochastic process with
independent increments.



In the case of discrete parameféf, : n € N} is a stochastic process,
satisfying the Markovcondition.

LetZy, =Xo,Z; =X; — X;_1,i =1, 2...... , where N={0, 1, 2.....} bqg
independent random variables, thgf:t € T} is the Stochastic Procegs
with independent increments. Then the sequencendépendent random
variable$Z,;: n = 0} is a stochastic process with independent incresnent

Let {X;:t € T} be a stochastic process with time space (F-=, «),
and state space E(=, ) ( continuous time, continuous state space)

If for a given valueX (), the value ofX;, , t >s, do not depend as the
valuesX(,, u<s, then the procegX,:t € T} is said to be a Markov Process.

In mathematical form( probability distributionhi$ Markov Process
can be defined as follows:

|ff0rt1<t2< ..... <tn< t, Pr{a S Xl‘f S ﬁ |Xt1 == xl, th ==

P{a < X, < B|X,, = x,}, then the proces§X,:t € T} is called
Markov Process.

1.3. Markov Chains

Markov Chain: The discrete parameter Markov procé&s:n € N} is
known as Markov Chain with state space either dtecor continuous.

Consider a simple coin tossing experiment repefied number of
times (costively), Twopossible outcomes for ead tre ‘Head’ and ‘Tail'.
Assume that Head occurs with probability p and thail occurs with
probability g, so that p + g = 1.

Let us denote the outcomes of #fé toss of the unbiased coin &y, .

(1 if head occurs
Then X, = {0 if tail occurs,forn = 1,2,3, ....

That is

P.{X,=1}=p, and?. h{X,, = 0} = g. Hence the sequence of randgm
variables X;,X,........ ,

Cen be written aX,,: n > 1}, which is a Markov chain.




Definition:

The stochastic proce$X,, : n =0,1,2....} or {X,,:n € N}, where No
={0,1,2....}

P = {Xpy1 =1 X0 =0Xn1 =1, e e X1=1Xo=1i} =
Pr{Xn+1 =j|Xn= i} :Pij

whenever, the initial random variabtg is defined.
HereX,, =j means the outcome of the process intHetrial is j.
Remark:

1. The transition probability;; may or may not be independent of n.
(le pl] = pl](n) )

1.4.Transition Probabilities— Order of Markov Chains :

Consider a M. C{X,,;:n > 0}, then the m-step transition probability denoted
py;™ is defined a®;; ™ = {Xp 1 = j | Xp = i}.

Transition Probability Matrix:

When m=1,the one step transition probabilitigs)( satisfiesp;; = 0
and X7 ,p;; = 1foralli=0,1,23,...

The transition probabilities for different stat@ansitions may be
written inMatrix from as follows:

POO POl POZ__
P10 Pll P12__

P

This matrix P is called a transition probabilityatmx ( tpm ) of the
Markov Chain{X,,: n = 0}.

Example (5):

Consider a simple queuing system, before a coudésigned for
customer service. Customers arrive for servicgheacounter (one server) who
serves one customer at time epochs 0, 1, 2,...



Let ¥, denote the random variable, representing the nunadbe
customersarrive the counter during the time irge(wn,n+1) forn =10, 1, 2

Clearlyy,,, are independent and identically distributed randp

variables, withprobability distributioR. { ¥, =n}=p,, k=0, 1, 2, ...... .
Assume that the waiting room can accommodate ordydtbmers, including
one in the counter.

Let X,,be the number of customers present at epoch rydimg the
one being served,if any, ThéX,,: n > 0}Is a Markov Chain with state spad
E={0,1,2,.......... M }.

Now we have,

YV, if X,=0are0< YV, <M
X = Xp,+Y, —1if 1<X, <M
nl and0 <Y, <M+1-X,

M otherwise.

The corresponding tpm is denoted by

9091935 — — Am-29m-19m
99192 — — qu-29m-1 Qum
0 qoq1 - qu-19mQm-1
P=l — — — - - - - -
0 0 - - - 409102
0 0 - - - 0 q00Q1
where,Qy =qy * quyer + -+ .. andQ, =
Example6.

Consider a particle moving back and front, in @ndashion ( random
walk )along astraight line (lane) having absorbbagriers say 0 and 4. W
describe its movement as follows:

When the particle is at position state) r< 6< 4 ), it moves to state (r +1
with probabilityp or to state( r-1) with probability, where p + g =1.

But as soon as the particle reached 0 or 4 it irsnthere itself
(absorbing).

Example 7:

A patrticle performs a random walk with absorbirggrkers, as 0 and 4
Whenever it is at any position(® < r < 4), it moves to r + 1 with probability

e

1Y%
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P or to(r — 1) with probability q, p + q =1. But as soon as @akes 0 or 4 it
remains there itself. LeX,, be the position of the particle after n moves. The
different states oX,, are different positions of the particlgx, } is a Markov
chain whose unit — step transition probabilities given by

PiXny1 =7+ 1| X, =1}=p
PriX,,,=r—1|X,=1r}=q O0<r<4
and P{X,.1=0]|X,=0}=1,
Pr{X,., =4|X,=4}=1.
The transition matrix is given by States{qf ;
1 0 0 0 07

g 0 p 00

States ok, |0 g 0 p O

1.4.1.General random walk between two barriers:

Consider that a particle that may be at any ors#tipar,r=0, 1,...., k
(= 1) of the x — axis. From state r it moves toestat 1, 1< r < k — 1 with
probability p and to state r — 1 with probabilityAs soon as it reaches state 0
it remains there with probability and is reflected to state 1 with probability 1
—a (0 <ax<)l),if it reaches the state k it remaahere with probability b and
is reflected to k — 1 with probability-db (0 <b < 1) . ThefX,}, whereX,,
is the position of the particle after n steps oves) is Markov chain with state
space S ={0, 1,....k }. The transition matrix is

[a 1—-a 0 — 0 O 0]
| g 0O — — 0 0 o0f
[O 0 0 —gqg O D
0 0 0 — 01—-bb

If a = 1, then is an absorbing barrier and if 8,then is a reflecting
barrier, if 0 < a < 1, 0 is an elastic barrier. Bamis the case with state k. The
case when both 0 and k are absorbing barriers sporels to the familiar



Gambler's ruin problem ( with total capital betweé#me two gamblers
amounting to k).

Example 8:

Suppose that a coin with probability p for showanlgead (success) is
tossed indefinitely. Lek,, denote the outcome of tmé"trial, be k, where k (
=0, 1,...n ) denote that there is a run of k suasgss e. the length of th{
uninterrupted block of heads is k. ClearlyX;{, n=> 0 } constitutes a MarkoVv
Chain, with unit — step transition probabilities

A1”4

Ppe = PriXps1 =k | Xy =j}=p, k=j+1
=q, k=0
=0, otherwise.
The transition matrix is given by

States ok, ;

0 1 2 k k+1
q p o 0o o
q o p o o
q o0 o
States oK, | N
q o0 o op

Example Partial sum of independentrandom variables

Consider a series coin tossing experiments, winer@utcomes of"
trial are denoted by 1 ( for a head ) and 0 ( feaib). Let X,, be the random
variable denoting the outcomendt trial andS,, = X; +....+ X,, be thent®
partial sum. The possible valueg S,, are 0, 1,...,n, i. e. the statesSpfare r,
r=0,1,...n{S,n =0} is a Markov chain with transition matrix as given
below.

A Markov chain{X,,n = 0} with k states, where k is finite, is said o
a finite Markov chain. The transition probabilityatnx P is, in this case, &




square matrix with k - rows and k -columns. Exarspland 8 deals with
finite Markov chains.

Transition matrix

States 0§, ;1

S O

p 0 .. 0 O
qg p .. 0 0
0 ¢ 0 0

States of,

The number of states could however be infinite. kittee possible values of

X, form a denumerable set, then the Markov chairaid ® be denumerably

infinite or denumerable and the chain is said teeha countable state space.
Examples 1 (d) ane of denumerable Markov chains.

1.5HIGHER TRANSITION PROBABILITES

1.5.1 Chapman — Kolmogorov equation:

We have so far considered unit — step or one p s@nsition
probabilities, the probability ok,, given X,_;, i. e. the probability of the
outcome at the nth step or trial given the outc@héhe previous stem
gives the probability of unit — step transitionrfrahe state j at a trial to the
state k at the next following trial. The m — stepnsition probability is
denoted by

Pr{iXmen =k | Xy = ]} = p](']in);

p},’(") gives the probability that from the state j at trthl, the k is reached at (

m + n )th trial in m steps, i. e. the probabilitf/tansition from the state j to
the state k in exactly m steps. The number n doé®ccur in the r. h. s. of
the relation and the chain is homogeneous. The -enstep transition

probabilitieSp},? are denoted by;,, for simplicity. Consider

pi = Pr{Xp,, = k| X, = j}.



1D

The state k can be reached from the statewansteps through somg
intermediate state r. Consider a fixed value oive have

Pr{Xn+2 = k'Xn+1 =T | Xn =]}

= Pr Xpio=kXp=7|Xy=j} Pr {Xpy =
7| Xn=/

1 1
= pﬁk)p](r) = DjrPrk-

Since these intermediate state r can assume vatugs?2, ...., we have
2 . .
p](k) = I:)r{Xn+2 =k | X, =]} = ZrPT{Xn+2 =k, Xn1 =7 Xy =]}

= Zr Pjr Djk
(summing over for all intermediate states).

By induction, we have

p}(lr(n+1) = I:’r{Xn+m+1 =k| X, =]}

= err{Xn+m+1 =k IXn+m = T‘} Pr{Xn+m =T | Xn :]}

:errp](;n) .

Similarly, we get

+1
P =S, p o
In general, we have

(m+n) _ m  (m) _ m (m)
Pjk = Y Dk Pjr _Z‘fpjr Pri” -

This equation is a special case of Chapmatolmogorov equation,
which is satisfied by the transition probabilit@sa Markov chain.

From the above argument , we get

m

+
pj(.k > pj(;n)pg? ,foranyr. []

1.5.2 Remark: We can put the results in terms of transitoatrices as
follows. Let P =(pj;) denote the transition matrix of the unit — stegmsition

and P = (p](,'{”)) denote the m-step transition matrix. For m &, have
the matrixP(?> whose elements are given by. It follow that theneints of




P® are the elements of the matrix obtained by muiiiyg the matrix P by
itself, i. e.

P® =p.p=p2
Similarly,
pm+l) = ptm) p=p pim
and pmin) = p(m) pm) = p(m) p(m)

It should be noted that there exist non arkRdv chain whose transition
probabilities satisfy Chapman — Kolmogorov equati@xample, see Feller I,
p. 423, Parzen p. 203).

Example 2.

Consider the Markov chain of Example 1(g) . The twstep transition matrix
is given by

31 012t o 551
44 44 816 16
111 111 - |213
424 424 - | 16216 |
[0 El“o ElJ [iilj
44 44 16 16 4
(2) _ _ _ _5
Hence po; = PriXn,=1]X,=0} == forn=0.
Thus PX, =1]X, =0} ==,

_(5 1\ _ 5
() G =%
Example 3.

Two — state Markov chain . Suppose that the pntibalof a dry day
(state 0) following a rainy day (state 1)§iand that the probability of a rainy
day following a dry day i% . We have a two — state Markov chain such that

1 1
plO :§ and p()l :E and t p m.

11

p = |22

12
33

10



5 7 173 259

2 _l1212| 4 _|432432
p= = 711 P = [259389

We have
1818 648 648

Given that 1 denote a dry day, the probability May 3 is a dry day is

%, and that May 5 is a dryis;% We can calculate the higher powers of P.

Example 4.

Consider a communication system which transmigsdigits O
and 1 through several stages. L&f, n > 1 be the digit leaving the'" stage
of system and, be the digit entering the first stage (leaving Bestage). At
each stage there is a constant probability q tredtgit which enters will be
transmitted unchanged ( i. e. the digit will remaimchanged when it leaves
and probability p otherwise (i. e. the digit chamgéen it leaves), p +q = 1.

Here{X,,n = 0} is a homogeneous two — state Markov ch
unit — step transition matrix

_[4
P=[,
It can be shown (by mathematical induction or oiliee) that

Ly Yg—pymi_ lg—pm
+s@-p"5;-3@-p)

N

pr=li_ T _ymly 1 ym
-—5;@-p"s+(@-p)
Here péron)‘p(m)‘ + = (q p)™
and o =) =5 — (@ —p)™.
Also asm- oo, lim p& =lim p{Y = lim p{ =lim p™ -

Suppose that the initial distribution is given by
Pr{X, =0}and P{X,=1}=b=1-a.
Then we have

Pr {X,,=0 X,=0} = Pr {Xm=0|X0=1} Pr
{X0=0}

(m)
= @

Ain

and PEX, = 0, Xo = 1} =bp{" .
11



The probability that the digittenng the first stage is 0 given that
the digit leaving the mth stage is 0 can evaluatedpplying Bayes’ rule. We
have

Pr {Xo=0|X, =1}

_ Pr{X; =0 | Xo=0} Pr{X,=0}
Pr{Xm=0 | Xo=0} Pr{Xo=0}+ Pr{X;n=0 | Xo=1} Pr{Xo=1}

(m)
2P (00)

==y,
P g0) +bP(o1)

_ a {§+§(q—p)m}
T o)

__a{i+(g-p)™}
1+ (a—-b)(q-b)m "’

1.5.3 Probability distribution- definition

Probability distribution of random variables/olved in a markov chain
can be studied in this section.The joint distribatiof consecutive random
variables can be found using the following techegju
It may be seen that the probability distribution Random variablest,.,

), CUPI » Xr4n Can be computed in terms of the transition prdtisi p
and the initial distribution ok, is known .Suppose, for simplicity, take r = 0,
then

PY{XO =aq, X1 = b, ey Xn_1 =j, XTL = k}
=Pr{X,=k| Xy 1 =j, o0 Xo=a} Pt {Xp1=J, o Xo=a}

= Pr {Xn =k|Xn-1 =]} Pr {Xn =j|Xn—2 = i} Pr {Xn—Z =1,y
Xo=a

= Pr{X,=k|Xp.1=J} PriX,=j|Xp2=1} .... Pr{X;=
b | X0=aPrX0=a

={Pr(Xo = &)}pap .- PijDjk»

Thus,
P{X, =a Xpy1=b, .y Xpynz =6 Xrgno1 = j, Xrin=ic}
={Pr (X, = &)}Pap ---- DijDjk>

Example 1:

12



Let {X,,,n = 0} be a Markov chain with three states 0, 1, 2 arnith wi

transition matrix

222 and  the initial
424
o 31
4 4
distribution P{X, = i} = % ,1=0,1, 2.
we have 9(1=1|X0=2}:%

1
{W2:2|X1:1}:Z

PI’{XZ = Z,Xl = 1, XO = 2}

= PI’{X2=2,X1=1|X0=2} Pr{XOZZ}:

PT{X3=1,X2=2, X1=1,X0=2}
= Pr {X3=1|X2=2,X1=1,X0=2}X Pr
{XZ = Z,Xl = 1, XO = 2}

=PriX; =1|X,=2}(5)=2.2=2

1
16 16 64

1.5.4.Remark

The matrix of transition probabilities togetheithwvinitial distribution ,
completely specifies a Markov Chdik,;: n =0,1,2, ... }.

We state (without proof) the general existenceord@ of Markov
chains.

Given the state space E and the sequence ofastiichmatrices
(pj(;(l))= P™ there exist a MarkovChaifiX,,,n > 0} with state space E an

transition probability matrix,P™. (For proof, see losifescu & Tautt
Stochastic Processes — |, Springer — Verlag (191)ung (1967)).

13



UNIT Il

CLASSIFICATION OF STATES OF
STATES AND CHAINS

2.1 Classification of States
2.2. Markov Chains with denumerable number of statg

2.3 Reducible Chains

2.1. Classification of states:

The states j, j = 0, 1, 2, .... Of a Markov chditj,,n = 0} can often be

classified in a distinctive manner according to edomdamental properties of
the system. By means of such classification itassgble to identify certain

types of chains.

Communication Relations

If pgl)> 0 for some & 1, then we say that state j can be reached

or state j is accessible from state I; the relati®rdenoted by 1» | .
(n) _

Conversely, if for all np;

ij = 0,thenjis not accessible from I; in notatlon
J.

If two states | and j are such that each is addesfrom the
other then we say that the two states communidaie;denoted by k- | ;
then there exist integer m and n such that

pi> 0 andp{V> 0.

The relation- is transitive, i. e. if b jand j— k then i—» k. From Chapman
— Kolmogorov equation

(m+n) _ (m) _(m)
Dix =2r Py Dri

(m+n) (m)_(n)
Dik = Pij "Djx
where the transitivity property follows.

The relatiom— is also transitive; i. e.d> j, j <= kimply | < k.

The relation is clearly symmetric,.iifei <= j, then je i.

14



The digraph of a chain helps in studying the comigation relations.

From we see that8 1 and 1< 2 implies 0« 2.

The states of this chain are such ¢vaty state can be reached frgm

every other state.
2. 1. 2 Class Property

A class of states is a subseahe state space such that every
the class communicates with every other and tleen® iother state outside th
class which communicates with all other statehédass. A property define
for all states of a chain is a class propertygspibssession by one state in
class implies its possession by all states of #mesclass. One such proper
is the periodicity of a state. Periodicity:

State | is a return statgi(ﬁ‘) > 0 for some r= 1. The periodi; of a
return to state i is defined as the greatest comdiaisor of all m such that
p™> 0. Thus

di:G.C.D.{m: pI™ > 0};

State i is said to be aperiodicdf = 1 and periodic it/;> 1. Clearly state | is
aperiodic ifp;; # 0.

It can be shown that two distinctive states beloggb the same class hay
same period.

2. 1. 3 Classification of Chains:

of

|

ty

e

If C is a set states such that ntesvtaitside C can be reached frogm

any state in C, then C is said to be closed. B €lased and¢ C while k¢ C,

thenp}? =0 for all, i. e. Cis closed iff ;. p;; = 1 for every le C. Then the

sub-matrixP; = (pl-j) , I, j, € C, is also stochastic and P can be expresse
the canonical form as :

P, 0

P=[R, Q

A closed set may contain one or moatest If a closed set contair
only one state j then state j is said to be absgrhiis absorbing iffp;; = 1,
pjx = 0, k= ]. In Example 1 (b), states 0 and 4 are absorbing.

Every finite Markov chain contains aadé one closed set, i. e. the 3
of all states or the state space. If the chain admescontain any other prope

din

S

et

—
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closed subset other than the state space, then ishealled irreducible; the t.
p. m. of irreducible chain is an irreducible matrim an irreducible Markov
chain every state can be reached from every othtr. SThe Markov chain of
Examplel(g) is irreducible. Chains which are ir@tle are said to be
reducible or non — irreducible; the t. p. m. isuefle. The irreducible
matrices may be subdivided into two classes: prmit(aperiodic) and
unprimitive (cyclic or periodic) (See Section A.ppgendix). A Markov chain
is primitive (aperiodic) iff the corresponding t. m. is primitive. In an
irreducible chain states belong to the same class.

2. 1. 4Transient and Recurrent States

We now proceed to obtain a more sensitive clasdiin of the
states of a Markov chain.

Suppose that a system starts with state jfjﬁznétbe the probability that it
reaches the state k for the first time at the tep $or after n transitions) and
let p](:) be the probability that it reaches state k (redteassarily for the first
time) after n transitions. Let, given that the chain starts at state j. A relation
can be established betvvegij‘) andp](.,’(’) as follows. The relation allomﬁgc")

to be expressed in termsn}ﬁﬁ).

Theorem?2.1.5(First Entrance Theorem)

Whatever be the states jand k,  ply) =X o £ P . n= 1, with piy
— 0) _ ® _

=Lf5 =0. % =pjk -

Proof: Intuitively, the probability that startingith j, state k is reached for
the first time at the'*" step and again after that gre— )" step is given by

jf].%”)p,iz_r) for all r < n. These cases are mutually exclusive . Hencesthst

Note: (1) The recursive relation (4.1) can alsaviigten as
p;:) =Y fjg) pa " +f,-${") , n>1,

(2) For a rigorous proof which uses the strongKdearproperty,
see losifescu (1980).

(3) In practice, it is sometimes convenient to pate f;, from
the diagraph of chain.

16



2. 1. 6. First passage time distribution

LetF;, denote the probability that starting with stateg system will
ever reach state k. Clearly

Fie = Yoy £

We have sup},’? < Fix < Yms1 p](ZL) foralln> 1.

We have to consider two caség, = 1 andFj, < 1.

WhenF;, = 1, it is certain that the system starting withtes j will reach state
k; in this case {f;”, n = 1, 2, ... } is a proper probability distributi@nd this
first passing time distribution for k given thaethystem starts with j.

The mean (first passing) time from state j toeskais given by =
Sroanfi.

In particular, when k = j, {‘jg"), n =1, 2,...} represents the distribution of the

recurrence times of j; ang; = 1 will imply that the return to the state j [s
certain . In this case

Kjj = Ym=1 nfjg.") is known as the mean recurrence time
for the state j.

Thus, two questions arise concerning state j;, fiwstether the return to state
is certain and secondly, when this happens, whéftigemean recurrence tim
ujj is finite.

D —.

It can be shown that

d=G.CD.{m: pi” > 0} =G.C.Dfm: £ >
0.

Definitions

A state | is said to persistent (the wogdurrent is also used by some
authors; we shall however use the word persisteht). < 1 (i. e. return to
state j is uncertain). A persistent state j is $aide null persistent jfi;; = oo,
i. e. if the mean recurrence time is infinite asdsaid to be non — null (of
positive) persistent ifi ;<o ,

—F

Thus the states of Markov chain can be classifetransient and persisten
and persistent states can be subdivided as noh anaunull persistent.

17




A persistent non — null and aperiodic stdta Markov chain is said to be
ergodic. Consider the following example.

Example 5.

Let {X,,n =0} be a Markov chain having state S = { 1, 2, 3, 4njl
transition matrix

--— 0 0
1 0 0 O
PZ% 0 1 0
00 1%
Heref(l) :_ ’ 3(32) = 3(33) = ... = 0 so thatfy; = %7, f33™ =%+0+

0.=1/2 < 1.

Hence state 3 is transient.

Again £ = 5 , f® =0, n=2, sothaf,, =Y, f,,™ = % +0+40..=
1/2< 1.

Hence state 4 is also transient.

For state 1:

Now f1(1) = 1 1(12) = % and Fy; :2;.3:1]:11(”)% + g = 1, so that state 1 is
perSIStent.

Further sinceu;; = = Yoe 1nf(") 1.-+ 2 g = g state 1 is non — null
persistent.

Again py; = §> 0 , so that state 1 is aperiodic. Since state hoin-null
persistent and aperiodic clearly State érgodic.

For State 2:
@ _ @ _ B)_q 12 (4 _ 1\2 2
22 = 0.3 1‘f 3322 —1.(5) -3
n) _ N2
P —1(;) .5,”22

18



- w (N2 2
SO that FZZ = En=1 ](‘z(zn) = ZkZZ (g) . 5 = 1
Thus state 2 is persistent.

Now we have

b = Tk = w2 =
oz (3) =2

So that state 2 is non — null persistent. It is alseriodic, and hen@rgodic.

In the above example , calculation]ﬁf) and so of;; =), fign) was easy. But

sometimes it is not so easy to calculat;tfé‘) for n= 2. In view of this, another
characterization of persistence is given in Theo?e

Example 6:

Consider a Markov chain with transition matrix

(0 0 1 0\
0O 0 0 1
P =< r.
0O 1 0 O
1111
\ 4882 J

Show that all states of the above MC are ergodic.

Solution: It can be easily seen that the chaimréslucible. Consider state 4:
_1 . ; CPRgE HN_1 (2_1 B)_1,4_1

we havep,, =-> 0 ; state is aperiodic arf§4 =5 faa Tgo S TS =5

4(;1) =0,n>4sothdl, =1andu,, = 1.% + 2.% +3.§ + 4.% :%<oo. Thus

state 4 is ergodic. Hence all states are ergodic.

Theorem 2.1.7

Consider a M. C, ¥,,:n = 0}. Then the state j is persistent i

Sropy) = . @.
6)
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Proof: Let Pij () =X Op(") =1 4ye lp( dsmIs| < 1

and Fij (8) =X5o fi s = Ty £7s™, Is| < 1

be the generating functions of the seque@p%@} and{fjg.")} respectively.
We have from(4.1)

pj(;l) =y ij(r) (n-r)
4.7)

Multiplying both sides of (4. 7) by™ and adding for all & 1, we get
Pij (8) = 1 =F; () B (s).

The right hand side of the above is imiaiedly obtained by considering
the fact that the r. h. s of (4. 7) is a convolotaf { F;;} and { P;; } and that
the generating of the convolution is the producttioé two generating
functions. Thus we have

Assume that state j is persistent which impliest tha = 1. Using Abel’s
lemma, we get

lims 1 F;j(s) =1
Thus lims ,1Fjj(s) » o

Since the coefficients df;; (s) are non — negative Abel's lemma applies and
we get), p( ) =00, Conversely, suppose the state j is transidg@n by
Abel’'s lemma, we get

lims _)IF}‘]'(S)< 1
Also from (4.8), limg ., Pjj(s)<co
Since the coefficient%ﬁ.n) > 0, we get
(n)

This is a contradiction to our hypothegsHence the j is persisterit.] .
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2.1.8.Remark:

The result of Theorem 2. 2 can also deduced fiwarfdllowing
result. Doblin’s Formula: Whatever be the statasd Kk,

F}'k - limm_,oo
4.9

And, in particular - Fj; =1 - limy, -, o

Example 7:
Consider the Markov chain with t. p. m.
[O 1 0 ]

1
P[> 0

N | =

|-0 1 0J

The chain is irreducible as the matrix is so. Weeha

_1 0 1_
2 2
P2=10 1 o0|.PP=P;

19 1

_2 2_
In general, p2n=p2 p2ntl =p

2n) 2n+1) _

So that p;i; >0,p; =0 foreach .

The states are periodic with period 2.

We find thatf;; = o,fl(f) =1 so thatf;; =X, 1(171) =1, . e. state 1 is persiste]
and hence the other states 0 and 2 are also peisist

Now ti1 = =2n 1(1n) =2,

i. e. state is non - null. Thus the states of thairt are periodic (each witl
period 2 ) and persistent non — null. Further,

@n) , £ —2-1foral
P17 or alln.
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We now state a lemma without proof (for proof, Beder, Vol. I).
2.1.9.Basic limit theorem of renewal theory:

Lemma 2. 1. Letf,,} be a sequence such thfat= 0, f, =1 and t& 1) be
the greatest common divisor of those n for which O.

Let {u,,} be another sequence such that 1 andu,, =Y, fru,_r(n = 1).
Then

lim,, _, olUp; = i, (4. 10)

Whereu = Y-, nf, , the limit being zero whep = oo; andlimy _, ,uy = 0
whenever N is not divisible by t. The lemma will beed to prove some
important results.

Theorem 2.1.10:

If state j is persistent non — null, then as mo

(i)p}}lt) - %,when state j is periodic with period r;
]]

and (ii)p](?) - i,when state j is aperiodic.

In case state | is persistent null, (whether pkci@r aperiodic),
then

pj(;l)—>0,asn—>00.
Proof: Let state j be persistent; then
wij=Zan £V s defined.

Since (4.7) holds, we may put

jg.”) for f;, ,p}? for u,, andy;; for u

Applying the lemma(2.1), we get

pj(;‘t) » -1, as n- oo, when state j is periodic with

Hjj

period t.

When state | is aperiodic (i. e. t =1p§;‘) - ui ,as n— oo,
7]
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In case state j is persistent nyl); = o, andaj(;’) -0 as n
- ol
2.1.11Note:
(1) If j is persistent non — null, thlamn_)oop(”)> 0
and (2) if j is persistent null or transient tﬁmn%mpg‘) - 0.

Theorem 2.1.12

If state k is persistent null, then for everyl]z‘,mnﬂop};‘) - 0.

4. 14)

If state k is aperiodic, persistent non — nth;Hemn_)wp(")

Fjk
Mk
(4. 15)
Proof:We have
m _ (r) (n )
Pjx =Xr=1fp.p :
Letn > m, then
p® =y, fOpMT oy O

< D D A e S
(4. 16)

Since state k is persistent null,
(n-1)
Prr =~ — 0,asn oo,
Further, since

Yim= 1f](m) < oo, 3 m+1f](r) —»0asn, m> oo.

Hence as m» o

From (4. 16)
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pj(]T(l) Zr 1f](kr)p]£r]i r) T‘ m+1 f(r)
(4.16 a)

Since | is aperiodic, persistent and non — nuéintby Theorem 2. 3.

(n- 7‘) 1
— as N— oo,
Prc 7 e

Hence from (4.16 a), we get, as nyo, p(") ”—’l’i_—l
kk

2.2 MARKOV CHAIN WITH DENUMERABLE NUMBER OF STATES

So far we discussed Markov ohawith finite humber of states.
The result can be generalized to chain with a demabte number of states (or
with countable state space). Let pg;) be the t. p. m. of the chafiX,,,n >
7 with countable states space S ={ 0, 1, 2,... }. AW = pi/(x) is well
defined. The states of the chain may not constegutn single closed set. For
example when

piy=1j=1+1
= 0, otherwise,
The states do not belong to any closed set, imojug.

For dealing with a chain with a countable statecepave need a more
sensitive classification of states — transientsigéznt null and persistent non —
null. Beside irreducibility and aperiodicity, nonnull persistence is required
for ergodicity for such a chain (a chain with cable state space) while
aperiodicity and irreducibility (or some type ofdteibility) were enough for
ergodicity for a finite chain. We shall state thedarem without proof.

Theorem 2.2.1 (General Erogodic Theorem)

Let {X,,} be an irreducible, aperiodic Markov chain withtsta

space S = {...., k,...} and having t.p.m. P{pﬁ-). If the chain is transient or

persistent non — null thdiam,, _, Oop](:) = 0. If the chain is persistent non — null

then |ImItSllmn_)oop( ) = = v, exist and are independent vector. The veEtor
is given by the solution of

V' =V'P,

That is Vi :E]U]p]k .
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Proof:

The above theorem is a generalization b&cfem 2. 7 concerning
ergodicity of finite, irreducible, aperiodic dhain

Example 8.

A Markov chain occurring in queueing dhe is a chain with a
countable state space S ={0, 1, 2,...} and tramsigirobability matrix

[ PoP1P2P3 — ]

PoDP1P2DP3
P :| 0 popip: -— |
0  popip2 —
[0 PoP1P2 —J
where), p, = 1.
Let P(s) =Xk pr sk and V(s) =3 vy s*

Be generating functions ¢p,} and{v,} respectively. Assume that> 0 for
all i. The chain is irreducible and aperiodic. dihcbe shown that the states ¢
transient, persistent null or persistent non — aatlording a®’ (1) > 1, =1 or
< 1. Thus wherP’ (1) < 1,v,’s are the unique solutions of the equations
2). The equations (6. 2) becomes:

Vo =PoVo + PoV1
Uy =p1Vo T P1V1 T PoV2

Uy =PaVg T PV T D1V T PoV3

Uk =PrVo T PrV1 t Pr-1V2 +.... T PoVk+1

Multiplying both sides of the ( k + 1) st equatiops* (k =0, 1, 2,...) and
adding over k, we get

V(s) = vy P(s) + vy P(s) + v,5 P(s) + v3s2 P(s)

=Rs) {vo + (V(s) —vy) —s}
This gives

V(s) =v(1 = s)P(s) / (P(s) — s),

)

In terms ofv, which can be evaluated fropw, =1. We have
25



V(s) li {1-s3}P(s)

lim
s —>1 s -1 P(s)—s

Whence vo=1-P' (1) (> 0).

\W(s) = {1-P (D}1-5) P(s)

Thus P53

2.3 REDUCIBLE CHAINS

In the previous section, we studied the limitipgpperties of irreducible
Markov Chains. In this section we propose to discesme properties of
reducible chains.

2.3.1 Finite Reducible chains with one closed set>

Consider a Markov chain with state space S , lpairsingle
closed set C ,in which all states communicate \w#abh other. Also assume
that the states of C are periodic. The ergodicftfirote irreducible Markov
chainswas already considered in Theorem 2.7. Rueitgodicity theorem for
reducible chains having a single closed class nbgie states is given below.

Theorem 2.3.2 (Ergodic theorem for reducible chain

Let {X., : n = 0} be a finite Markov Chain with periodic states.
Let P be the transition matrix of the m — stateirthéth state space S, aigl
the transition (submatrix) of transitions among khé< m) members of the
closed class C. Lety = { ..., v;_} be the stationary distribution
corresponding to the stochastic submagixi. e.Pj* = eV, .If V' =(V/,0),
then, asP™ - e V/. In other words, elementwis€&’ is the stationary
distribution corresponding to the matrix P.

Proof: An outline of proof is given below:

The transition matrix of the chain can be putananical from

*r ol

Where the stochastic (sub) matrix corresponds #&msitions among the
members of class C and Q corresponds to transigomsng the other the
states (of S - C).

We have [P1

R,Q"
Where R, =R,_P; + Q" 1R,. Writing R, = R, We get

Rns1 = Xino Q'RPI ™ = X0 Q" 'RP;
26



As n— o Pl = eV

and Q" - 0.

Again it can be shown that, as-noo
Rpy1— eV

So that, writing/’ = (V{,0") we have
P">e

2. 3. 3 Chain with one Single Class of PersistentoN — null Aperiodic
States

Now suppose that the states of the closed clea® @on — null
persistent and aperiodic, the remaining stateslmdifg transient; the transier
states constitute a set T.

Then we have , for each pair i, |,

Is independent of i, when i, j are persistent, alsd when j is persistent and|i

is transient; again

limn_,oop.(n) =

ij = Owhenjis transient.

In this case shall write the transition matrix as

where M gives the matrix of transitions among tla@sient states.

Example 9: Consider a reducible chain with §£2,3,4 } and t. p. m.

P, 0
P~[x; ol

Ry Q

11 1 3

|22 [0 3] B
Where P, = . Ry = M= 1

33 0 3 2
Thus P~e V] whereV{ = (1{,07),=(3,0 2,0).

In other words, for all | as & o

it
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m) _ 4
Pin 73

m) _, 3
Pz 73

py) >0

pr—)O.

Example 10: Stochastic Inventory Model(Seneta, 1981)

Consider that a store stocks a certain item, tineadie for which is given by
px = Pr{k demand of the item in a week },
px>0,k=0,1, 2ang, =0, k> 3.

Stocks are replenished at weekends according tpdley: not to replenish if
there is any stock in store and to obtain 2 nemstd there is no stock. Lét,
be the number of items at the end of" week, just before week’s
replenishment, if any, and X, = 3} = 1.

Then{X, n > 0} is a Markov chain with state space S ={ 0, 13 2and t. p.
m.

p2p1bo O

+ 0 0
p=|" pi;fopo 0 . Pot+ Pt p2=

0 P2P1Po
1.

The Markov chain is reducible, with a single clos#ass C with states 0, 1
and 2, the states being persistent non — null getiadic. The t. p. m
(submatrix) is

P2P1Po
P; =|P1 t+ P2Do 0]
P2P1Po
The state 3 is transient.
P 0
Thus P :[Rl M]
Where R: =(0, p2, p1), M=(py) and

)

28



Using Theorem 2.10 we gét, =

where

n A
P —>eVl]

VIP, = V.

(Uo’ V1, 172)

Vie=1

pi(}l)—>vj,j20, 1, 2.

vo=(1—po)?/c

vi=py/cC

v, =po(1—po)/cC
C=(1-po+ p1) -

Furtherp™ — e V) whereV' = (v,, vy, vy, 0 ]
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UNIT I

.MARKOV PROCESS WITH DISCRETE
STATE SPACE

3.1. Introduction

3.2 Poisson Process

3.3 Related distributions

3.4 Properties of Poisson Process

3.5 Generalization of Poisson Process

3.1 Introduction

Discrete state space Markov Processes has matigaaqp in day to
day processes, such as inventory control in busjngseuing systems and
reliability theory. Poisson process is a versafilecess which represents
almost all random processes whose values movedisteete space. The inter
success time or inter-arrival time between twofregtievents are assumed to e
exponential with parameter

3.2. Poisson processes

Poisson is a special kind of Markov process witpomential inter
arrival time. It is a stochastic process in conbunsl time with discrete state
space which plays a vital role in modelling refd Bystems.

Description: Consider a random evensuch as incoming telephone calls,
arrival of customer for services, occurrence oidemts etc.

Let us denotaV(t) the number of occurrence of the evenin an
interval of duration t. That i&¥ (t)denote the number of eventsoccurred up
to time epoch t. ThefiV(t):t = 0 } is a counting process with time spdte

The path diagram of the process has step structure.
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Fig 3.1

Let pne) = Pr{N(t) =n}. This probability is a function of time
and ;o pn(t) =1, where {p,(t)} represent probability distribution of th
random variabléV (t) for every value of t.

The family of random variables{N(t):t > 0} is a stochastic process. No
we proceed to show that(t)follows a Poisson distribution with parameter
the mean isit. Hence the stochastic proceqdi(t): t= 0}is a Poisson
process.

3.2.1Poisson process and its Postulates:

1. Independence: The random variable(t + h) — N(t) , the number of
occurrences in the intervalt,t + h) is independent of the number (
occurrences prior to that interval.

2.Homogeneity in timep, (t) depends only on the length t of the intery
and is independent of the position of the interValat isp, (t) = Pr {number
of occurrence of event E in the interf@lt; + ¢t) }

3. Regularity: In an interval of infinitesimal length h, the pability of
exactly one occurrence i + o(h) and that of more than one occurrence
o(h).

(Here o(h) is defined alﬂnh_,o% =0.)

In other words, if the interval between t and t is lof very short duration h
then

p1(h)=Ah+o0 (h)
Li=2Pr(h) =0 (h).
Since Y n-o pn(h) = 1,1t follows that

po(h) = 1-Ah + o (h)
(1.6)

Theorem 3.1.Under the postulates 1, 2 & 3, the random vagia\l (t)
follows Position distribution with meark t. That is p,, (t) is given by the
Position law:

e—/lt(/lt)n

Pn ()= — 7, n=0,1.23...
(1.7)

Df

al

S
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Proof:

Considem,(t + h) forn> 0:

The n events by epoch t + h can happen in thewiolg mutually exclusive
events

Ay, Ay, Az Ay .

Forn>1
A;: n occurrences by epoch t and no occurrence ®etweent andt + h;
We have, RA;) = Pr{N (t) = n}Pr{N (h) = 0| N(t) = n} (1.8)

=pn(©)po(h)

=pa(£)(1 — Ah) + o (h)
A,: (n — 1) occurrences by t and 1 occurrences between tand t + h;
We have, RA,) =Pr{N (t) =n—1}Pr{N(h) =1|N(t) =n—1}

=pn—1()p1(h)
(1.9)

=pp-1(t)(Ah) + 0 (h)
Forn=2

A;: (n— 2) occurrences by epoch t and 2 occurrences betingaht + h;

We have, P(43) =p,_,(0){p.(W}< p, (h),
Same result holds for BA,), Pr(4s),.....

Thus we have

Y=z Pr{l 1} < Xi—api(h) = o(h)
and so pa(t +h) =p,(t)(1 — Ah) +p,_;(t)(A h)+ o(h), n> 1

o(h)

Pn(t+h) = pa(t)_ o)
h

or, . “Apn (8) + Apn—1(0) +

(1.10)
taking limit, as h— 0, we get

Pn(0) = -Mpp(t) = pn-1(®)], N> 1. (1.11)
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For n =0, we get

Po(t + h)=po (1) po () =po(t)(1 = AR)+ o(h)

o(h)

Po(t+h)—pg (t) _ 0(h)
BB ) 2 () + %

or
h

whence, as k 0,pg(t) = - Apy(t). (1.12)
Initial condition:

Suppose that the process starts from scratch atGjreo that N (0) =0, i. e.

po(0) = 1; p,(0) for n# 0. Z
(1.13)

The differential — difference equations(1.11)anel differential equation(1.12
together with (1.13) completely specify the systdineir solutions give thg
probability distribution {p,,(t) of N (t). The solutions are given by

—lt(lt)n
pa(=—"-,n=0,1,2,....
(1.14

Proofs: (alternative)
We indicate here two other methods of solving trezpeations.

(1) The method of induction: The solution of (1.12)gisen by, (t) =
Ce . Sincep,(0) = 1, we have C = 1 so thpg(t)= e *t. Consider
(2.11) for n=1. Substituting the value pf and solving the equation
and using (1.13), we fing, (t)= A t. e*t. Thus (1.14) is seen to hol
for n = 0 and 1. Assuming that it holds for (n-1)can be shown
likewise that it holds for any n. Hence, by indoati we get (1.14) for|
all n.

(2) The method generating function: Define the proligbijenerating
function

B,6) = Snoopn(O)s™ = T PrN () =n}s" = Es"O} .

|®N

(1.15)

Now Bs,0) =X o pn(0) s™ =po(0) +p,(0) s +.... = 1, (1.16)
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a (o'e] a [0/0) ! ! ! .
We have 7t P(s, t) :Zn=oapn(t)5n =Xzt P () s™ +pp(t)s™ + po(0);

Yne1Pn()s™ = P(s,t) - py(2);
and  Y3lipn-1(t)s™ =s R, t). (1.17)

Multiplying (1.11) bys™ and adding over for n = 1, 2, 3,.... and using (.17
we get

2 P(s, t) - pp(t) =L [{P (5,8) — po(t)} — sP(s, )]
or 2 P(s,t) +apo(t) = P(s,){A (s — 1)} Ao (2).
Thus % P(s, t) = F(s, ){A(1 st)}. (1.18)
Solving (1.18), we get
P(s,st) = Aet (-1t (1.19)
Now P (s, 0) = 1 from (1.16), so that A = 1.

Hence the p. g. f of Position process is given by

RS; t) - e/’l t(s-1)

et {Z?{):O (s t)n} ,

n!

So that

pn(t) = coefficient ofs™ in P(s, t)

n
e~At@D)

= , n>0. []

n!

Corollary 3.2.:
For a Poisson processhaxe
(i) BEN (O} =it
and (i) vafN (t)} =At.

Proof: The proof is immediate consequence of previousrdmobecause
p,(t) is well defineda

3.2.2Remark:
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The mean number of occurrences in arvat of length t is. t, so that
the mean number of occurrences per unit tine 1), i. e. in an interval of
unit length is1. The mean raté per unit time is known as the parameter of the
Poisson process.

The mean and the variance of N (8 famction of t; in fact, its
distribution is functionally dependent on t. As sube proces$N (t),t = 0}
IS not stationary — it is evolutionary

While{N (t),t =0} is a continuous parameter stochastic progess
with discrete state space{¥E(t)} is a non — random continuous function of .

Corollary 3.3:

If E occurred r times up to initial instab from which t is measured,
then the initial condition will be

p-(0) = 1,p,,(0) = 0, ner.

Thenp,, (t) = Pr{ Number N (t) of occurrences by epoch tis n>r}

n-r
e—At@AD)

= BT nzr

=0, n=r.
Example 1.

Suppose that customers arrive at a Ban&rdig to a Poisson process
with a mean rate of a minute. Then the number efauers N (t) arriving in
an interval of duration t minutes follows Poissastmbution with mean at. If
the rate of arrival is 3 per minute, then in arnvairof 2 minute, the probability
that the number of customers arriving is:

0] exactly 4 is

O _ 0.133,

4
(i) greater than is
- k
22O =0.714

(i)  lessthan4is

—60c\k
T3, =0.152,

(using tables of Poisson distribution).
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Example 2:

A machine goes out of order wheneveomponent part fails. The
failure of this part is in accordance with a Porspoocess with mean rate of 1
per week.

Then the probability that two weeks én@apsed since the last failure
is e7? = 0.135, being the probability that time t = 2 k&ethe number of
occurrences is 0.

Suppose that there are 5 spare pariseoEomponent in an inventory
and that the next supply is not due in 10 weeks plobability that the
machine will not be out of order in the next 10 kses given by

6_10(10)k
k!

Y5, = 0. 068,

Being the probability that the number of failuresti= 10 weeks will be than
or equal to 5.

Example 3:

Estimation of the parameter of Poisson processafwisson procegd (t)},
ast—- o

Al BRI
Wheree> 0 is a preassigned number.

This can be proved by applying Tshebyshev’s lemifoad r. v. X)

REX — £ (0] 2 a} < 22X fora>0.
From the above, we have, for X =(i),
PAN(E) — At] 2 a} <2
or i B
or S22 zef <t
Hence F{@—)L|2£}—>Oast—>oo

This implies that for large t, the observation N [tt may be used as a
reasonable estimate of the mean faté the proces§N (t)}.
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3.3POISSON PROCESS AND RELATED DISTRIBUTIONS

3. 3. linter-arrival Time

With a Poisson proce$8(t),t = 0}, where N(t) denotes the
number of occurrences of an event E by epoch tetiseassociated a random
variable — the interval X between two successiveugences of E. W8
proceed to show that X has a negative exponensailgltion.

Theorem 3.3.2

The interval between two successive occurrencesa dPoisson process
{N(t),t = 0} having parametet has a negative exponential distribution with

1
mear.
Proof:

Let X be the random variable representing the valldoetween two successive
occurrences offN(t),t > 0}and let Pr(X < x) = F(x) be its distribution
function.

Let us denote two successive eventsHyyand E;,; and suppose thai;
occurred at the instant. Then

Pr(X > x) = Pr { E;;; did not occur in(t;, t; + x) given thatE; occurred at
the instant; }

= Pr { E;4, did not occur in(t;, t; + x) | N(t;) =i}
(becauséhe postulate of independence)

= Pr { no occurrence takes place in an inteii¢glt; + x) of
lengthx | N(t;)) =i}

=Pr{Nx) =0|N(t;) =i}po(x) = e ™ x>0.

Sincei is arbitrary, we have for the interval X betweery awo successiveg
occurrences,

Fx)=PriX<x}=1-Pr{iX>x}=1-e"x>0.
The density function is
f(x) = F'(x) = Ae™**, (x > 0).

It can be further proved thatXf denote the interval betweéh andE;,,,i =
1,2,..., thenX,X,, ... also independent. We omit the proof which is algs

the scope of this book. We state the result asvisl
37




Theorem 3.3.4

The intervals between successive occueend a Poisson process are
identically and independently distributed randonmiatale which follow the

negative exponential law with meénThe convers also holds; this is given in
Theorem 3.4 below. These two theorems give a ctaraation of the Poisson
process.

Theorem 3.3.5

If the intervals between successive occuwags of an event E are
independently distributed with a common exponerdiatribution with mean

%, then the events E form a Poisson process witnitea

Proof:

LetZ, denote the interval betwegn — 1) andn®* occurrence of a
process{N(t),t = 0} and let the sequencg, Z,, ... be independently and
identically distributed random variables having a®ge exponential

distribution with meari. The sumiW,, = Z,+..+Z, is the waiting time up to

the nt® occurrence, i. e. the time from the origin to th® subsequent
occurrencel,, has a gamma distribution with parametgrsr. The p. d. f.
g(x) and distribution functiot, are given respectively by

Anxn—le—lx

g(x)=Tn),x>0

And E, () =Pr{W, <t} = fotg(x)dx.

The events{N(t) < n} and W, = +---+ Z, >t are equivalent. Hence the
distribution functionsy (t) andF,, satisfy the relation

E, () =Pr{WW, <t} =1-Pr{W, <t}
=1—-Pr{N(@t) <n}=1—-Pr{N(t) < (n—1)}
=1— Fyp(n—1).
Hence the distribution function of(t) is given by

Fyom—1) =1-F, (t)

tlnxn—ie—lx
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1

=1 ynle Y dy

IYORS
1
r(n)flt y*le Y dy
=i (l 2l 2 =" (integrating by parts).

Thus the probability law aV(t) is
pn(t) = Pr{N(t) = n} = Fy(ny(n) — Fy(xp(n — 1)

lt(/l t)]
Jj!

e i t)/
j!

=y -5

-At n
0T L _01,2 ..

n!

Thus the procesgN(t),t = 0} is a Poisson process with mekn Note that
Poisson process has independent exponentiallyibdittd inter-arrival times
and gamma distributed waiting finjes.

Example 7:

Suppose customers arrive at a service teoun accordance with a
Poisson process with mean rate of 2 per minute @ / minute). Then the
interval between any two successive arrivals folaxponential distribution

with mean%=% minute. The probability that the interval betweemo
successive arrivals is

(i) more than 1 minute is
Pr(X >1) =e 2 =0.135
(i) 4 minutes or less
PriX<4)=1-e*?2=1-¢"8=0.99967
(iif) between 1 and 2 minute is

Pr1<X<2)= f122e‘2xdx =e 2et =
0.0179.

Example 8:

=

Suppose that customers arrive at acemounter independently fror
two different sources. Arrivals occur in accordamgégh a Poisson proces
with mean rate of per hour from the first source apdper hour from the
second source. Since arrivals at the counter ¢atesta Poisson process Wiqh
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mean(4 + w) per hour, the interval between any two successiveals has a
negative exponential distribution with megly (A + )} hours.

For example, if taxis arrive at a spot from thethat the rate of 1 per minute
and from the south at the rate 2 per minute in @=oee with two
independent Poisson process, the interval betwearalaof two taxis has a

(negative) exponential distribution with me;gmninute; the probability that a
long person will have to wait more than a givenetintcan be found.

Poisson type of occurrences are also called puaatgom events and the
Poisson process is called a purely random prodéssreason for this is that
the occurrence is equally likely to happen anywherg, T] given that only
one occurrence has taken place in the interval siéke this by the following
theorem.

Theorem 3.3.6:

Given that only one occurrence of a PaigsmcessV(t) has occurred
by epoch T, then the distribution of the time imgdry in [0,T] in which it
occurred is uniform if0, T], i. e.

Pr{t<y§t+dt|N(T)=1}=%, 0<t<

T

Proof: We have Pr{t<y<t+dt}=2e *dt,
Pr{N(T) =1} = e *T(AT),

and Pr{N(T) = 1|y =t} =e*T-8

The last one being the probability that there wa®ccurrence in the interval
of length (T-t). Hence

Pr{t<y<t+dt|N(T) =1}

__ Pr{t<y<t+dt and N(T)=1}
- Pr{N(T)=1}

_ Pr{t<y<t+dt}Pr{N(T)=1| y=t}
- Pr{N(T)=1}

e dte=*T(AT) = dt/T.

It follows thatPr{y <s| N(T) =1} = %
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It may be said that a Poisson process distributéstgp at random over the
infinite interval [0, ] in the same way as the uniform distributes poatts
random over a finite intervgi, b] . [ ]

3.4Properties of Poisson Process

3.4.1. Additive property:

Sum of two independent Poisson processes Poisson process. Let
N, (t)andN,(t) be two Poisson processes with parameterd, respectively
and let

N (t) = N;(t) + N (t).
The p. g. f.ofv;(t) (1=1, 2) is
Vi) = A1t
The p. g. f. of N¢t) is
E{sN©®)= E{sh©+N:()
And because of independentf(t) andN,(t) , we have
E{s"®)= E{sM®) E{s=0)
G0 el
— (i +22)(s— D)t
Thus N(t) is a Poisson process with paraméte# 1,.

The result can also be proved as follows:

RIN(6) = n}= 3o Pr{N; () = ). Pr{N,(t) = n — 7}

—won e—llt(llt)r e—lzt(lzt)n—r
—4r=0

r! ) (n-r)!

ez MGy 1)

n=> 0.0
n!

Hence N (t) is a Poisson process with parargter 4,).

3.3.2. Difference of two independent Poisson processe$he probability
distribution of N(t) = N;(t) - N,(t) is given by,
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Pr{N (¢) = n} = e-G1+22)t (j—:)E I (2t 212;) . N =0+ 1,
+2,....,

(x)2r+n
2

Where I,(x) =Z$°=Om
Is the modified Bessel function of ordefn —1) .
Proof: (i) The p. g. f. of Nt) is
E{sV©®) = E{sM©®-M®)
= Ef{sM©®) E{s~M®}
Because of the independenceVeft) and— N, (t). Thus
E{sV®)} = E{s"®) E&sz}
=exp{l t (s — 1)} exp{A t (s71 = 1)}
= exp{~- (A; + 1)t} exp{ﬂ1 ts + A, é} .

Pr{N (t) = n} is given by the coefficient of" in the expansion of the right
hand side of as a series in positive and negatveeys of s.

(i) Pr{N (t) = n}can also be obtained directly as follows:
Pr{N () = n} = X2, PriN; (t) = n + 1} Pr {Ny(t) = 1}

e_’llt(ll t)n+r e_’lzt(lz "
(n+r)! r!

=Lrzo

n 2r+n
=e—(/11+/12)t('1_1)2 o (tyAada)

Az =0 41 Gr+n)!

e~ (h+i2)t (:11_:)5 I (2t42,2;) .

It may be noted that

(1) the difference of two independent Poisson p@see is not a Poisson
process:

(2) I_n(t) :I|n|(t), =1,2,3,......

(3) the first two moments a¥(t) are given by
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BN (@)} =A; +4)t and EVZ@)} =4 + ) t+
(A + 2,)%t2 .

Example 4.

If passengers arrive at a taxi stand goetance with a Poisson proce
with parameteil; and taxis arrive in accordance with a Poissonge®avith
parametedl, thenN (t) = N; (t) —N, (t) gives the excess of passengers o
taxis in an interval t. The distribution &f) ,i.e., PN (¢) =n},n=0,%+ 1,
+ 2.... Is given by *. The mean & (t) is (4; +1,) t, whichis >=0<0
according as

AM>=A;andvar{N (t) }= (44 +A,) t
3.3.3 Decomposition of a Poisson process:

A random selection from a Poisson precgslds a Poisson proces
Suppose thal (t), the number of occurrences of an event E in arvat of
length t is a Poisson process with paraméterSuppose also that ead
occurrence of E has a constant probability p ohdpeecorded, and that th
recording of an occurrence is independent of thatleer occurrences and als
of N (t).

Theorem: 3.3.4

If M (t) is the number of occurrences recorded in an iatef/length t, then
M (t) is also a Poisson process with paranigter

Proof:
The even{M (t)} can happen in the following mutually exclusive say

A, : E occurs(n+r) times by epoch t and exactly n out @i + )
occurrences are recorded, probability of each eeoge recorded being p, (r
0,1,2,...).

We have

Pr (4)
Pr

{n occurrences are recorded given that the number of occurrences is n
r

Pr {E occurs (n +r) times by epoch t}.

e~ At pntr (n + r) AT
(n+r)! n pq .

Hence PEM (t) =n} =X, Pr(4,)

U7
(2]

ver
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=y, e At@aomT (n + r) nr
r=

(n+7)! n pq

— p-Atyoeo  APO(AgH"
—¢€ Zr:O nir!

— oAt AP0 seo (A98)"

n! =0 4
— oAt APO" gt —%
- n! - n!

3.3.5 Remark:We can interpret the above as follows

For a Poisson proce$d (t)}, the probability
of an occurrence in an infinitesimal interval hpi®portional to the length h,
the proportionality beind. Now for {M (t)}, the probability of a recording in
the interval h is proportional to the length h, tenstant of proportionality
beingip. Thus{M (t),t = 0} is a Poisson process with paramejer

3.3.6. Continuation of property 3

The numbeM, (t) of occurrences not recorded is also a Poisson
process with parameti&q =A(1 — p) andM (t) andM, (t) are independent.

Thus by random selection a Poisson ppoddV (t),t =0} of
parametef. is decomposed into two independent Poisson prddé<s), t >
0 } and{M,(t),t = 0} with parameterap and\ (1 — p) Respectively.

TS

Fig. 3.2 Decomposition rates

As an example, suppose that the births occur imrdecce with a Poisson
process with parametegr If the probability that an individual born is redak p,
then the male births form a Poisson process withrpaterip and the female
births form an independent Poisson process withrpatei.(1 — p).

More generally, a Poisson proceids (t)} with parameterh may be
decomposed into r stream of Poisson processes. H...+ p,, = 1 then the
Poisson process is decomposed into r independeissdpPo process with
parameterdp,, Ap,,..., Ap, .
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Theorem 3.3.7.(Poisson process and binomial distriktion)

If {N (t)}is a Poisson process and s < 1, then

Priv ) =kIN®=n}=()(2) (1~ (f))n_k-

t t

Proof:

Pr{N (s)=kand N (t)=n}
Pr{N (S):klN(t) :n}: . ;r{N?;?):n} -

_ Pr{N(s)=kand N (t—s)=n-k}
B Pr{N (t)=n}

_ Pr{N (s)=k}Pr{N (t-s)=n-k}
B Pr{N (t)=n}

e—/l (t-s) (2 (t—s)]n_k
_e As(as)k (n—k)!
T e~As(a)n

n!

_ n! sk(t—s)n—k
kl(n-k)!  tn

() (1-0)D

If {N (t)} is a Poisson process then the auto — correlatefficient between
N (&) andN (t + ) is {/(t + $)}z .

Proof:
Let 1 be the parameter of the process; then
E{N (T)} =T, var{N (T)} = AT,
and E{N?(T)} =AT + (AT)? for T = t and t+s.

SinceN (t) and{N (t +s) — N (t)} and independen{N (t),t = 0} being a
Poisson process,

EIN (N (t+s)} = EIN@®O{N(t+s)—N(t)+
Nt

= EV(ON @]+ [N @OfN (¢ +
s=Nt
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= E{N?2(t)} + E{N ()} E{N(t +
s—Nt.

Hence EN@)N (t + s)} = (At + 12t?) +t. As.
Thus the auto-covariance betwéeét) andN (t + s) is given by

Clt,t+s)=E{N@®N(t+s)}—E{N(@®)} E{N(t +

=(At + 2%t? + A%ts) — At(At + As) = At.

Hence the autocorrelation function

p(t' t + S): C(t,t+s) -
{var N(t) var N(t+s)}2
1
={(t/¢t+ )} .
It can be shown that
,~ _ min(tt’
p(t,t) = 2inlts)

(tt"z
This is the autocorrelation function of the pfodess
Theorem 3.3.9

If {N(t)} is a Poisson process with parametethen{N(t) — At,t > 0} is a
continuous parameter martingale.

Example 5:

A radioactive source emits particles atta od 5 per minute in accordance
with a Poisson process. Each particle emitted haobability 0. 6 of being
recorded. The numbeé¥(t) of particles recorded in an interval of lengtls ti
Poisson process with rate>5 0. 6 = 3 per minute, i. e. with mean 3t and
variance 3t. In a 4 — minute interval the prob#ptinat the number of particles
recorded is 10 is equal e512(12)1°/10 ! = 0.104.

Example 6:

A person enlists subscriptions to a magazime number enlisted being
given by a Poisson process with mean rate 6 per 8apscribers may
subscribe for 1 or 2 years independently of onetharowith respective

probabilitiesg and% . The number of subscribe’yt) enrolled by the person
in time t days is a Poisson process with mean @atehe numberN, (t)
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enrolled for 1 — year period is a Poisson procats mean(6 X g) t =4tand
the numbemV,(t) enrolled for 2 — year period is a Poisson proegfs mean
(6 X l) t=2t.

3

If the commission receivedasfor 1 — year subscription aridfor a 2 —
year subscribtion, then the total commission eamegxriod t is given by

X(®)=aN;(t) +b N, (t)

We have BX(0)} = aE{N; ()} + bE{N,(t)}
= 4at + 2bt
And varX(t) = 4at + 2b?t.

3.3.10 Nae: The proces$X(t),t > 0} is a compound Poisson process

3.5 GENERALISATIONS OF POISSONPROCESS

There are several directions in which the Poissmtgss discussed in the

previous section can be generalized. We considee s them here.
3.5.1 Poisson Process in Higher Dimensions

We have considered so far the one — dimension&: ¢hs occurrences tak
place at random instants of time t (say, t,, ...) and thus we were concerne
with distribution of points on a line. Instead, weay have the two -
dimensional case.

Consider the two — dimensional case, such thattfer numberN(Aa) of
occurrences in an element of ateg we have, for infinitesimala,

Pr{N(Aa) = 1} = 1Aa + o(Aa),
Pr{N(Aa) = k} = 0o(Aa),k = 2
and Pr{N(Aa) = 0} = 1 — AAa + o(Aa),

Thus, if the number of occurrences in non — oveilagp areas are mutually
independent, the numbai(a) of occurrences in an areawill be a Poisson
process with meada. Here in place of one — dimensional t, we consider—
dimensional a. Similarly, we can describe Poisson process inhdrig
dimensions.
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3.5. 2 Poisson Cluster Process (Compound or Cumuie¢ Poisson
Process)

Discrete Case

We considered in that only one event can occumanstant of occurrence.
Now let us suppose that several events can happeitaneously at such an
instant, i. e. we have a cluster(of occurrences)@int. We assume that:

(i) The numbeN(t) of clusters in time t, i. e. the points at which
clusters occur constitute a Poisson processméan rate..

(i) Each cluster has a random numbeoagiurrences, i. e. the number
X; of occurrences it" cluster is a. r. v. The various numbers of ocawes
in the different clusters are mutually independanid follow the same
probability distribution:

PriX,=k}=P, k=1,2,3, ...
i=1273...
Having p. g. f. P(s) = X5, prsk.
Theorem 3.5.3

If M(t) denotes the total number of occurrences in amviatef length t
under the conditions (i) and (ii) stated aboventtiee generating function of
M(t) is given by

G(P(s)) = exp [At {P(s) — 1}].
Proof: M (t) is the sum of a random number of terms, i. e.
M@ = 59X,
Where IfN(t) is a Poisson process with mgan
Now P(s) is the p. g. f. oX; andG(s) is the p. g. f. oft) . Thus,
G(s) = exp{At(s — 1)}.
Hence by the p. g. f. df(¢t) is given by
G(Ps) = exp{AtP(s) — 1}]

3.5.4 Note:
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(DM(t) is called a compound Poisson process It is todiednthat
M (t) is not necessarily Poisson. Poisson cluster psoagse in bulk queues
where customers arrive or are served in groups.

(i) A compound Poisson process is aoint process; it is what i
called a jump process.

(iii) Suppose that claims againsbanpany occur in accordance with

aPoisson process with meany and that individual claim&; are i. i. d. with
distribution {p, }, then M(t) represents the total at epoch t. If a represd
initial reserve andc the rate of increase of the reserves in the alseng
claims, then the total reserve at epochA4 is ct — M (t), and negative reserv
implies ‘ruin’.

3.5.5Continuous Case

Now suppose that non — negative variabtgsare continuous having d. {.

F(x) = Pr{X; < x},p. d. f. f(x), and L. T.
fr(s) = [y e *f(xydx

Then, it can be shown (as before) that the L. (@} is given by
E{exp(—sX (1))} = exp [At{f*(s) — 1}]

X(t) is known as a continuous compound Poisson pro&@&gssompound
Poisson process, we shall generally mean (discreteppound Poissor
process.

The L. T. of{X(t) > x} is given by

f0°° e~S* Pr{X(t) > x} dx = 1—exp {At(f*(s)-1)}

N

3.5.6. Compound Poisson process and linear combimnat of independent
Poisson processes:

Consider Example 6.

The processX(t) = aN,(t) + bN,(t) is a linear combination of twg
independent Poisson processes. The process carbalsxpressed as th
compound Poisson process

X)) =3YN9x,

whereX;, the amount of commission received form a sub#oripis a random
variable such that

U7

pnts

11%
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Pr(X; = a) =§ and Pr{X; = b} = % :
If follows that
And var{X(t)} = 6t E{X?} = 6t.§. (2a% + b?) =
4a’t + 2b%t.

The two approaches are equivalent. The result magtdied in a more general
form as follows:

Letay, >0,k =1,2,..,r(= 2) and Pr(X; = a,) = py for each i, pk = 1.

ThenX(t) = Z?’:(? X;, where{N(t)} is a Poisson process with parameitgeis
a compound Poisson process. Eof 0, let N; (t) be the number of jumps of
valuea; for the proces§X (t)} which occur prior to t, Then we have

X(@) = a;N, () + - + a.N; (t)

where {N.(t),t >0} is a Poisson process with parameter
Apy and N;(t), ..., N, (t) are mutually independent/(t) is decomposed into
r independent Poisson procesdgét), k = 1,2, ....,7.

Example 9.

Customers arrive at a store in groupssisting of 1 or 2 individuals
with equal probability and the arrival of groups irs accordance with a
Poisson process with mean rate

Here P = Pr{X; =k} = %(for k=1,2)
= O(otherwise);
Hence P(s) = Y prsk = %s + %SZ

And so the generating function Mf(t), the total number of customers arriving
intime tis

G(s) = exp {At E (s +s2)— 1]}

The mean number of customers arriving in time tadgE{X;}{At} =
%xlt. Ford = %per minute and t=4 minutes, the generating funatidinbe

exp [2 {% (s +s%) — 1}] = {exp(—2)} {exp (s +
s?)},
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And the probability that the total number of arts/es exactly 4 is

e—2 (%4_%4—%) = 0 141

Example 10.

Suppose that the number of arrival epanhen interval of length t is

given by a Poisson proce§s (t),t > 0} with meana and that the number of

units arriving at an arrival epoch is given by aoze truncated Poissof
variableX;,i = 1, 2, ... with parametet. Then the total numbav/ (t) of units
which arrive in an interval of length t is a Poissduster process with p. g. f.

G(P(s)) = exp [at{P(s) — 1}]
Where P(s) is the p. g. f. of zero — truncated Swigprocess namely

P(s) = (expA — 1) 1(exp(As) — 1).

Hence G(P(s)) = exp [at {% — 1}]

Example 11. ( An application in inventory theory)

Suppose thakX; are i. i. d. decapitated geometric
v.” s such that

PriX;=k}=q"'pk=1,2,3,..., where p +
q=1

Then the generating function &f is , G(s) =ps/(1 —qs),
anfP(s)) = exp[at{ps/(1 - gs) — 1}].
From the function G(s), we ggt= Pr{M(t) = 0} = e

pr = Pr{M(t) = k}is given by

At 1.
Dk = pTZ?:l a7 Pr—j, k = 1.

3.5.7. RemarkSeveral authors have used this as a modelldad time
demand of a commodity. It has been shown thatdtsgibution fits actual
data for demand of units of an EOQ or consumalge tgventory item during
stockreplenishmenorlead time.

-

=
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UNIT IV

BIRTH AND DEATH PROCESS AND
CONINUOUS TIME MARKOV CHAIN

4.1 Introduction

4.2 Birth-Death Process

4.3 Continuous Time Markov Chain

4.1 Introduction

A stochastic process whose state space moves hddoh by unit measure
in state space is called Birth-Death process. Apmexample for birth —death
process is the queuing system in which arrival amast to the counter is a
birth and the service completion in a server is equitatendeath event.
Inventory control system with one for —one ordenadicy is also an example
for Birth- Death process. In this unit we study fhee birth and pure death
process together with Birth-Death process.

4.2 Birth —Death Process

4.2.1 Pure Birth- Death Process:

First we considera pure birth process, witer¢ Number of births between
t and t+h is k, given the number of individualepbch t is n}

Anh + o(h), k=1
Is given by p(k,hn,t) =1 o(h), k>2
1-A,h+o(h), k=0

4.1)

The above holds for all > 0; 1, may or not be equal to zero. Here k is a non
— negative integer which implies that there carydid an increase by k, i. e.
only births are considered possible. Now we suppiosethere could also be a
decrease by k, i. e. death(s) is also consideredilge. In this case we shall
further assume that

Pr { Number of births between t and t+h is k, givee humber of individuals
at epoch tis n}
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Unh + o(h), k=1
Is given by q(k,h|n,t) =< o(h), k>2
{1—ynh+o(h), k=0

4. 2)

The above holds fon > k; furthep, = 0,Which is known as a birth an
death process. Through a birth there is an increa®sme and through a deat
there is a decrease by one in the number of “iddads”. The probability of
more than one birth or more than one death in tamal of length h i®(h).
Let N(t) denotes the total number of individuals at epostaiting front = 0
and lep,(t) = Pr{N(t) = n}.Consider the interval between 0 amd- h;
suppose that it is split into two period®,t)and [t,t + h]. The event
{N(t + h) = n,n = 1}, (having probability p,,(t + h) can occur in a numbe
of mutually exclusive ways.

These would include events involving mttv@n one birth and / or mor

than one death between t ahél . By our assumption, the probability of su¢

an event i® (h). There will remain four other events to be consde

Ajj : (n—1+j) individuals by epocht, i birth and; death between t an
t+hi,j=0,1.

We have Pr(Ag) = pn ({1 —2,h + o(MH1 — u,h +
o(%)

= pn(t){l — Ay + )b + O(h)};

Pr(A1p) = pp-1(®O{An_1h + o(WH1 — py_1h +

o(%)
= Pn-1(2y—1h + o(h);
Pr(Ao1) = pn-1(O{1 — Apsah + o(WHupsrh +
o(%)
= Pn+1(Oins1h + 0(h);
and Pr(A11) = (O + o(M)}Hunh + o()}

= o(h).
Hence we have, fornp 1

Pn(t +h) = pp(O{1 — (A4 + tn) + h} + pro1 (O An_1h + i1 (Opyerh +
o(h) 4.3)

-

11

h
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n h)- n
OI’ M = _(An + .un)pn(t) + An—lpn—l(t) + .un+1pn+1(t) +

o
)

And taking limits, as — 0, we have

p‘;l(t) = _(An + /v‘n)pn(t) + An—lpn—l(t) + /v‘n+1pn+1(t)’ nz=1 (4.
4)

Forn = 0, we have

Po(t + h) = po(t){1 — (Aoh + o(h)} + p1 (){1 — (A4oh + o(R) Hunh +
o) (4.5)

= po(t) — Aohpo (t) + prhp, (2)

or R R (Hh,)l_ 2o® - —Aopo(t) + uyp1 (6) + O(hh)
Taken limit as k> 0, we get
Po(t) = —Aopo(t) + p1p1 (1) 4.

6)
If at epocht = 0, there were (= 0) individuals, then the initial condition is

pn(0) =0, n#i,p;(0) = 1. 4.
7)

The above equations (4. 4) and (4. 6) areetipgations of the birth and death
process The birth and death processes play an importalet in queuing
theory. They also have interesting applicationdiurerse other fields such as
economics, biology, reliability theory etc.

4.2.2 REMARKS:

The result about existence of solutiohg4o 4) and (4. 6) is stated
below without proof. For srbitrary

An = 0,1, = 0, there always exists a solutipp(t) (= 0) such thadp, (t) <
1. If A, u, are bounded, the solution is unique and sati§figegt) = 1.

4. 2. 3 BIRTH AND DEATH RATES

Some particular valuesigfand u,, are of special interest. When
A, = A,i.e. 4, is independent of the population size n, theninlceease may
be thought of as due to an external source sucmmsgration. Whent,, =
n A, we have case of (linear) birtli;,h = nAh may by considered as the
probability of one birth in an interval of lengthdiven that n individuals are
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present (at the instant from which the interval omences)the probability of
one individual giving a birth beingh, (i. e. rate of birth in unit interval i&
per individual). Herd, = 0.

Whep,, = u, the decrease may effected due to the emigration

factor.Whery,, = nu, we have the case of death, the rate of deatmin
interval beingu per individual

Particular Cases

I. Immigration — Emigration Process

For A, = A and u, = u we have what is known as immigration — emigration

process. The process associated with the simplairggenodelM /M /1 in
such a process.

Il. Linear Growth Process
(a)Generating Function:

IN the Yule —Furry process one is concerned witlpapulation whose
members can give birth only but cannot die. Letaossider the case wher
both births and deaths can occur. Suppose thatrtgt®bility that a membe
gives birth to a new member in a small intervalevfgth h isih + o(h) and

the probability that a member dies & + o(h). Then, if n members arg
present at the instant t, the probability of onghbbetween t and + h is
nAh + o(h) and that of one deathjig + o(h),n > 1.

We have thus a birth and death process with
An =ndpty = u(m = 1), = po = 0.

If X(t) denotes the total number of members at time , ttem (4. 4) and (4.
6) we have the following differential — differenaguations forp,(t) =
Pr{X(t) = n}

pr(t) = —n(A + Wpn(t) + A(n — Dpp_1(t) + p(n + Dppy1(t), n 21
(4. 8)

Pn(t) = up (2).

If the initial population size ig, i. e. X(0) =i, then we have the initia

conditionp;(0) = 1 and p,(0) =0,n # i.
Let P(s,t) = Yooy Pn(O)s™ be the p. g.
of {p, (t)}.

17
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Then % _ Yo np,(t)s™ 1 and 9P _

ds at
Z:?:o pn(t)s™.

Multiplying (4. 8) by s™ and adding oven = 1,2,3,... and adding (4. 9)
thereto, we get

7] - "
a_ltj =—(A+ )Xo npp(O)s™ + A ¥ (n —

1) pn—1tsn

= +u{ZrZ1(n + Dppyr ()™ + pa ()}

ap ap
222 4 i

aP
——(/1+u)sE+/1$ . e

= {n— (A + s+ 152} 5.

P(s,t) thus satisfies a partial differential equationLafgrangian type. We
shall not discuss here the method of solution; gbkition with the initial
conditionX (0)i. Is given by

p(1=5)=(u=1s) e-a-“)t]i
A(1—s)—(pu—As)e~(A-mt

P(s,t) =

I L I e
- [{/1— pe-@-mty 3 {1- e—(/l—l‘)t}s]
(4. 11)

Explicit expression fop, (t) can be obtained from the above by expanding
P(s,t) as a power series in s.

(b) Mean Population Size:

We can obtain the mean population size by diffeagngP (s, t) partially with
respect to s and putting s=1. It can however baiodd directly form (4. 8)
and (4. 9) without obtaining(s, t) as follows:

Let E{X(®)} = M@) = Xy=1np,(t)
and E{X*()} = Mp(t) = T n’pn ().
Multiplying both sides of (4. 8) by n adding overf = 1, 2, 3, ..., we have

Yreinpp () = —(A+ ) Too i n?p, () + A X5 n(n — 1) oy () +
U= n(n+ Dpnyq (). (4. 12)

Now Yooinn—Dp,1(@) =20 (n—1)2p,_ () +
Y1 —1) py_q1(0)
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= M,(t) + M(¢);

D @+ Dpaa® = ) 1+ D pra (0= ) (14 D praa(©)
n=1 n=1

n=1
= {M(®) —p1 (O} = {M@®) — p1(O)}
= M,(t) — M (2);
And Yn=11p'(6) = M'(D).
Hence from (4. 12) we get
M'(t) = —(A+u) My(0) + H{M, (1) + M)} + u{M,(t) — M(D)}
= A+ pu)M(t).

The solution of the above differential equationaftiM(t) satisfies) is easily
found to be

M(t) = Ce@—mt
The initial condition give¥ (0) = Yo, np,,(0) = i,whence (= M(0) = i.
We have therefore,

M(t) = ieA-mt
The second momeM, (t) of X(t) can also be calculated in the same way.
Limiting case:

Ast — oo, the mean population siZé(t) tends to0 for A < u (birth rate
smaller than death rate) or ¢o0 for 2 < u (birth rate greater than death rat
and to the constant value | whénr= u.

(c) Extinction Probability:

Sincg, = 0, 0 is an absorbing state, i. e. once the populaipa
reaches 0, it remains at O thereafter. This igrttezesting case of extinction 0
the population. We can determine the probabilitgxdfnction as follows:

Suppose, for simplicity, that(0) = 1,i.e. the process starts with only or
member at time 0. Then from (4.11) we can wFi{e, t) as

a-bs _a 1-bs/a

c—-ds ¢ 1-ds/c

P(s,t) =

Where a=p{1-—e*wt}

e
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And c=21—pe G-t

Pr{X(t) = 0} = py(t), the constant term in the expressionRgk,t) as a
power series in s, is given by

a _ p(-e” @10

c A—ue('l_ll)t

The probability that the population will eventualljie out is given by
lim py(t) ast = o and can be obtained from the above by lettirg .

p(i-e” -1t

If A >y, then limye Po(t) = lim;_,o, A—pe-G-nt

p{1—e~ A=Wty

If A< u, then limt_>oo po(t) = limt—mo A—pe-m-Mt -

And lim;_o pr(t) = 0 forn # 0.

In other words, the probability of ultimate extimmet is 1 whernu < Aand is
% < 1 whenu < A.

lll. Linear Growth Immigration

In Il, we havé, = 0 and, as a result, if the population size reaches
zero at any time, it remains at zero thereaftereHkeis an absorbing state. If
we conside®,, = nd + a(a > 0), u, = nu(n = 0) we get what is known as a
linear growth process with immigration, where @d¢ an sbsorting state.

IV. Immigration — Death Process

IfA,, = 1 andyu,, = nu, we get what is known as an immigration —
death process. This corresponds to the Markoviaueuwvith infinite number
of channels, i. e. the que&/M /co.

V. Pure Death Process

Heret,, = 0 for all n, i. e. an individual cannot give birth & new
individual and the probability of death of an indival in (¢t,t + h)is ph +
o(h). Then , if n individuals are present at time the probability of one
death in(t,t + h) is nuh + O(h).

The birth and death process is a special case of
continuous time Markov process with discrete stgaceS = {0,1,2, ... ... }
such that the probability of transtition from ijtn At time is(At ) whenever
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|i — j| = 2. In other words changes takes place through tiansibnly from a
state to its immediate neighboring state.

4 .3Continuous Time Markov Chains:

4.3.1 Definition

A continuous time parameter MARK@XocessX(t): t = 0} with
discrete state spadé = {0,1,2.....} is considered for this section. Assume
that {X(t):t = o} is a time homogeneous Markov chain.

So the probability of a transition from state Istate j during the time interval
(T, T + t) does not depend on the initial time T, but degeadly on the
elapsed time t and on the initial and terminalestatand j. We can thus write

PriX(T+0) =j | X(T) =i} =p;(0),i, j =

In particular, we write  Pr{X(t) = j | X(0) = i} = p;;(¢),

From the definition of transition probability digiution, we have < p;;(t) <
1 for eachi, j, t,

andy;p;;(t) = 1.
Letp;(t) = Pr{X(t) = j } be the state probability at epoch j, then
pi() = PriX(t) =}
=Y PriX(t) =jand X(0) =i}
=2 Pr{X(0) =} PriX(0) =j | X(0) =i}
= X Pr{X(0) = i}p;;(t).
Now we have},;p;(t) = 1 fort = 0.
Let us denote the transition probability matrixtleé Markov Chain by
P() = (py(®).

Setting;;(0) = §;;, we get, P(0) = 1. Also assume here that the functiops
p;;(t) are continuous and differentiable for 0.

4.3.2 The waiting time for a change of state:
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Suppose th@k (t):t = o is a homogeneous Markov process and
that at time, = 0,the state of the procesqt,) = X(0) =i is known. The
time taken for a change of state | is a randomaetégi sayt. This random time
periodz is called the waiting time to reach a differetats from state i.

We have Pr{t >s+t|X(0) =i}

=Prit>s+t|X0)=i1>
sPre>s | X0=/

=Pr{t>s+t|X(s)=i,}Pr{t >s|X(0) =
Z.

If we denoteF(t) = Pr{r >t | X(0) =i},t >0 then the above can be
written as

F(s+t) = F(s)F(t), fors,t > 0.
The above relation is satisfiefl F(t) is the forne=*, t >0, 1> 0.

Thus the waiting timer has an exponential distribution with parameter
which is called the transition density from stat&he distribution function is
the same for all i.

4.3.3 Chapman — Kolmogorov Equations:

The transition probability p;;(t +T) is the
probability that the given state was | at epoch 3, in state j at epoch+ T;
but in passing from staieto statej in time (t + T) the process moves through
some state k in time t, Thus

py(t+T) = ZPr{X(t YT =), X&) =k|X(0) =i}

i Prix(0) =i, X(t) = k,_X(t +T) =}/ Pr{X(0) =i}

5 {Pr{x(0)=i, X(©)=k}} _ Pr{x(0)=i, X(t)=k, X(t+T)=j}
k Pr {X(0)=i} Pr (x(0)=i, X(t)=k}

=2 PriX(t) =k |X(0) =i}Pr{X(t+T)=
JX0=i Xt=£)}.

Since{X(t): t = 0} is a Markov process,
Pr{X(t+T)=j|X(0)=1i X(t)=k}
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=Pr{X(t+T)=j| X(t) =k}
= p;;(T).
Hence we get the probabilistic relation

pij(t +T) = Xipuc(®) pi;(T), for all states
i,jandt >20,T 20. (4.5)

Above equation (4.20) is called Chapman- Kolmogaquation.
4.3.4 Remark:

We can also write Chapman —Kolmogorov equatiomatrix form:
P(t+T)=P().P(T). (4.6)

The equations 4.5 and 4.6 are also equivalentetoelation we already prove
an the case of Discrete Markov Chains.

Denote the right — hand derivative at zero by

a o
aj = Pij()le=0; 1 #
4.7

d
a;j = —Pii(®)]e=0 -

, pij(At) - p;j (0) , pij(A)

Then a;; = llmAHo% = llmAt_,OJA—t
(4.8)

; ii(At) — py; (0) . ii(At)—1
and a;; = llmAt_,o% = llmAt—»opA—t
or pij(At) = 1+ a;;(At) + o(At).

(4.9)

It can be seen from the above relations that 0,i # j and a; < 0.

From Yipij(t) =1, using (4.7),we get
jai;=0
Djri Aij = —Qyj.
(4.10)
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The quantitiesy;; are called transition densities and the matrix
A = (a;5)

Is called the transition density matrix or rate mxabf the process. The matrix
is such that

(1) its off — diagonal elements are non- negatiwel the diagonal
elements are negative;

(2) the sum of the elements of each row is zdre,sum of the off —
diagonal elements being equal in magnitugteopposite in sign to the
diagonal elements being elements.

Differentiating (4.5) with respects to T, we get
’ d d
pi;(t+T) = 5Pij(t +T) = Ekpik(t)gpkj(T)-

Putting T=0, we get p;;(t) = Xx puc () ay;.
(4.11)

Or, in matrix notatiorP’(t) = P(t)A.
(4.11a)

Similarly we can get;—Tpij(T) = Yk DikPrj(T).
Replacing T by t, we can write this as

pij(t) = Xk DikPr;j(t)
(4.12)

or P'(t) = AP(t).
(4.12a)

Equations (4.11) and (4.12) which give Chapman Hridgorov equations as
differential equations are called respectively Famdv and Backward
Kolmogorov equations.

Solution of the Equations for a Finite State Preces

When the rate matrix is given, the equations (4dti}#.11a) together with the
initial conditions p;; = 6;;(or P(0) = 1) yield as solution the unknown
probabilitiesp;; (t). We consider below a method of solution for a pssce

with finite number of states. From (4.11a) we seenae that the solutions can
be written in the form
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P(t) = P(0)e4t = et
(4.13)

Where the matrix el =1+ Z,ﬁlﬂ
(4.13a)

Assume that eigenvalues of A are all distinct. Tfrem the spectral theoren
of matrices, we have

A=HDH™

Where H is a non — singular matrix and D is thedral matrix having for its
diagonal elements the eigenvalues of A. Now, nigigenvalue of A and if
d; # 0,i = 1,...,m are the other distinct eigenvalues, then

o 0 .. O
[o 0 o}
D=]|..
o 7]
We then have
0 0o .. O
[0 a o}
D" =]...
o gl
And A" = HD"H™1

Substituting in (4.13), we get

(HD"H™1)t"
n!

P(T) =1+Xn

=H{1+ 35, 25

= HePtH™?
0 0 0 1
| 0 ed1t 0 |
Where elt = )
0 0 . efdmt

The right — hand side of (4.14) gives explicit $imn of the matrixP (t). Note
that even in the general case when the eigenvaludsare not necessarily
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distinct, a canonical representationsdof= SZS~1 exists. Using thisP(t) can
be obtained in a modified form.

Example 5(a): Poisson process:

If events occur in accordance with a Poisson pobés) with meanit, then

p; i+1(At) = Pr{the process goes to state i+1 from state | in tng
= Pr {one event occurs in timé&t }
= Pr{N(At) = 1}
= AAt + o(At),
p; ;(At) =1 — AAt + o(At)
and p; ;(At) = o(At), j #i, i+ 1.

By comparing with (4.8) and (4.9), we have

ajp1=Aa;; =—-Aa; ;=0forj+ii+1l
- 2 0 .. O
The rate matrix il = (a;;) ={0 —1 1 .. 0

The Kolmogorov forward equations are
pii(t) = —Ap; i(t)

pi;(t) = —Ap; () + Ap; i1 (D), j =i+ 1,i+
2, .. (4.15)

Let p;(t) = Pr{N(t) = j } and p,(0) = 1,p,(0) = 0,n # 0. Using (4.2) we
getp;(t) = po;(t),j = 0,1,2.. Thus (4.15) become identical with (1.11) and
(1.12) so that p;j(t) =e *(A0)!/j! Similarly. With p;(0)=1,j =
I,p;j(0) =0,i # j, we get

_ e—lt(lt)j—i
pij(t) = =T
Example 5(b) Two — state process:

Suppose that a certain system can considered tm b&o states:
“Operating” and “Under repair”. Suppose that theglis of operating period
and period under repair are independent randonablas having negative
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exponential distribution with mean%‘, and% respectively (a, b>0). The

evolution of the system can be described by a Magtocess with two state
Oand 1.

Now
Po1(At) = Pr {change of state from 0 to 1 in timeAt}
= Pr {repair being completed in timeAt}
= alAt + o(At)
And Po1(At) = Pr {change of state from 1 to 0 in At}
= bAt + o(At).

Thus the transition densities are

a01 =aq, a01 = b
And aOO = —aq, all = _b
So that A= [b—a 3 Z]

The Kolmogorov forward equations, foe= 0, 1, are
Pio(8) = —a pio(t) + b pin ()
Pi(t) = ap(t) —bpu (D).

Now we proceed to find the transition probabilitigs(t).

Using Poo(t) + po1(t) = 1, p10(t) +p11(t) =1,
We get Poo(t) = —(a + b)pgo(t) = b
And p11(t) = +(a + b)p,1(t) = a.

The solution of the first of these differential etjon is

b
— —(a+b)t
Poo () — + Ce )

With poo(O) =1,wegetC = a;:b’ so that
b -
Poo(t) = —+ ﬁe (a+b)t
Hence pOl(t) =1- poo(t) = ﬁ — ﬁe_(a'*'b)t .

14

\"2)
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Similarly, the solution of the second differentguation with initial condition

p11(t) = —— — L e~(@+byt

a+b a+b

and hence P1o(t) =1 —p1.(t)
-2 _ b -(ath)rt

a+b a+b

Let p;(t) be the probability that the system is in statet jtime t,j =
0,1,and let py(0) = 1, p,(0) = 0,n # 0. Thenp;(t) = p,;(t),j =0,1.

4.3.5 Alternative Method:

We consider the above example to show how to pbedth matrix
method of solution: this method is useful when Kotgorov differential
equations are easily solvable.

Here A = [—ba _ba] has eigenvalues 0 and(a + b), corresponding right
eigenvectors beinfl,1) and

(a — b) respectively. The Kolmogorov forward equation
P'(t) = (p;;(©)) = P(D)A
Has as solution (as given in (4.14))

P(t) = He?®OH™!

(4.16)
Where H= [} _Z]
And H! =$[l1’ _‘ﬂ

The diagonal matrix D whose elements are the e@apsg of A is

0 0
b= [o —(a+ b)]
1 0
So that eP® = [0 e—(a+b)t] :

Thus from (4.16)

o= ol dalle o
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1 [p+ ae—(a+b)t a—a e—(a+b)t

atb| ph — p e—(a+b)t a+ be—(a+b)t
b _
We ha.ve poo(t) = m + ﬁe (a+b)t, p()l(t) =1-
Poo(t)
b _
And p11(t) = ﬁ t-5¢€ @bt po() =1—
p11(t)

4.3.6 Limiting Distribution (Ergodicity of Homogeneous Markov Process)

We recall the result on limiting distribution ofrt&n types of Markov chaing
as given in Previous Theorems. we recall:

V(IP—-1)=0,V = (vy,vq,....),Ve=1
(4.17)

A similar elegant result holds for continuous pagten Markov processes gs
well. We shall state the result without proof. Hemnilar definitions for the
classification of the states will be used.

Theorem 4.3.7

Suppose that the time — homogeneous Markov prd@ég3} is irreducible
having aperiodic non — null persistent states; #s its t. p. m. iP(t) =

(pij(t)),i,j =0,1,2,... and the matrix of transition densities (or ratenrpa

is
A = (a;)),
Where a;; = pij(©)] ¢=o -
Then given any state |, lim L0 pij(t) = v;
(4.18)

Exists and is the same for all initial states 0, 1, 2, ... The asymptotic valueg
v; represent a probability distribution, i. e. 0<v,<1XYjvi=1

The valuesy; can then be determined as solutions of the systetmear
equations

Zjvjaij = 0. ] = O, 1, 2,
(4.19)

or in matrix notation, VA =0,V = (vy,vq,...)
(4.19a)
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by using the normalizing conditionve = 1, that is, Y v; = 1.

Notel: The eq. (4.19) can be obtained from the faard Kolmogorov eq.
(5.11) by putting

lime e pij(t) = v;, and lim,_,., p;;(t) = 0.

Note2: The egs. (4.17) and (4.19a) for discrete and coatis parameter
processes respectively are similar in structuree matrices(P —1) and A
both have non — negative off — diagonal elemertgtly negative diagonal
elements and zero row sums. If the number of s@tedinite, say, m, then
both (P —1) and A are of rankm — 1). Then V can be easily determined
from any of the(m — 1) equations (out of m equations) contained in the
relations (4.17) and (4.19a) and the normalizingdation }’; v; = 1.

Example 5(c):

Consider the two — state process given Example Bigre

b

Vo = liMy_00 Poo(t) = limyeo D10(t) = (@tp)

a

and 171 = llmt_,oo plo(t) = llmt_)oo pll(t) = m .

These limiting probabilities can also be obtaineaht the equations (4.19)
which become

—avy+ bv; =0
avy — bv; = 0.

Here there are two states and so the matrix A isaok 1 and the two
equations are equivalent. Each of them yields= (a/b)v,. Using the
normalizing conditiorvy, + v; = 1, we get

Vo = —— v, = —2
07 (a+b)’ "1 7 (a+b) "

When the number of states is finite and when dmdylimiting probabilities;
are needed it is easier and more convenient tordete them from (4.19) or
(4.19a).

Example5(d):

Consider a M/M/m queuing system which has miserghannels, the
demand for service arises in accordance with asBoiprocess with parameter
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a. Suppose that the service time in each channekpsnentially distributed
with parameteb. Further assume that there is no waiting spacétyain the
sense that a demand which is received when alhthghannels are busy i
rejected and leaves the system. This system isccalErlandoss system.

)

. Describe a Markov procds4t),t > 0}, whereX(t) denotes
the number of busy channels at time t; it has (nstdfes O, 1,...,m . Suppoge
that the system is in stafethen it implies that k channels are busy. The
transition probabilities of the Markov process gneen by

pii+1(At) = Pr{one demand is received for processing
in time At}

=alAt+o(At), 0<i<m
p;j(At) = o(At), j > i+ 1.
Pr{one service completion occurred in tihe}
= bAt + o(At).

Suppose | channels are workiigone service demand is met in time}
= ibAt + o(At),

i. e. Dpii—1(At) = ibAt + o(At)
and pij(At) = o(At),j <i-—1.
Thus Qo1 = A Agy = —a
a; = ib, j=i—-1
=a, j=i+1 1<i<m

= —(a+ib), j=1

Amm-1 =mb,ayym = —mb
—a a 0 0o .. O 0
[ b —(a+b) a 0o .. 0 0}
A=|0 2b — (a + 2b) a w. 0 0
0 0 0 0 .. mb —mb J

The equations (4.19) becomes
—avy + bv; =0

avj_y — (a + jb)v; + (j + 1)bvj, =0, j=
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avy,_, — bmv,, = 0.
The solution of these equations can be obtainagrseely, from the equation
vy = (%) v,.
Writing the second equation with= 1 and putting there this value of, we
ge: =5(5) o

Proceeding in this way, we get

v = (%) (%)j vo, j=0,1,2,..,m

From the total probability condition TLov; =1, one getsv, =
1

(ERa@E))
Formulas giving; are callectrlang’s formulas.

Note : The probability that a demand is rejected (lasgiven by

S
Nb
3

— m!

(@

il

Um ;

[SES)

This is known ag€rlang’s loss formula (Erlang’s Blocking formula)and is
denoted byB(m,a/b). The formula is still being usedin telecommunicatio
systems. Properties of the above Erlang Loss syséenteen studied by many
researchers in the last five decades. The relatipes B(m,%) can also be

expressed as

[B(m, )] "= [m/(a/b)] [B(m — 1,a/b] " + 1.

This recursive relation with the initial Va|l49,%) = 1 is used for computation

of values ofv,,, m =1, 2, ...
Example 5(e): Machine Interference Problem

Consider that there are m identical machines. Eddhe machines operates
independently and is serviced a single servicing inncase of break down.
The operating time and serving time of each maclare independently
distributed as exponential distribution with paedensbh and a respectively.
Then the number of machines in operating condidbnime t constitutes a
Markov procesgX(t), t = 0} with state spacé, 1,..,m).
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Example5(f):

Two — channel service system. Consider Example W(th) m = 2. Suppose
that the service channels are numbered | and Il sappose that we ar
interested in whether particular channels are K@yor free (F). Let the
ordered pair(l, j) denote the state of the systeherei refers to that of theg
firstchannel and | to that of the second. The faiates of the
systen{F,F), (F,B),(B,F) and (B,B) may be denoted by 0, 1, 2,
respectively. The proce$X (t)} denoting that the states of the system in tel
of the two channels may be described by a Markoegss with state space
1,2, 3.

Assume that when both the channels are free a démay join either of the

channels for service with equal probabil@l). Thus, when both the channe

are free, demands to each of the channels flowcdordance with a Poisso
process with parametey2. We have

Po,j(At) = (%) At + o(At), j=1,2
p1,;(At) = bAt + o(Ab), j=0
= alt + o(At), j=3
p 2, (At) = bAt + o(At), j=0
= alt + o(At), j=3
p3;(At) = bAt + o(At), j=1,2

And for all other combinations @f+ j,p; j(At) = o(At).

Thus the matrix A will be

. B
b —(a+b) 0 a
b 0 —(a+b) a
[O b b - ZbJ

The normal equation (4.19) become

—avy, + bv, +bv, =0
(%) Vo —(a+b)v, +bvy =0
(g) Vo —(a+b)vy; +bvy =0

(1%

ms

S
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av, +av, —2bv;=0.

From the second and third equations wewget v, and then from the first we
getv, = (2b/a)v, and from the last; = (a/b)v, Utilising Y3 v =
1, we at once get

D = v = ab
17 Y27 q242ah+2b2
S 2b?
0 a%+2ab+2b?
Uy = a?
3 7 a2+2ab+2b?
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BLOCK Il

UNIT : V WEINER PROCESSES AND
BRANCHING PROCESSES

5.1 Markov Process with Continuous State Space
5.2 Brownian Motion Problems - Introduction

5.1 Markov Process with Continuous State Space

Poisson processes is a real life process with mootis time with discrete

counting state space. But in most of the realpifeblems Markov Problems

have continuous state space. For example , levelabér in a dam over &
continuous time space, Life time of a electronigice over a continuous timé
are Stochastic processes with continuous statee spat mathematical tern
{X(t):teT }whereT = (—0, ) andX(t) € (—, ) is a stochastic proces
with continuous time space and continuous stateespa

5.2 Introduction: BROWNIAN MOTION PROBLEMS

Poisson process is a process in continuous timie avitiscrete state spac

Here in a small interval of timét, there is either no change of state or there i

only one change, the probability of more than dmenge being of the order g
At. In this unit we shall consider Markov processeshsthat in an
infinitesimal interval, there is a small changestdte or displacement. In sug
a process, changes of state occur continuallyaltitne and the state space
continuous. Because of the connection with therihed diffusion, Markov

processes with continuous state space are alsorkaswliffusion processes.
particle under diffusion or undergoing Brownian footis also known as 4
Brownian a fixed axis.

At epoch t, leX(t) be the displacement along a fixed axis of a dart
undergoing Brownian motion and lE{0) = x,. Consider an intervdls, t) of

time; let us regard this interval as the sum afrgé number of small intervals.

The total displacemefi(t) — X(s)} in this interval can be regarded as t
limit of the sum of random displacement over thealbrmtervals of time.
Suppose that the random displacements are indepiyndestributed. Then it

can be seen that the central — limit theorem applidence it follows that the

total displacemenfX(t) — X(s)} is normally distributed. Further, suppose th
the displacemenfX(t) — X(s)} depends on the length of the inter(slt)

b

14
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and not on the time — poistthat{X(t) — X(s)} has the same distribution as
{X(t +h) —X(s+ h)}forallh > 0.

It is to be noted that here both time and spacebias are continuous.
The equations of the process obtained by takingdiof both time and space
variables will be partial differential equationshioth time and space variables.
These equations, called diffusion equations, walldiscussed in Sec. 5.3, In
Sec 5.2 we develop Wiener process as the continlmmits of the simple
random walk.

It may be noted that there are some measure —~etiesubtleties
involved in the passage from the discrete to thaticoous case. Their
considerations are, however, beyond the scopabtok.

We assume that the procgX4¢t),t > 0} is Markovian. Let the
cumulative transition probability

be P(xg, s; x, t) =Pr{X(t) < x|X(s) = x0},s <
1 (1.1)

And let the transition probability densitybe given by

P(xy, s; x, t)dx =Prix < X(t) < x+
dr Xs=x0} (1.2)

For a homogeneous process the transition probahli#pends only on the
length of the interval(t —s) and then the transition probability may be
denoted in term of the three parametegsy, t — s.

We denote Pr{ix < X(t+t,) <x+dx|X(ty) =
Xo} by p(xo, x ; t)dx

For anyt,, The Chapman — Kolmogorov equation can be writeefobows:

P(xo, s; x, t) = [ d, P(xg, s; 2, V)P(z,v;x,t).

In terms of transition probabilitieg®(x,, s; x, t), we have

P(xy, s; x, t) = fP(xO, s; z, V)P(z,v;x,t)dz.
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UNIT - VI WIENER PROCESS

6.1. WIENER PROCESS
6.2. DIFFERNTIAL EQUATIONS FOR A WIENER PROCESS
6.3. KOLMOGOROV EQUATIONS

6.1. WIENER PROCESS

Consider that a (Brownian) particle performs a mamdvalk such that|
in a small interval of time of duratiofit, the displacement of the particle t
the right or to the left is also of small magnitutite the total displacemen
X(t) of the particle in timg being x. Suppose that the random variahle
denotes the length of thé&" step taken by the particle in a small interval
time At and that

Pr{Z, = Ax} =pand Pr{Z; = —Ax} =q,p +
q=1
0 < p < 1, wherep is independent of and t.

Suppose that the interval of lengthis divided inton equal subintervals ol
lengthAt and that the displacemerfisi = 1, ..., n in then steps are mutually
independent random variables. Then(At) =t and the total displacemer
X(t) is the sum oh i.i.d. random variableg;, i.e.

n(t)
t
Xt=ZZ-, =n(t)—.
O=) Zn=ng
1=

We have E{Z} = (p — @A x and var (Z;) = 4pq (Ax)?.
Hence EX (D)} =nE(Z) =t — Q) T x,

2.1)
And var{X(t)} = nvar(Z;) = M.

At
To get meaningful result, @« — 0,At — 0, we must have

(Ax)?
At

- alimit, (p — q) - a multiple ofAx.
(2.2)

We may suppose, in particular, that in an inteofdengtht, X (t) has mean —
value function equal tat and variance function equal &3 ¢. In other words,
we suppose that dsc — 0,At — 0, such a way that (2.2) are satisfied, and
unit time

o

of

—

Der
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E{X(t)} - pand var{X(t)} - o*
2.3)

From (2.1) fort = 1 and (2.3) we have

—q)A 4pq(Ax)?
(p—q)Ax oo pq(Ax) g2
At At

(2.4)

The relations (2.2) and (2.4) will be satisfied whe

Ax = o(At) /2,
(2.5a)

2

(2.5b)

Now sinceZ; are i. i. d. random variables, the s@ﬁ(? Z; = X(¢t) for large
n(t)(= n), is asymptotically normal with meaut and variance?t (by virtue
of the central limit theorem for equal componentspte that here also
represents the length of the interval of time dyinwhich the displacement,
that takes place is equal to the increriény — X(0).We thus find that for
0<s<t{X(t)—X(s)} is normally distributed with meap(t —s) and
variance o%(t — s). Further, the increment{X(s) — X(0)} and {X(t) —
X(s)} are mutually independent; this implies tHat(t)} is a Markov process.

We may now define Wiener or a Brownian motion processas follows:

The stochastic procegs((t),t = 0} is called a Wiener process (or a Wiener —
Einstein process or a Brownian motion process) witift 4 and variance
parameter?, if:

()X (t) has independent increments, i. e. for every padis)oint intervals of
time (s,t) and (u,v), wheres < t < u < v, the random variables
{X(t) — X(s)} and{X(v) — X(u)} are independent.

(i) Every incremen{X(t) — X(s)} is normally distributed with mean
u(t — s) and variance?(t).

Note that (i) implies that Wiener process is a Markprocess with
independent increments and(ii) implies that a Wiepecess is Gaussian.
Since{X(t) — X(0)} is normally distributed with mean and variance?t, the
transition probability density function p of a Wesmprocess is given by

p(x, x;t)dx = Pr{x < X(t)x + dx | X(0) = x,}
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_ 1 _ (x—xo—ut)z}
NI exp{ 202t dx.

(2.6)

A Wiener process{X(t),t = 0} with X(0) =0,u=0,0=1 is called a
standardWiener process.

6.2. DIFFERNTIAL EQUATIONS FOR A WIENER
PROCESS

Let {X(t),t >0} be a Wiener process. We can consider
displacement in such a process as being causebebgnotion of a particle
undergoing displacements of small magnitude in allsmterval of time.
Suppose thaft — At, t) is an infinitesimal interval of lengtht and that the
particle makes in this interval a shift equalAto with probabilityp or a shift
equal to —Ax with probability p =1 —p. Suppose thatp and q are
independent of and t. Let the transition probability that the particlasha
displacement fromx to x + Ax at epoch t, given that it started fromgat
time0, be p(xy, x;t) Ax. Further suppose that(x,, x;t) admits of an
expansion in Taylor’s series, i. e.

p(xo, x +Ax;t—At) =p(xo, x;t) — At %isz—z
1 29°p
+2 (£Ax) =T o(At).
(3.2)
From simple probability arguments we have
p(xg, x;t) Ax =p. p(xy, x —Ax;t — At) Ax

+q.p(xy, x + Ax;t — At) Ax.
(3.2)

Making use of (3.1), and cancelling out the fact@rfrom both sides of (3.2
we get

a d
p(xo, x;t) = pp(xo, x;8) — At 57— Ax(p—q) 5
1Az 2P
+3 (Ax) =t o(At).

Divide both sides byit. Using (2.4) and (2.5) and taking limits As —
0,Ax - 0, we get

the
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2 p(xo, x;t) = —pu—p(x x;t) +i02 L (x
o PWYor X HoxPro X 27 2P0
XL (3.3)

This is a partial differential equation in the \adoliesx and t, being of first
order int and of the second order in x. The equation is knaw the forward
diffusion equation of the Wiener process. One cidwewlise obtain the
backward diffusion equation of the process in threnf

9 ) = 2 . 1,207
atp(xo' x:t) - Haxop(xOﬁ x:t) +20— ax(z) p(xO;

XL (3.4)

The solution of (3.3) (as well as of (3.4)) yieldéx,, x;t) as a normal
density of the form given in (2.6) (see also Se&).5it may, however, be
easily verified thap(x,, x;t) given by (2.6) satisfies (3.3) as well as (3.4).
The equation for a Wiener process with dpft= 0 is known as théheat
equation.

Note: The partial differential (3.3) [(3.4)] is known #se forward [backward]
equation because it involves differentiationxifix,]. The reason why it is
called diffusion equation is given the next section

It is to be noted that in Sec. 5.2 and 5.3 we hmage the following
assumptions:

() in a small interval of timéyt, the displacememtx is small (and that
Ax =o0 ((At)l/z));

(i) E{X(0)} - ut in the limit;
(i) var {X(t} - ot in the limit.

The quantityu in (ii) may also interpreted as

E{X(t+AD-X(D)} _

limpgo At

(3.5)

The implies that the infinitesimal mean (i.e. meaerAt) of the variance of
the increment iX (t) exists and is equal to finite quantity

For a Wiener procesg,and o2 are assumed to be constants, independent of
or of x(where X(t) = x). By considering the transition mechanism with
u and o?as functions of t or of x or both t and x, we gebren general
processes for which the equations correspondiri8.8) and (3.4) will also be
more general. We discuss below such equations.
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6.3. KOLMOGOROV EQUATIONS

Let {X(t),t = 0} be a Markov process in continuous time continugus
state space. We make the following assumptionsafgy > 0,

(i) Pr{lX(t) —X(s)| >6|X({t) =x}=o0(t—s),s<t.
In other words, small changes occur during smédrvals time.

(”) limAt_m E{X(t+At)—)A(£t) | X(t)=x}

= 1imAt—>0f|y_x|55(y —x)p(x, t;y,t +At)dy
= a(t, x).

In other words, the limit of the infinitesimal meaof the conditional
expectation of the increment &f(t) exists and is equal ta(t,x), which is
known as the coefficient.

. E{[X(t+AD)-X(D)]? | X (£)=x
(i) limpe,g { e J

= 1imAt—>0f|y_x|55(y —x)?p(x, t;y,t + At)dy
= b(t,x).

In other words, the limit of the infinitesimal meaf the variance of thg
increment ofX(t) exists and is equal td(t,x), which is known as thg
dif fusion coefficient. A Markov process{X(t)} satisfying the above
conditions is known as&f fusion equation. We give below the equations

Let{X(t),t = 0}be a Markov process satisfyig, (ii)and(iii.) If its
transition p.d. f.

p(xo, to; x, t) possesses continuous partial derivatives

dp dp R
EI a (a(t, X)p), ﬁ (b(ti S)p);

Thenp(x,, ty; x, t) satisfies the forward Kolmogorov equation

1 92
2 0x2

ap__a_p
% =~ (a(t,2)p) +

(4.1)

(b(t,)p).

This equation is also known as Hukker — Planck equation. Suppose that
p(xo, to; x, t) possesses continuous partial derivatives
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op dp 8%p .
ato'axo'axg'

Thenp(x,, ty; x, t) also satisfies the backward Kolmogorov equation

o _ _ op _1 a%p
oty a(to, xo) oxg 2 b(to, xo) o2
4.2

The diffusion equations faX(t) were first derived by Kolmogorov. Feller
showed that under suitable restrictions the egomatiadmit of a unique
solution. Fortet established some very intereséind important properties of
the solutions.

Particular caself the process is homogeneous, then
p(xo, to;t,x) = p(xg,x; t — to),
anda(t, x), b(t, x) are independent of t.

If the process is additive, i. e. given tkiat,) = x,, the increment
{X(t),X(ty)}, depends only oty, and t (and not onx, ), then

p(xo, to;t,x) =p(x —xo; to, t) and a(t,x),
b(t, x)

Are independent af.

The Kolmogorov equations, in these case, can biyedsduced from the
general equations.
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Unit — VIl FIRST PASSAGE TIME
DISTRIBUTION FOR WIENER
PROCESS

7.1. First Passage Time Distribution For Wiener Pocess
7.1.1 Distribution of the Maximum of a Wiener Pro@ss
7.1.2 Distribution of the First Passage Time to &ixed Point
7.2 Ornstein — Uhlenbeck Process
7.2.1 Remarks:

7.1. FIRST PASSAGE TIME DISTRIBUTION FOR WIENER
PROCESS

The possible realizations of a stochastic proaass calledsample
paths or trajectoriesThe structure and the properties of the same patlas
Brownian motion or Wiener process are the subjeatten of deep study
Without entering into the subtleties(which are beyohe scope of this work),
we discuss here some results of Wiener processg uke property that the
sample paths are continuous functions. We also makeof the simple but
powerful * reflection principle’. The principle raes to the fact that there is|a
one —to-one correspondence between all paths #0m, a,)to B(b,, b,)
which touch or cross the x-axis and all paths fratta,;, —a,) to B(see,
Feller, Vol | for details). We shall first considére following from which the
distribution of the first passage time will be ded.

14

7.1.1 Distribution of the Maximum of a Wiener Process

Lemma: Let{X(t),0 <t < T} be a Wiener process with(0) = 0 and u =
0.Let M(T) be the maximum of
X(@®)in0<t<T,ieM(T)=maxy<r X(t). Then foranyz > 0

Pr{M(T) = a} = 2Pr{X(T} = a}.
(This result was first obtained by Bachelier(1990).

Proof:Consider the collection of sample p#th),0<t<T such
thatX (T} = a. SinceX(0) = 0 and X(t) is continuous, there exists a time
at whichX(t) first attains the value (or X (t)this first the valuez). The time
T, is itself a random variable. For T, , X,(t) gives below

(X, t<T,
Xa(O) = {Za —-X@), t> Ta}
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gives reflection of X(t) about the line=a. Note that
X,(T) < a,and that M(T) = maxg<;<r X(T) > a and M, (T) =
maxy<;<r X4 (t) = a; further, by symmetry the sample patt@) and X, (t)
have the same probability of occurrence. From ctfla principle, it follows
that corresponding to every sample péifh) for which X(T) > a, there exist
two sample paths such th®t(T) > a, Further, its converse is also true, viz.,
every sample paths(t) for whichM(T) > a corresponds to two sample paths
X (t) with equal probability, one of the paths beingtsti@atX (T) > a, unless
{X(T) = a}, whose probability is zero. In fact, the $8t(T) = a} is the union
of three disjoint sets

{M(T) = a,X(t) > a},
{M(T) =a,X(t) <a},
and {M(T) = a,X(t) =a},

The probability of the third set is zero, while ttveo are mapped onto one
another by reflection about the lime= a after the timd,. Thus we have

Pr{M(T) = a,} = 2 Pr{M(T) = a}.

The above gives a heuristic proof of the lemma;akeady indicated, a
rigorous proof involves considerations beyond thepe of this book (see
Karlin and Taylor, losifescu and Tautu).

Let {X(t),t =0} be a Wiener process witki(0) = 0,u = 0and M(t) =
maxy<s<; X(s). Then from the lemma, we get, for> 0,0 = 1.

PriM(t) = a,} = 2Pr{M(t) = a}

2

J(2mt)

f:o exp(—x?/2t)dx
(5.1a)

2 [}
= Tam Jape e (=y*/2)dy

(by changing the variable to y = /\/E>

2

=2 {1 - mff;ﬁ exp(—yz/Z)dy}

=2{1 - @(a/VD)}.

@ being the distribution function of the standardmal variate.
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By changing the variable 150— (5 1a) can be written as

Pr{iM(t) = a} =
(5.1d)

J(z_nf s73/2 exp (——)ds s > 0.

7.1.Distribution of the First Passage Time to a Fixed &int

We can use the lemma to obtain the distributiothefrandom variabl&,, the
first passage time to a fixed pom> 0) (or the time of hitting a fixed poirat
first), for a Wiener proce§¥(t)}withX(0)=0,u=0. The time
T, for X(t) to hit the level a first will be less thantiff M(t) =
maxy<s<; X(s) in that time is at least.

Thus fort > 0 PriM(t) = a} = Pr(T, < t).
(5.2)

Hence the distribution functiaf(t) = Pr {T, < t} is

F(t) = \/(Z_tf exp(—x?%/2t)dx
(5.3a)
= 2{1 - @(a/VD)}
(5.3b)
= ﬁf;s*/z exp (—;—z) ds,s > 0.
(5.3¢)

The density function of, is obtained by differentiating (5.3) with respéct.
Differentiation of (5.3c) (and also 5. 3b) readiiyes

fr,®) =F'(t) = %t"yzexp (— ‘;—i) t>0
(5.4)

It may be easily verified that the Laplace transfaos
f(s) = [ e~ f(t)dt
= exp {—aw/ (25)}.

It can be seen that on momentlpfexists finitely.

Let us find the density function & (t). The distribution function is
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G(a) =Pr{M(t) <a}
=1—-Pr{M(t) > a}

=1-2Pr{X(t) = a}

2 00
=1- \/(z_m)fa exp (—x?/2t) dx

(5.5a)

=1-2{1 - ®(a/VD)}
(5.5b)

= 2d(a/Vt) — 1.

Differentiating (5.5a)(or 5.5b) with respectdpwe get the density function

gu(a) =G'(a) = J(zth) exp (—Z—i) a > 0.
(5.6)

The result given above (fer = 1) can be suitably modified for amy> 0.

Note 1We have obtained the distribution Bf by using the lemma which
gives a relation between the distributions of theWMgr procesX (t) and its
maximum M (t). However, the distribution of,, can be obtained directly
without bringing in the distribution of the maximuiN fact, it can be directly
shown that, iX(0) = 0,a > 0, then

Pr{T, < t} = 2Pr{X (¢t} = a}.
(5.7)

For a proof of the above, see Prohorov and Rozawbwe, use conditional
expectations to obtained by using (5.2).

Note 2: For an alternative approach to the distribution TQtising
differential equations,see Cox and Miller, who abthe distribution for any
u = 0and o > 0. The density functioryy (¢t) (for X(0) =0,u = 0,0 > 0)
of T, is found to be

_ a _ (a—px)? .
fr® = 5= exp{— 82 x> 0,

~—~

(5.8)

And its Laplace transform is
f(s) = exp [(a/az){+,u —(u? + 2502)}].
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The mean and the variance fgrfor u # 0 are given by

E{T,} = a/u and var{T,} = ac?/u3.

Note 3:

The function(5.8) withu > 0 is the density function of the distribution of the
passage time of Brownian motion with a positiveftdiThis distribution
having density function (5.8) is known asnverse Gaussiatistribution
because of the inverse relationship between thaulannhgenerating functior
of this distribution and that of normal distributidcSuch a distribution was alsp
obtained by Wald as the limiting form for the distition of the sample size in
a sequential probability ratio test. For propertadsthis distribution, seg
Johnson and Kotz (1970), and for statistical apglns, see Folks and
Chhikara (1978).

Example 5(a).

Suppose thafX(t),0 < t,} is a Wiener process withi(0) = 0,and u = 0.
Then

PriX(t) < x} = Pr{X(t)/oVt < x/ovt} =

®(x/avt).

Consider the process Y(t) =tX(1/t)in0 <t < 1withY(0) = 0.
We have E{Y(t) = 0 and var{Y (t)} = t*(c?/t) =
ag?/t.

Further, PriY(t) <y} =pPr{tX(1/t) <y} =

{xu/t) ) }
®J/(1/t) ~ ®J/@@/0)

Thus{Y(t),0 <t < 1}withY(0) =0is also a Wiener process with= 0
and variance? t.

Example 5(b).

Consider a Wiener proce§x(t)} with X(0) = 0. Its mean value function is
ut and variance function? t. For0 < s < t, the covariance function is

C(s,t) = cov{X(s),X(t)} = cov{X(s),X(s) +
X() — X(s)}

cov{X(s),X(s)} + cov{X(s), X(t) —
X(s)}
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= cov{X(s),X(s)},
Since the process has independent increments. Thus
C(s,t) =var{X(s)} = o?s
The process is not covariance stationary even whero.
Example 5(c).

Suppose thaX(t),t > 0} is a Wiener process witki(0) = 0. Its first
passage timeT, to a has same distribution as/u?, whereu is a normal
variate with mean 0 and s. d/a. For, the distribution function of /u? for
t>0,is

F(t) = Pr{l/u? <t} = Pr{u?/(c/a)? > a?/c?t}
= Pr{(au/o) = (a/aVt)} + Pr{(au/o) <
—aot
=1-®(a/aVt) + ®(—a/avt)
2(1-@(a/ov0)).

Which is the distribution function df, (see equation (5.3b)). The distribution
of 1/u? isinverse Gaussian.

Example 5(d).

Let {X(t),t = 0} be a Wiener process with= 0 and X(0) = 0. To find the
distribution ofT,,, for0 < a < a + b.

Suppose that, is a value off,,i.e. X (t) reaches the level for the first
time a epoch,, We may then consider that the process starfs,ata) and
reaches the leve(a + b), which is b units higher tham. Suppose that
T.+p» — T, is the duration of the interval at the ends ofchli (t) first reaches
the levela and then reaches first the lewek b. ThenT, and (T,,, — T,) are
independent random variables denoting first passtiges to a and b
respectively. The L.T. of the p. d. f. Gf is

ha(s) = exp {~\/@5)/o}

and that off, is hy(s) = exp {—bw/ (25)/0}.

Thus the L. T. of the p. d. f. @f,,; is
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ha () (s) = exp {~(a + b){/(25)/0} =
hasn(S).

7.2 ORNSTEIN — UHLENBECK PROCESS

We have seen that for a Wiener procgsét)}, the displacemendx, in a
small interval of timeAt is also small, being di0(v/At)]. The velocity which

is of 0(VAt/At) = 0(1/+VAt) tends to infinity asAit —» 0. Thus the Wiener
process does not provide a satisfactory model foimBian motion for small
values of t, although for moderate and large vabfiet it does so. An
alternative model which holds for small t propobgdOrnstein and Uhlenbec
in 1930. Here instead of the displacement

The equation of motion of a Brownian particle camtten as

dU(t) = —pU(t)dt + dF(t),
(6.1)

Where —BU(t) represents the systematic part due to the resistah the
medium andiF (t) represents the random component. It is assumédhise
two parts are independent and th#t) is a Wiener process with drift = 0
and variance parametef. The Markov procesf(t), t > 0} is such that in a
small interval of time the change ii(t) is also small. Sinc&(t) is a Wiener
process, we have from (6.1)

E{U(t+At)-U(t)| U(t)=u}
At

limAt—>0

E{AF(t)}
At

= _Bu + limAt_,O

= —Bu'

var{U(t+At)-U(t)| U(t)=u}
At

and limas_

. (AD)?  var{Af()}
=llmAt_)0 At + At f

= g?2.

In other words, the limits exist. So the procég€t),t = 0} is a diffusion
process and its transition p. dpfuy; u, t) satisfies the forward Kolmogoro
equation (4.1) wite(u, t) = —Buand b(u,t) = 2.

This is,p satisfies the differential equation
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_ 0 1 20%
at_ﬁau(up)+za uz’

(6.2)

Let us assume thét(0) = u and that ag, » +o, p » 0 and(Z—Z) — 0. The

solution of (6.2) givey, the transition p. d. f. df (t). It is more convenient to
consider the equation corresponding to (6.2) indharacteristic function of

p,i.e.

®(uy; 6,t) = f_‘;eieu p(ug; u,)du.

We have ffooo el % (up)du = e up |°, —
JZ 0 e updu

= —B%f_io el p du

_ 09,

- 26’
© gy 9*r _ iBudP 0 © _igy 9p
Jopet s =T — 10 [ e - du

=—i0{e®p|® — i0 )" e pdu}
= —62¢.

The equation (6.2) then becomes

99 99 _ 1 2p2
6t+ﬁ969_ 20 0°¢.
(6.3)
The equation (6.3) is of Lagrange type. It cantmas that
¢(u0; 9; t) = exp {i@uoe_ﬁt — #9202(1 _
e—2pt. (6.4)

This is the characteristic function of normal dmstion with m(t) = uye 5t
and variance function?(t) = o2 (1 — e~2ht) /4p.

In other words, the transition p. d.#.is normal with mean value function
m(t) and variance function?(t) andp can be written as:

p(ug;u,t) = m exp{— (x — m(t))?/20%(t)}.
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Thus the procesd/(t),t = 0} is a Gaussian process with mean value function
m(t) and variance functioa?(t).{U(t),t = 0} is a Markov process but Jt

does not possess independent increments like tle@aNprocessU(t),t >
0 is known afOrnstein — Uhlenbeck process (O - U. FEdr large t,772¢—-0

2
ando?(t) -» ;—B,i.e. the distribution of velocity is normal with meanadd

2
variance:—ﬁ. We thus get an equilibrium distribution abdt) is said to in

statistical equilibrium. For smallty(t) — ugand o%(t) - o?t.
Example 6(a).

Joint distribution ofU(t) and U(t + t) whenU (t) is in equilibrium. For large
t, the limiting distribution ofU(t) is normal with mean o and variange

2
;—B = ¢¢. The conditional distribution o (t + 1), given U(t) = u, is normal
with mean ue#* and variance g%t = 02 (1 — e72ft)/28. Thus the

unconditional distribution o/ (t + 7) has the following density

he) = == [, |exp (- 2) =

— X
(2m0?) 20§/ \[(2na? (1)

exp—1202()x—x0e—Lf12 dx0

1 x?
= exp\——=)
(27_[0_3) ( 20’3)
Thus the unconditional distribution of(t + t) is Gaussian, has mean 0 and
variancesgand the unconditional distribution 6f(t + 7) is the same as th
equilibrium distribution ofU(t). The joint distribution ofU(t) and U(t +
7)has the density

D

x? 1 1
e y) - (2ma?) exp (_ E). (2mo?(t)) exp {_ 202(t) (y -
xe—fe2
— Y 2 _
2mag/(1-c?) exp{ 202(1-c?) €4 2axy +
X2,
Wherec = e 5,

It follows thatU(t) and U(t + 7) have a bivariate Gaussian distribution with
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E{U®)} =E{U(t+1)} =0,
cov{U(t),U(t + 1)} = oge Il
and var{U(t)} = .

The mean and the variance tft) are finite and the covariance function
cov{U(t),U(t + 1)} is a function of the absolute difference only. Eken
{U(t)} is covariance stationary. Again, sinfg(t)} is Gaussian{U(t)} is
strictly stationary.

Note that Wiener process is not covariance statjona
Example 6(b).The O — U. P. as a transformation of a Wiener pssce

Let {X(t),t = 0}, be a standard Wiener process. Let

1
Vg (©)

Y(t) = X(ag(t)),a > 0.

And let the (non - random) functigy(t) be positive, strictly increasing with
g(0) =1.

We have E{v(®)}=0
var{Y(t)} = g%t) var{X(ag(t))}
=2 {ag(®} =a.

g(t)

Since (X(ty),..,X(ty)) is multivariate normal, so also is
X(ag(t)),..,X(ag(ty),and for T > 0,

X(ag(®), X(a g(t+f))}

cov{Y(®), Y(t + 1)} = Cm’{ (9()g(t+)/2

Since, for the Wiener proces$X(t)}, cov{X(t+ 1)} = varX(t) (see
Example 5(b)).

Now var{X(ag(t))} = var{,[g ()Y (t)}
=g@®)var {Y()} = ag(®)
and thus cov{Y(t), Y(t + 1)} = a{g(t)/g(t + 7)}'/?

and fort = 0, the covariance equals a/{g(t)}"/?.

The procesgY (t)}, which has finite mean and variance, will be coaace
provided cov{Y(t), Y(t + 1)} depends only onc. Thus we must have
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gt +1) =g9().g(t), and in order to satisfy this equatignit) must be an
exponential function, say,(t) = e?ft(p > 0). We have then

cov{Y(t), Y(t + 1)} = ae Pt (r > 0),
and thus we find that far > 0, § >0
Y(t) = e ?PtX (ae?ht)

Is a stationary Gaussian Markov process. In otherdsy Y(t) has the
structure of an Ornstein — Uhlenbeck process.

7.2.1 Remarks:

The concepts of O — U, process have been appliezhsixely in Finance,
Economics and Management. O — U. process has bs=h as models fo
continuous control system, for buffer stock contfol continuous industrial

processes in chemical plants, for process comirtiiermal plants and so on in

industrial management; for pricing in a large syst# cash bonds and so 0
in financial measurement; as well as for interegé tbehavior and so on i
economics. For application of diffusion processe&inance and Economicy
refer to Mallaris and Brock (1982).

Problems:

5.1 If X(t), with X(0) and u = 0, is a Wiener process, show that) =
oX(t/a?) is also a Wiener process. Find its covariancetfanc

5.2 If X(t), with X(0) and 1 = 0, is a Wiener process ard< s < t, show
that for at least one satisfyings < 7 < t,

Pr{X(z) = 0} = (2) cos™*((s/)"/2).

5.3 LetX(t), with X(0) = 0, be a standard Wiener process andljebe the
first passage time of (t). Show thatT, and a?T, are identically distributed

If Z,,i=1,2,..,n are i. i. d. ag; then show tha% and Z; are identically
distributed.
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UNIT — VIIl BRANCHING PROCESS

8.1 BRANCHING PROCESS - Introduction
8.1.1 Definition.
8.1.2 Note 1
8.1.3 Note 2
8.1.4 Note 3

8.2 Generating Functions of Branching Process
8. 2.2 Remarks.

8.1 BRANCHING PROCESS INTRODUCTION

The history of the study of branching processesslaack to 1874, when a
mathematical model was formulated by Galton ands@fator the problem of

‘ extinction of families’. The model not attract etuattention for a long time;
the situation gradually changed and during theB8sgears much attention has
been devoted to it. This is because of the devebopnof interest in the
applications of probability theory, in general, aatso because of the
possibility of using the models in a variety of lbigical, physical and other
problems where one is concerned with objects that generate objects of
similar kind; such objects may be biological eesti such as human beings,
animals, genes, bacteria and so on, which yield mewtrons under a nuclear
chain reaction or in the process of nuclear fission

We consider first the discrete time case. Supplosewe start with an
initial set of objects(or individuals) which fornmet 0" generation — these
objects are calledancestors. The off-springs reproduced or the objects
generated by the objects of th& generation are the * direct descendants’ of
the ancestors, and are said to formiffegeneration; the objects generated by
these of thelst generation (or the direct descendants of tffgeneration)
from the 29 generation, and so on, the direct descendanteef’t generation
form the (r + 1)st generation. The number of objects of #& generation
(r=0,1,2,..) is a random variable. We assume that the objegsduce
independently of other objects, i. e., there ismerference.

8.1.1 Definition.

Let the random variabl&g, X;, X,,.. denote the sizes of (or the
numbers of objects in) the™:, 15,24, generations respectively. Let the
probability that an object (irrespective of the getion to which it belongs)
generates k similar objects be denoted by, wherep, =0,k =

0, 1,2,..,Ekpk = 1.
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The sequence {X,n=0,12,..,} constitutes
a Galton — Watson branching process (or simply a G. W. branching
process) with off — spring distributidp, }.

The process is also calBignayame — Galton — Watson proges
recognisation of an even earlier work by Bienayame.

Our interest lies mainly in the probability disution of X,, and the
probability thatX,, - 0 for somen, i.e., the probability of ultimate extinctior
of the family.

8.1.2 Note 1:

Unless otherwise stated, we shall assume Xpat 1,i.e., the process starts
with a single ancestor.

8.1.3 Note 2:
The sequencgX,,) forms a Markov chain with transition probabilities
pij = Pr{Xpu = j 1 Xn = 1},0,j = 0,1,2,.
It is however not always easy to speafy.
8.1.4 Note 3:

The generating functions are very useful in thedgtof branching
processes.

8.2 PROPERTIES OF GENERATING FUNCTIONS OF
BRANCHING PROCESSES

Another definition given is as follows:

A Galton — Watson process is a Markov chi@ip,n = 0, 1, 2,..} having state
space N(set of non — negative integers), such that

Xn41 = Zf:1 gr'
2.1)

WhereG,. are i. i. d. random variables with distributigm), }.

Let P(s) = Xi Pr{S, = k}s* = X prs”®
2.2)

be the p. g. f. ofC,.} and let

U7
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PTL(S) = kar{Xn = k}skin = 0; 11 2;--
(2.3)

be the p. g. f. ofX,,}.

We assume that, = 1; clearly Py(s) = s andP;(s) = P(s). The r. v." aX;
andG,. both give off — spring distribution.

Theorem 8.2.1

We have P,(s) = Pp_1(P(s))
(2.4)

and P,(s) = P(Pp_1(5)).
(2.5)

Proof:

We have, fom =1, 2, ...

PriX, =k} = E?:O PriXy, = k| Xpn1 =} PriXy1 =

=320 Pr{¥l_, G = k}.Pr{Xpy = j}
So that, P,(s) = X%, PriX, = k}s*

= Yios" [Z?:o PT{Zi=1 r= k}PT{Xn—1 =

=X PriXn-1 =Jj} [Zizl PT{g1 +GC, + -+
S=kstk.

The expression within square brackets, being thge p.of the sunt, + .- +
Gj of ji.i. d. random variables each with p. &), equalgP(s)]). Thus

P.(s) = 352 PriXp_y = j}[P(s))
= n—1(P(S))-
Thus we get (2.4). Putting= 2, 3, 4, ..., we get, wherk, = 1,

P,(s) = P(P(s)) = P(P(s)), Ps(s) =
P2(P(5)), Pa(s) = P3(P(s))

and so on, lterating (2.4) we get
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Bu(s) = Pu_1(P(5)) = Pp_2(P(P()))

(2.6)
= n—Z(PZ(S))-
Forn = 3, P3(s) = Py(P5(s)) = P(P5()).

Again iterating (2.6), we get

Py(s) = Py_3(P(P5(s))) = P,_3(P5(s)),

and forn = 4, Py(s) = Pi(P3(s)) = P(P5(s)).
Thus P,(s) = Pn_k(Pk(s)),k =0,1,2,..,n,
and fork =n —1 Py(s) = Py (P_1(s)) = P(Py_1(s)).

Thus we get (2.5).

Note:that even wheki, =i # 1, the relation (2.5) holds but (2.4) does n
hold.

8. 2.2 Remarks.
Theorem 8.2.1Could be used to find theoments ofX,,.

We have

P'(1) = E(G;) = E(Xy) = m(say).

Theorem 8.2.3

If m = E(X;) = Yy kpk, and 0* = var(X,) then

E{X,} =m"
(2.7)
and var(X,) = %02, ifm#1
(2.8)
= no?, if m=1.

Proof: Differentiating (2.4,) we get

Fu(s) = Po_1(P(s))P'(s)

whence P,(1) =P,_;(1)P'(1) = mP,_,(1)
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and on iterating P,(1) =m?P;,_,(1)
m" 1P’ (s) = m™.
Thus E(X,) = B,(1) = m™.

Differentiating (2.5) twice and proceeding in a ganfashion, one can find
the second mome®;’ (1), and thus the variance &f, in the form (2.8).

One can likewise proceed to get higher momenss, of

Alternatively, the mean and the varianceXgfcan be obtained by nothing that
Xp+1 1S the sum of a random number of i. i. d. randarmables, and using
standard formulas.

Letm # 1. We can use the Corollary to Theorem 1.3 to fifd,, ).
SinceX,,, = Y.*, G,,we have

E(Xn+1) E(Gp) E(Xp) = mE(Xy).
The solution of the difference equation is given by

E(X,) = Cm™", n=123,..
Since E(X,) = E(G,) =m,C = 1.Thus E(X,,) = m™
Using the given in (relation (1.20)), chapter 1, get

var(Xn+1) = E(Xn) var (G,) + [E(G,)?] var (X,)
(2.93)

=m"c? + m?var(X,)
(2.9b)

We can findvar(X,,) from (2.9b) either by induction or by solving then —
homogeneous difference equation. We employ therlatethod. A particular

o?mn

solution of the difference equation (2.9b) is givsn var(X,) =

m—m?2

And a general solution of the homogeneous equatioresponding to (2.9b)

is given by var(X,) = A(m?)", where A is a constant. Thus complete

solution of (2.9b) is given by

var(X,) = A(m*)™ + otm”
(2.10)

m-—m?2
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Nothing thatvar (X;) = o2, we getd = ¢2/{m(m — 1)} so that (2.10) yields

m"l(mn"-1)

var(X,) = ——— o n= 1,2, ..

The result holds for alh and m # 1. By taking limit asm — 1, one gets the|
corresponding result fon = 1.

Whenm = 1, thenvar(X,,) = no?.

Whenm = 1, the variance oK, increases linearly and whem> 1 (m < 1)
it increases geometrically with

According asm < 1,= 1,or > 1, the Galton — Watson process is referred
assubcritical, critical orsupercritical respectively [_]

We now come to the problem originally posed by Galt
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BLOCK I
UNIT — IX PROBABILITY OF

EXTINCTION AND STOCHASTIC IN
M/M/1 — MODEL

9.1 Probability of Extinction
9.1.1 Definition:
9.2 Distribution of the Total Number of Progncy
9.3 Conditional limit laws due to Kolmogrovand Yaglom

9.1 PROBABILITY OF EXTINCTION

9.1.1 Definition:
By extinction of the process it is meant thag th
random sequencéX,} consists of zeros for all except a finite numbér o
values ofn. In order words, extinction occurs when{X,, = 0} = 1, for some
value ofn. Clearly, ifX, = 0 for n > m;also Pr{X,,; =0| X, =0} = 1.
Theorem 9.1.2

If m < 1, the probability of ultimate extinctions is 1.7 > 1,the probability
of ultimate extinction is positive root less thamity of the equation

P(s) =s. (3.1)
Proof:

Let q, = Pr{X,, = 0),i.e.,q, is the probability that extinction occurs at or
before thent™ generation. Clearly, = P,(0),q, = P,(0) = P(0) = p,and
from (2.5)

dn = P(qn-1)
(3.2)

If po =0, thenqg; =0,q, = 0,..,1i.e.,if the probability of no offspring is zero,
extinction can never occur. Ipy = 1,thenqg, =1,q, =1,...,i.e., if the

probability of no offspring is one then the extinatis certain to occur right
the 0" generation. So we confine ourselves to the Base, < 1.

As P(s) is a strictly increasing function af g, = P(q;) = P(p,) > P(0) =
q,. Assuming thayg, > q,_1 We getq,_; = P(qn) > P(qn-1) = q, and by
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inductiong, < q, < g5 ... The monotone increasing sequefgg} is bounded
above by 1. Hence,, must have a limilim,_ . = q (say),0<q < 1;q is
the probability of ultimate extinction. From (3.2)follows that q satisfies
q = P(q),i.e.,qis aroot of the equation (3.1),

s = P(s).

We now investigate further about the root. First, shhow thay is the smallest|
positive root of (3.1). Lets, be an arbitrary positive root of (3.1). The
q1 = P(0) < P(sy) = s, and assuming that q,, < s,, we get qms1 =
P(q,) < P(sy) = s, and by inductiony,, < s, for all n. Thusg = lim,,_,, <
so, Which implies that is the smallest positive root of (3.2).

For this, we consider the graph pf= P(s) in 0 < s < 1; it starts with the
point(0, p,) and ends with the poifit,1); the curve lying entirely in the firs
guadrant, is convex &(s) is an increasing function. So the cunve= P(s)
can intersect the ling = s in at most two points, one of which is the enchpal
(1,1),i.e., the equation (3.1) has at most two roots, oneto€kwis unity. Two
cases are now to be considered (see Figs. 9.1.2nd 9

Case |.

The curvey = P(s) lies entirely above the ling = s; in this casél,1)is the
only point of intersection, i. e., unity is the goé root ofs = P(s) so that
Thusq = lim,,_,,q, = 1. Then

P()=P(s)=1-P(s) <1-s.

So that lim, o "D < 1,1, P'(1) < 1.
Thus lim,,wq, = 1when P'(1) =m < 1.
Y
(1.1
=)
y = BXS)
y=s
0 m<1) 1 s

Fig, 9.1 Graphical determination of the rootsef P(s)[m < 1]
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=
T~
[

y =P(s)

0 gm>1) 1 S
Fig, 9.1 Graphical determination of the roots ef P(s)[m > 1]
Case Il

The curvey = P(s) intersectsy = s at another poifi#, P(8))such that § =
P(6),8 < 1,i.e, there is another root of (3.1) namedy< 1; the curve
y = P(s), being convex, lies below the ling =sin (§,1), and above
y=s5in(0,6),i.e.,P(s)<sind§<s<land P(s) >sin0<s <§4.

Then g, = P(0) < P(6) =6 and assuming thaty, < §,we get i1 =
P(q,,) < P(6) = 6and by inductiony,, < § for all n.

Hencelim, ,«»q, = §,so thatq = 6 < 1.

Now by the mean value theorem considered in theniat [§, 1], there is a
P(1)-P(5) _

valueé in § < & < 1 such thatt’(¢) = — = 1 and as the derivative is
monotoneP’ (1) > 1.

Thus we find thay is the root less than unity of (3.1) when= P'(1) > 1.

We have thus proved the theorem complétely.

9.1.3 Note:

Thatgq is a root ofs = P(s) can also be seen by conditioning on the number of
off-springs of the first generation. We have

q = Pr (ultimate extinction)

= Yoo Pr{ultimate extinction | X; =
& PrXi1=+.
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Given thatX; = k, the population will extinctff each of thek families
started by members of tHe&® generation becomes extinct. It is assumed {
families behave independently; hence

Pr{ultimate extinction | X; = k} = q*.
Thus q = Xi=0q"px = P(@).
Theorem 9.1.4.

Whatever be the value &f(X,) = m,we have,as n — oo,limPr{X,, = 0} =
q andlim Pr{X, = k} = 0, for any finite positive integrat.

Proof: We first show thatm,_.B,(s) = g, from which the above result wil
follow.

Consider the casei < 1,when P(s) = s has the unique roat = 1./n 0 <
s<gq, P(s) <P(q) =q,and

Py(s) < P,(q) =P(P,(P)) =P(q) =q. Assuming that B,(s) <
q,we get P, ,1(s) < (s) < q, and by inductionP,(s) < q for all n. Again
Py(s) = P,(0) = qy; thus g, < Py(s) < q.

Hence lim,,P,(s)=q, 0<s<q.

Consider the casm > 1, wheng is the root less than 1 #f(x) = x.Inq <
s < 1, the curvey = P(x) lies below the liney = x,and q < p(s) <s < 1.
AgainP,(s) = P(P,(s)) > P(q) = q. Assuming thatP,(s) >q, we get
P+1(s) > g, so that, by induction?,(s) > q for all n. Again P,(s) =
P, (P(s)) < P(s) and assuming thaB,(s) < P,_(s), we get P,(s) <
P,_(s)for all n.

Thus in q<s<l1,
q < Py(s) <Ppy(s) <
So that lim,_.PB,(s) = q.

Suppose, if possible, that lim, P, (s) =a>q,
therP(a) < a, and lim,_,oPyri1(s) = limy 1 P(P,(5)),

and we get a contradiction which is due to our ssgn thate > q. Thus
lim,_P,(s) = q.

So, whatever be the value BfX;) = m, lim,_,,,B,(s) = q is independent of
s. In other words, for al§ < 1,
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lim, e Z Pr{X, =k} s¥ =q.
k=0
This implies that the coefficients of® for k > 1(except, possibly, for
infinitely large k) all tend to 0, while the constderm tends tq.
Thus, as n - oo,
Pr{X,, = k} — 0, for finite positive integral k,
and Pr{X, =0} - q.
SinceP,(1) = 1, we have, ag — oo,
Pr{X, » o} > 1—q.
9.1.5 Note:

The above result also follows from the general theaf Markov chains
applied to the chair{X,}, for which each of the statels=1,2,3,... is
transient while the state 0 is absorbing. We shallv consider another
interesting result.

Theorem 9.1.6
We have, for,n =0,1, 2, ...

E{Xn4r | Xn} = Xym™
(3.4)

Proof: Forr = 1andn =0,1, 2, ..., we have

EfXpr | Xn} = E{Z3%1 S | Xn} = 2, E{Sic 3
mX,.

Assume that (3.4) holds for = k; then E{X,,,, | X,} = X,mk. Nothing the
Markov nature ofX,,}, we get

E{Xn+k+1 |Xn} =
E[E{Xn+k+1 | Xn+kf Xn+k—1: ---;Xn} | Xn]

= E[E{Xn+k+1 | Xn+k} | Xn]
= E[mXp i | Xnl = m(Xnmk)
k+1

= nm

So that the result holds fer= k + 1.
102



Thus by induction, we have the result.

9.1.7 Asymptotic Distribution of X,,

Another variable of interest i¢,, = % ,n=20,1,2,..; {W,} forms a Markov

chain. We hav&{l,,} = 1 and form > 1,

N—1/,N_ 2
BN} = L B2} = L fman 4 20y

m2n (m-1)

a2

=1+ (1-m™).

m2-m

Dividing both sides of (3.4) b;m™*", we get
(3.5)

E{Wpyr | WR} =W,
and sincgW,,} is also a Markov chain,

E{Wn+r I Wo, Wh_1, ..., WO} = E{Wn+r I Wn} = W.
(3.6)

It follows that (W,,n > 0) is also a martingale; furthat,, being non —
negative, is a non — negative martingale.

Limiting distribution of X,

One can now apply the martingale convergence thedoe the convergencd
of W. Thus we get that, with probability one,

lim,,_,., W, exists and is finite.
Two cases arise:
@iHym>1:

then in order that,, convergesX, must go too at an exponentially fas
rate of n

(so that % - a finite limit).
(i) m<1:
That agr,, » 0 as n — co.

This implies ultimate extinction in the subcriti@ald critical cases.

[
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9. 1. 8 Examples

We now consider some simple example; to fix thasdeumerical values have
been taken.

Example3(a).

Letpr,k = 0,1,2 be the probability that an individual in a genenat
generatest offsprings. ThenP(s) = p, + p1s + p,s2,and p,(s), p;(s) can
be calculated by simple algebra. The probability eatinction is one if
m < 1;if m > 1, it is given by the root less than 1 o0& P(s). Suppose that
po=2/3,p1=1/6, and p, =1/6;thenm =1/2<1. The equation
s = P(s) becomess? — 5s + 4 = 0 with roots 1 and 4; the probability of
extinction is 1. Suppose that, =1/4,p, = 1/4,p, =1/2; then m =
5/4 > 1; the equatiors = P(s) has the rootd/2 and 1. The rool/2 gives

the probability of extinction. Note that the probyp of extinction is% orl
2

according asp, < p, Or py=p, and also that, < (or =)p, iff m >
(or <)

Example 3(b).

Let the probability distribution of the number df e springs generated by an
individual in a generation be Poisson with ménae.P(s) = e*6~1D_ It can
be easily seen that the graph of P(s) in
0<s<1 (i. e., between the points (O,e_l)and (1,1)) is convex, and that
the curve ofy = P(s) always lies abowe= s when 1 < 1, there being no
other root ofs = P(s) except unity in (0, 1); the probability of extifot is
then 1. Wherl > 1, the curvey = P(s) intersectsy = s in another point
whose s — coordinate has a valud and the probability of extinction will be
this value ofs. For example, ift = 2, it can be seen that= e?~V has a root
approximately equal to 0.2 which is smaller thanatig the probability of
extinction isq = 0.2.

Example 3(c).

Let the distribution of the number of off — sprinlge geometric withp,, =

b(1—b)* k=0,1,2,..(0 < b < 1). Then m= % and P(s) =

b . b
Gt The equatiors = P(s) has the roots 1 arg]_—w If m <1, then the

probability of extinction is 1; iim > 1, the rootﬁ < 1, and the probability

of extinction is equal to the ro?ltf—b).

Example 3(d).
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Let pp = bc* Lk =1,2,..,0< b,c,b+c<landp,=1- Y5 Pk Then
b
T a0

We have

bs
1-cs’

P(s)=1-——+
(3.7)
The quadratic equatian= P(s) has the roots

1-(b+c)
c(1-c)

1 and = so(say).
If m =1,then s, = 1 and the probability of extinction is 1;14t > 1,5, < 1,
and the probability of extinction = s,(< 1).

This model was applied in a series ofregéng papers by Lotka to fing
out the probability of extinction for American mal@es of descent. Thd
values estimated by him (in 1939) from census &guof 1920 give b =
0.2126, ¢ =0.5893 (m = 1.25 > 1) and the probability of extinctior
qg = sy, = 0.8109.

9.1.9 Note:

It is not always possible to put the genematinnctionsP,(s) in closed
form. The generating functioys) obtained in Examples 3(c) and 3(d) are
interesting forms: they may be considered as pdaticcases of the mors
general fractional linear form (or general bilinéamm)

a+
Y+

P(s) =

Bs
55 ad — By # 0.
WhenP(s) is the above formg, (s) is also of the same form

_ an+Pns
Pa(s) = 2255

Wherea,,, B, vn, 6, are functions ot, g,vy, 6.

Further, it may be noted that the equatioa P(s) (where P(s) is of fractiona
linear form) has two finite solutions 1 argg <,=,> or 1 according as
m=P'(1) >,=,0r <1.

Example 3(e).

P,(s) for Lotka’s model considered in Example 3(d) aboker any two
pointsu, v, we get

=

of

A1%
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P(s)-P(w) _ s—u 1-cv
P(s)-P(v)  s—v ‘1-cu’

Putu = sy, v = 1,then P(sy) = sy, P(v) = 1,s0 that

P(s)—sy _ s—Sg 1—c

P(s)-1 s—1 "1-csg

Whence 1-c _ {P(S)— 50}/{P(s)—1}'

1-csp S—Sg (s—-1)

Letm # 1, then taking limits of the right hand sidesas> 1, we get

1-c _ 1
1-csy m
P(s)—so _ i s—5g
Hence P(s)-1 (m) s—1 "
Py(s)-so _ P(P(s))=so _ 1\ P(s)=so
Thus Py(s)-1  P(P(s))-1 (m) P(s)-1

= (o)
“ \m2/ s-1
and on iteration

Pn(s)=so _ ( 1 )ﬂ n=12,..

Pp(s)-1 mn/) s-1"’

Solving forB,(s), we get

2
n 1—50)
1-so ) m (mn—So S
1

— 1 _
P(s)=1-m (mn—so _(m:—i) ,m#1
mt—=so
(3.8)
If m=1,thens, = 1and P(s) = %
and P(S) __ nc+(1-c-ns)s
~ (1-c+ns)-ncs
(3.9
Limiting Results
Suppose that = 1, then g2 = (IZTCC)
(1-c)
nPr{X, > 0} =n{l — B,(0)} = ﬁ
and lim,_onPr{X, >0} = % = % (see Theorem

9.8(a))
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Suppose that < 1,then sy > 1 and

lim,_,om "Pr{X, > 0} = lim,_,.om ™{1 — B,(0)}

=1li 17S0 _ So1
= im0 s = e
Again Y PriX, = k| X, > O}s* _ Pn(5)=Pn(0)
1-P,(0)
_ 1-Pp(s)
B 1_Pn(0)

1-5Sg )
(m"—so S

(s

Thus LMy sco B Pr{Xn = k | X, > 0)s* =5 (1 -
1501—150—1

. 1\ /1\k 1
and limy oo Pr{Xn = k | X, > 0} = (1 - ;) (;) k=
1,2, ..

In other words, for large n, the distribution{af,}, givenX,, > 0, is geometric
with meanss—"1 and p. g. f.
o

b(S) — (1-1/s¢) s .

1-5/5g
It can be easily verified thal(s) satisfies the equation

b(P(s)) =mb(s)+1—m (see
Theorem 9.9).

9.2 DISTRIBUTION OF THE TOTAL NUMBER OF
PROGENY

Let X,, denote the size oft" generationn = 0,1,2, ...,and X, = 1.
Then the random variable

Yo =2k=0Xx=1+X;+ -+ X,
(4.2)

Denote the total number of progeny, i. e., the nemab descendants up-to an
including then®* generation and also including the ancestor.

Theorem 9.2.1.
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The p. g. fR,(s) of Y, satisfies the recurrence relation

R, (s) = sP(Ry—1(s)),
(4.2)

P(s) being the p. g. f. of the offspring distribution.

Proof:Let Z, = X; + -+ X,, andG,(s) be its p. g. f. TheR,,(s) = s G,(s).
We have

Gp(s) = i Pr{Z, = k}s*.
Now by conditioning on the siz¢ of the15¢ generation, we get

Pr{Z, =k} = Y2, Pr{ total number of descendants in the succeeding
(n — 1) generations following the first is k—ilX; =
LPrX1=L

If the process starts with one ancestor then thabghility of havingr
descendants in succeedimggenerations is the coefficient ofin G,,(s); and
if it starts withi ancestors then the probability of havinglescendants in the
succeedingn generations will be the coefficient ofin [G,,,(s)]*. Thus

Pr{Z, = k} = X2,|coefficient of s*~1 in{G,_1(s)}]p;

= Y2 pi|coefficient of s* in{sG,_1(s)}]

= coefficient of s¥in Y2, pi{sGr_1(s)}

= coefficient of s* in P (sG,_1(s)).

Thus Gn(s) = Xioo PriZ, = k}s* = P(sG,_41(5)),
Whence R, (s) = sG,(s) = sP(Rn_l(s)).
Hence the theofejm.

From the recurrence relation (4.2) it is theordiycpossible to calculate
R.(s),R.(s),... We are however interested in the asymptotic behaof
R, (s)for large n.

Theorem 9.22
We have
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limn—woRn(S) = H(s)

WhereH (s) = Y7, pxs® is the generating function of the sequence of-AQ
negative numbergy,

The functionH (s) satisfies the relation

H(s) = sP(H(s)),O <s<1;
(4.3)

Further,H(s) is the unique root of the equation

t =sP(t)
(4.4)

Such thatd (s) < &, where & is the smallest positive root of= P(x) and that
HQ) = X E7ops™ = §.

Proof:We have, fol0 < s < 1,
R,(s) = sP(Rl(s)) < sP(s) = R.(s)

and assuming that,,, < R,,_;(s), we get
Ry—1(s) = sP(R,,(s)) < sP(Rm_l(s)) = R,,(s)

and hence by inductionR,,(s) < R,_,(s) for alln > 0.Thus for s <
1,{R(s)} is a monotone decreasing sequence bounded bel@mceH
lim, R, (s) = H(s) exists. From the continuity theorem of p. g. f.its
follows that H(s), being the limit of a sequencepof. f. ‘s, is the generating
function of a sequence of non — negative numpgrsuch that{ (1) = Yp;, <
1.

Taking limit of (4.2), we get
H(s) = sP(H(s)), 0<s<1,

i.e., for some fixed(in 0 < s < 1), H(s) is a root of the equation
t =sP(t)

For fixeds < 1,y = sP(t) is a convex function of and the graph of =

sP(t) intersects the lingg =t in at most two points. Le§, be the smallest

positive root ofx = P(x); clearly ¢ < 1. The functiont — sP(t) is negative

for t = 0 and positive fort = &, and remains positive for values tobetween

¢ and 1. Thug = s P(t) has exactly one root betweérmnd ¢ and no root

betweeré and 1. The unique root of= s P(t) equalsH (s) and thugdi(s) <
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¢. ClearlyH(1) is a root ofx = P(x) and sinc€ is the smallest root of this
equation H(1) = £.Thus the theorem is completely estallighed.

9.2.3 NoteH (1) = 1 or < 1 depending on whethdr+ X; + X, + -+ is finite
or not (with probability one); and (1) = 1 whenever m < 1.

9.3 CONDITIONAL LIMIT LAWS — Kolmogrov and Yaglom

9.3.1 Critical Processes

In Example 3(e) we obtained some limiting resil¥& shall obtain here some
general results. Consider a critical (i.e., with In=G. W. process. The
probability of extinction is 1. Thus from Theoren#9we getPr{X,, » 0} =

1. We also havevar(X,) = no? - o.The distribution ofX,, gives that
X, > 0, is of considerable interest.

9.3.2 Lemma

For a G. W. process witlh = 1 and 6% < o, we have

lim 1{ 1 1 } 5 o?
M=% pl1-P,(s) 1-s 2

(5.1)

Uniformly in 0 < s < 1.
Proof:

Let 0 <s <1 and P"""(1) < o0. Using Taylor's expansion oP(s) in the
neighbourhood of 1,

We get P(s) =s+ %2(1 — )2 +7r(s)(1 —s)?
(5.2)

Where r(s) » O0as s — 1.

Thus L__ 1 ___ PO

1-P(s) 1-s  (1-s) (P(s)-5)

{1}

={Z+rol[i-a-9{Z+

r(s)—1
=2 +R(s),

(5.3)
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WhereR(s) - 0 as s — 1,and R is bounded. Again using (4.6), we get

Py(s) = P(P(s)) = P(s) + 2 (1 — P(s))? +
r(P())(1 = P(s))?

1 1 o2
So that e 1re = 2 TREE)
(5.4)
1 1 1 o? 1
and E{l—Pz(s) - E} = + E{R(S) + R(P(S))}.

- 1 ) _ o ismn
lterating one gets n{l—Pz(s) 1_5} =—+-2ko0 R(P(5)).

Since B,(0) < P,(s) < land B,(0) — 1from the left, the convergence d
P,(s) = 1is uniform. Hence the lemma.

We shall now use the lemma to establish the folhgwinteresting limit laws
(of which (a) is due to Kolmogorov and (b), (c) are due to Yagio).

Theorem 9.3.3

If m=1, 0% < oo, then

(a)lim, o, n Pr{X, > 0} = 2

o2

X o?
(D)limyy e E{f | X, > 0} ==

2u

X
(©)lim,,_,s Pr{?n >u | X, > 0} = exp (—;),u > 0.

Proof: (a)(Kolmogrov)

We have nPr{X, > 0} = n{1 — B,(0)}

- E {1—131,1(0) - 1} + %]_1'

Thus from the lemma (taking s=0), we get

oz 11t
limn—wo n Pr{Xn > 0} = limn_,oo [7 + ;:l =

o2’

(b)(Yaglom)
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We have 1= E{X,} = E{X,| X, > O}. Pr{X, > 0} +
0.Pr{X, = 0}

1

2
So that E{X,| X, >0} = s = ’% ,(from ().
Thus limyco E {22 | X, > 0} = 2.
(c)(Yalgom) Let u > 0,and df (u) = Pr {u < );—“ <u+
du | Xn>0; (5.5)

Then taking L. T. (see equation (3.1a) Chapter®)get

J, exp (—aw)dF(w) = E {exp (— );—") | X, > 0}.
(5.6)

Now E {exp (—);—")} = E{exp (— X;") | X, > O}. Pri{X, >
0+1. Pr&¥n=0

And since B,(s) = E{S*n} is the p. g. f. ok,,, we get

P, (exp (— %)) =E {exp (— aTX") | X, > O} {1-B,(0}+

P, (0).

Thus

E {exp (— QTX") | X > 0} _5 ”(exp(l‘f‘; :2()))— F,(0)

_ 1- Pn(exp(—a/n))
1-Py(0)

=1
(5.7)

Now asn — o

n {1 - P, (exp (— %))} - % (from(a))

and from the basic lemma (because of uniform cayerese),we get

1 _ 1 1 _ 1 1/n
n{l—Pn(exp(—a/n))}_ n 1—Pn(exp(—a/n)) 1—-exp(—a/n) 1-exp(—a/n)

2
o 1
_)_+_.

2 a
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Thus from (5.6) and (5.7), we get,—> oo

[ exp (—au)dF(u) » 1 — o*/2
0 o2/2+1/a’
1
" 1+ac?/2”
. 2 2u\ .
Since L. T. of — exp (— ;) s m,
. Xn
We have lim, .o Pr{u37<u+du|Xn >O}=

2 2u
- e (= 33)
Which establishes the exponential limjt faw.

9. 3. 4 Subcritical Processes

Theorem 9.3.4Yaglom’s Theorenfjor a Galton — Watson process wi
m<1,

liMyow PriXy=j| X, >0}=b, j=12,..
(5.8)

Exists, anfb;} gives a probability distribution whose p. g. f.
B(s) = X%, b;s’ satisfies the equation

B(P(s)) =mB(s)+1—-m
(5.9

i e, 1—B(P(s)) =m(1 - B(s)).

Further
je—1 jbj = 1/¢(0),where ¢(0) = lim;,_,, Pr{X, > 0}/m".

Proof:Using Taylor's expansion arousd= 1, we get

Ps)=1-m(1—-s)+(1—-5s)r(s), 0<s<1
(5.10)

1-P(s) _ _
or, —- =m r(s).

(5.10a)
Consider the function(s) in0 < s < 1; we haver(0) =m — (1 —py) =0

andlimg_,;_o r(s) = 0. Further a®(s) is a convex function
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1-P(s)
1-s

P'(s) <

)

So that P'(s) = (1—s)" { P(S) P()}<0

Thusr(s) is monotone decreasing, and is bounded above: byd r(s) —
0 as s = 1. Replacings by P,_;(s) in (5.10a), we get

1= Pr(s)
1= Pg—1(5)

(5.11)

=m{l —7r (Pg-4 (s)/m}.

Puttingk = 1, 2, 3, ...,n and taking products of both sides, we get

1B = mn [[RZ3(1 — r( Pe(s)) /m}.

n(S)

Since0 <r/m < 1, the sequence{T)

} IS monotone decreasing im,

and we have

— Pp(s)

= (s) 2 0.

Puttings = 0, we get

1-P,(0) Pr|X,>0|

¢(0) = limy,_ o — lim,_ o —

Let by, = Pr{X, = j| X, > 0} and B,(s) = Xj2, bj, s’ be the p. g. f. of
{bjn}. Then

_ Pu(s) = Pn(0) _ _1_Pn(5)
Bn(s) = 1-Pp(0) 1- Pp(s)
(5.14)
=1—(1—s) [Pz} i Pe®)/m (from

k=0 1—1(Pr(0))/m

5.12).

Since Py(s) = P,(0), and r(s) is monotone decreasing;((P)c(s)) <
r(P,(0)), and so each factor of the product on the r. lBxpression is larger
than 1. ThusB,(s) is monotone decreasing and tends to a liB{$) as

n- om,i. e.,

B(s) = X5i1 b s/, where b; = lim,_,, bjn =
lim,_,. Pr{X, =j| X, > 0}.

ClearlyB(0) = 0.

Now, B(P,(0)) = lim,, B, (P(0))
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=1 _ 1=Pu(Pk(0))
= limy 00 {1 1—Py,(0) }

—1—1 _ 1=Pi(Pn(®)
=1—limye {1 1-P,(0) }

. 1-Pk(s .
= limg_, 1_’;( ) (sincem < 1,

P,(0) » 1asn - o)

(taking limit of (5.12) as-s 1).
It follows thatlim B(P,(0)) - 1.As m < 1,P,(0) > 1 as k > oo,

HenceB(s) — las s — 1. ThusB(s) is the p. g. f. ofb;).

- . , . 1-B(Py(0)
Further Yjz1 jbj = B'(1) = limy. 1—;:(0) :

=lim mt
k— o0 1-Px(0)
mk 1

= Mo 550 ~ 30

Again, from (5.14)

1-Pp (P(s))
Bn(P(S)) =1 _Tn(o)s

=1 _1-Ppi1 P(s) 1—PpyqP(0)

1= Pp41(0) ~ 1- Py(0)
(5.15)
1 = Py P(s)
lim, o =lim, ,.(1—B s)) =1—-B(s),
n 1— Pn+1(0) n ( n+1( ) (
. 1-Ppy1 P(0) _ . 1-P(s) _
lim,_ o - limg_, . =m

Hence taking limits of both sides of (5.15), We get
B(P(s)) =1- (1 — Bn+1(s)) m
=mB(s)+1—m.
Thus the theorem is provid.

9.3.5 Remarks:
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1. The above simplified proof which does not ineimoment restriction is
due to Joffe( 1967).

The equation (5.9a) is known as a modifsathroder functional equation.
It is not always easy to obtaB(s) from it for givenP(s). In example 3(e) we
obtainedB (s) directly.

The meary.;_, kb, = — of the limiting distribution is finitéf f
k=1 $(0)

E{X; logX,} = Yr-1 Pclklogk} < worp, = 1.

2. The limiting behavior which has customarily bestudied through

probability generating functions and their functobrterates, has now been
studied also through the martingale convergenceréne; the latter is more
revealing on the nature of the process. Sec, famgke, Heyde (1970) and
Grey (1980).

Before closing the discussion on G. W.cpsses we mention a few
interesting innovations introduced in the process.
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UNIT X : THE CLASSICAL GALTON
AND WATSON PROCESS

10.1 THECLASSICAL GALTON — WATSON PROCESS
10.1.1 Branching Processwith Immigration
10.2 BEL MAN HARI'S PROCESS

10.1 THECLASSICAL GALTON — WATSON PROCESS
10.1.1 Branching Processes with Immigration

Theorem 9.4 states that for a G. W. Proc@sgX,, —» 0} = q and Pr{X, -

#=0, for finite kK and so PrXn—co=1—g,g being the probability of extinction
Further,q = 1 for critical and subcritical processes. Thus tefthemselves G|
W. populations either die out or grow without ligjitimmigration from
outside into a critical or subcritical process cbbave stabilizing effect on th
population size. Apart from this aspect, immigratioy itself is interesting
from the point of view of theory and applicatio@alton — Watson processes
with immigration often arise in applications in buareas as traffic theory,
statistical mechanics, genetics, neurophysiology et

1%

Consider a G. W. process with off-springlistribution
{pi}(having p.g.f.P(s) and mean P'(1) = m).(The process will be called
underlying G. W. process.) Suppose that at time &1, at the time of birth of
nt" generation there is an immigration Xof objects into the population, an
thatY,,n = 0,1, 2, ... arei. i. d random variables with p. g. f.

[®N

h(s) = X2, Pr{Yy = j}s’ = ¥hs/,

i. e., with probability h;,j immigrants enter thet" generation and contributs
to the next generation in the same way as otheeady} present do. Thg
numbers of immigrants into successive generatioasiralependent and al
objects reproduce independently of each other &tldeammigration process
The distribution {k;} will be called immigrant distribution. Let = h'(1) be
the mean of this distribution.

U D

Such a process (G. W. 1.) can be denoted as
{Xpi1, n=0,1,2,..}

Where Xny1 = Efﬁl G+ Y
(5.16)
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And E({) = m E{Y,} = a.
Let X,y be the number of objects at th¥ generation and let
Py (s) = X520 Pri{Xmy = j}s’

Be its p. g. f. The sequen€e&X(,) n =0,1,2,...} defines a G. W. | process.
The sequence is a Markov chain whose one — stapiticm probabilities are
given by

pij = coeff.of s’ in h(s)[P(s)]", i,j € N.
Clearly, Py (s) = h(s)Pin-1y(P(s)).
If limy, e Py (s) = F(s) exists, then one gets
F(s) = h(s) F(P(s))
i.e., the limit, when it exists, satisfies the abdunctional equation.

Now the question arises : when does the limit eaistl does it define the p. g.
f. of a proper probability distribution or when d&de((,,) } have a proper limit
distribution?

10.2. BELL-MAN HARRIS PROCESS

In the preceding section we assumed that lifetimes of objects
(particles, individuals, organisms) are exponem@adom variables. Here we
shall generalize his further; we shall considet tha lifetimes have general,
and not necessarily exponential, distributions.

Suppose that an object (ancgataime t = O initiates the process.
At the end of its lifetime it produces a random temof direct descendants
having offspring distribution {g (with p.g.f. P (s)).

We assume, as before, that these descendantgdapemdently of each other
and that at the end of its lifetime, each descendganduces its own
descendants with the same offspring distributiog} {pand that the process
continuous as long as objects are present. Suppasthe lifetimes of objects
are i.i.d.random variables with d.f. G(which is alsndependent of the
offspring distribution).Let { X (t) , & 0} be the number of objects alive at
time t. The stochastic process { X (t) >t0} is known as an age-dependent
(or general time ) branching process. Such a psotesalso known as a
Bellman-Harris process, after Bellman and Harrisowdonsidered such a
process in 1948. We shall consider here Bellmanigiéype age-dependent
process. An age-dependent process is , in gensoél Markovian. For a
detailed account , refer to Sankaranarayanan (1CiR&pter 4).
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10.2.1 Generating Function
Theorem 10.2.1.
The generating function
F(ts) = Yoo Pr{X (t) = k}s* (8.1)
of an age-dependent branching process { X (t) = [G(t)]s +f0tP(F(t -
u, sdGu. (8.2)

proof: To find{ X (t) = k}, we shall condition on the lifetime T at which th
ancestor dies bearing | offsprings.

We have
Pr{X (¢) = k}= [ Pr{X (t) = k|T = u} dG(w)
=[EPr{ X (t) = kIT = u} dG (w)
=["Pr{X () = kIT = u} dG(w).

In case of the second temm> t. Given that T = u, the number of objects
time t is then still | (the ancestor ) and the egsion under the square brackg
equalé; { 1 — G(t)}.

In case of the first term,t, the ancestor dies at time <
t,leaving | € N) direct descendants: the probability of thipisl G (u); and
further these | descendants (who independentliataifprocesses at time |
leave k objects in the remaining time- u: the probability of this event is
equal to the coefficient of* in the expansion ofF (t —u, s)]* as a power
series in s. Thus we have,

Pr{X (t) =k}={1—-G(t)}b1x
+ [} 220 pi d G(w) {coeff.of sk inthe expnsion of [F (t-u.s)'y

Multipliying both sides bsf , k = 0.1.2 . . . and summing over k, \
find that the |.h.s. equals (t, s);

And that the first term on the r.h.s. equfils— G(t)}s and the second terr
equals

[> pi{) [coeff of skin(F =)ty sk }dG(u)
DX

= FSsepi (F(t = u,9)! 1dG(w) =
[EP(F(t —u,9))d6(w).
Hence the theofen.

e
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UNIT — XI STOCHASTIC PROCESSES IN
QUEUEING SYSTEMS

11.1 Stochastic Models- Queuing System
11.2 Queueing Model M/M/1
11.2.1 Notation
11.2.2 Steady State Distriboih
11.2.3 Little’s Formula
11.3 Transient Behaviour Of M/M/1

11.1 STOCHASTIC MODELS - QUEUING SYSTEMS

The queueing theory had its origin in 1909, wherKAErlang (1878 - 1929)
published his fundamental paper relating to thedystof congestion in
telephone traffic. The literature on the theorygoieues and on the diverse
areas of its applications have grown tremendousty the years.

A queue or waiting line is formed when units (ostmmers, clients) needing
some kind of service arrive at a service channekc¢anter) that offers such
facility. A queueing system can be described byfline of units for service,
forming or joining the queue, if service is not imdnately available, and
leaving the system after being served . The basitufes which characterize a
system are; (i) the input, (ii) the service meckani(iii) the queue discipline
and (iv) the number of service channels.

By units, we mean those demanding sengcey. customers at a bank
counter or at a reservation counter, calls arriviniga telephone exchange,
vehicular traffic at a traffic intersection, machk# for repair before a
repairman, airplanes waiting for take — off at asywirport, merchandise
waiting for shipment at a yard, computer programmvaging to be run on a
time — sharing basis etc.

The input describes the manner in which units arrive anal joe system.
The interval between two consecutive arrivals Igedahe inter-arrival time or
interval. The system is called a delay or lossesystiepending on whether a
unit who, on arrival, finds the service facility aupied, joins or leaves the
system. The system may have either a limited ourdimited capacity for
holding units. The source from which the units canaey be finite. A unit may
arrive either singly or in a group.

The service mechanism describes the manner in vdaplice is rendered. A
unit may be served either singly or in a batch. Tihee required a unit is
called theservice time.

120



The queue discipline indicates the way in whichuh#s form a queue and are
served. The usual discipline fisst come first serve@FCFS)or first in first

out (FIFO), though sometimes, other rules, such as,clame first served of
random ordering before service are adopted. A m@alistic service
discipline, calledprocessor — sharingis considered in computer scieng¢e
literature; this envisages that if there awgbs, each receives service at the

1
rate of—.
m

The system may havesingle channel or a number of parallel channfes
service.

The inter-arrival and service times may be deteistim or chance -
dependent. The case when both the inter-arrival sexlice times are
deterministic is trivial. We shall be generally cemed with chance -
dependent inter-arrival and service times, andtile®ry will be essentially]
stochastic. When chance — dependent, the interahrtimes between twdg
consecutive arrivals are assumed to be i. i. ddoanvariables; the servic
times of units are also assumed to be i. i. d.sandariables. Further the tw
sets of

1%

O

random variablesare also taken to be independent.

The mean arrival rate, usually deddig 4, is the mean number of
arrivals per unit time. Its reciprocal is the meainthe inter-arrival time
distribution. The mean service rate, usually dedoby, is the mean numbe
of units served per unit time, its reciprocal bethg mean service time. In g
single channel system, the ratio

-

A arrival rate mean service time |
a=-= _ = : ———1|s called theoffered
u service rate mean interarrival time

load or traffic intensity Though dimensionless, it is expresseceitangs. It
can be seenthat X > y, then the queue size will go to infinity. The qtigy
p = a/c is calledcarried load.

11. 2 QUEUINGPROCESSES

The following random variables or families of randwariables that arise in
the study provide important measures of performarue effectiveness of 4
stochastic queuing system.

=

1. The numbeN (t) in the system at time t, i. e. the number at timaiting
in the queue including those being served, if any.

121



2. The busy period which means the duration efititerval from the moment
the service commences with arrival of an unit ateampty counter to the
moment the server becomes free for the first time.

3. The waiting time in the queue, i. e. the toraof time a unit has to spend
in the queue; also the waiting tiridé, of thent™ arrival.

4. The virtual waiting tim&/ (t), i. e. the interval of time a unit would have
to wait in the queue, were it to arrive at theanst.

One needs to have their complete probabilistic rifggan. It is clear that
{N(@), t =0}, {W(), t =0},{W,, n=>0} are stochastic processes, the first
two being in continuous time and the third oneistrete time. It will be seen
that some of the queuing processes that we wouttea@cross are Markovian
and some are semi — Markovian. From some of the-ndarkovian processes
that arise, Markov chains can be extracted ataBl@tregeneration points and
semi — Markovian processes can be constructed fhene The theory of
Markov chain and semi — Markov processes thus pdaysimportant role in
the study of queuing processes.

11.2.1 Notation

A very convenient notation designed by Kendall ¢a@te queuing system has
been universally accepted and used. It consistg thfree — part descriptor
A/B/C, where the first and second symbols denoteiiter-arrival and service

time distributions respectively, and third dendies number of channels or
servers. A and B usually take one of the followsygbols:

M : for exponential ( Markovian) distribution
E} : for Erlang — k distribution

G : for arbitrary distribution

D : forfixed (Deterministic) interval

Thus, by anM/G/1 system is meant a single channel queuing system
having exponential inter-arrival time distributi@md arbitrary service time
distribution. By M/G/1/k is meant the same sysi&ith the fourth descriptor
R denoting that the system has a limited holdinzacay k.

11.2.2 Steady State Distribution

N(t), the number in the system at tinneand its probability distribution,
denoted by

pn(t) = Pr{N(¢) =n|N(0) =.}
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are both time dependent. For a complete descriptidine queuing process we
need consider transient or time — dependent sokititi is often difficult to
obtain such solutions. Further, in many practidaiagions, one needs to knoy
the behaviour in steady state, i. e. when the sysemaches an equilibriun
state, after being in operation for a pretty loinggt

It is easier and convenient to determine
pn = limp, (t) ast - oo

Provided the limit exists. It is necessary to kntlve condition for the
existence of the limit in the first place. This Mile discussed in due coursg.
When the limit exists, it is said that the systeas meachecequilibrium or
steady state and the problem then boils down to finding theadly state
solutions.

11.2.3 Little’s Formula

There are certain useful statements and relatipgish queuing theory which
holds under fairly general conditions. Though rme mathematical proofs g
such relations are somewhat complicated, intuitime heuristic proofs are
simple enough and have been known for long. Itheeen argued also that
conservation methods could very well be appliedupply proofs of some of
these relations. Conservation principles have plagefundamental role in
physical and engineering science as well as in @oms etc. Similar
principles may perhaps be applied in obtainingti@ta for queuing system in
steady state. Some such relations are given bdlbezmost important one is

=1

L=AW

WhereA is the arrival rate, L is the expected numberrofsuin the system and
W is the expected waiting time in the system imdyestate. A rigorous of the
relation has been given by Little(1961) and soréation is known as Little’s
formula. This result, of great generality, is ipdadent of the form of inter
arrival and service time distributions, and holdsler some very generdl
conditions.

17

Denote the expected number in the queue and thectsd waiting
time in the queue in steady state byand W, respectively . These ar
related by a similar formula:

Lo = 2 U]

11

11.3 TRANSIENTBEHAVIOUR

In this section we consider the transient behawibthree specific
gueueing systems,namely,
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M/M/1/1 (no one allowed to wait)f /M /1 / o. This discussion |
restricted to these two models, Since the mathemdiecomes extremely
complicated with the slightest relaxation of Poisse- exponential
assumptions, and it is our feeling that the eximbitof some fairly simple
results is sufficient for our purposes. Even th#see transient derivations
vary greatly in difficulty. TheM /M /1 /1 solution can be found fairly
easily, but the problem becomes much more complicathen the restriction
on waiting room is relaxed, or multiple servers esasidered

11.3.1 Transient BehaviorofM /M /1 /1

The derivation of the transient probabiliti§s, ) } that an arbitrary time t
there are n customers in a single-channel systeth Wbisson input,
exponential service, and no waiting room is a ghthorward procedure, since
p, (t) =0 forall n > 1. It begins in the usual fashion from thigh-death
differential equations as given by , witlj =4, ,A, =0, n >0, ang;; = u:

dp,(t)

o = @+ Apy (),

oD = —Apy(6) + upa () (2.70)

These differential-difference equations can beealwasily in view of the fact
that it is always true that

po(t) + p(t) = 1.

Hence (2.70) is equivalent to

P = pi(t) = —upa(O) + AlL - py (0],

So

pi®+ A+ wp @) = A
This is an ordinary first-order linear differentigquation with constant

coefficients. Its solution can be obtained from disxussion in Section 1.7 as

= _(A'Hl)t i
p.(t) = Ce + v

To determine C , we use the bountry valuepgft) at t=0,which isp, (0).
Thus

A
A+p’

C =p,(0) —
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and consequently

A o B

p1(t) = R y(l — e~ (A+n) ) + p,(0)e (A+p)t
U (At ik

po(t) = m(l — e (A+n) ) + po(0)e (A+u)e

Since py(t) =1 — p,(t) forallt.

The stationary solution can be found directly fr@n70)in the usual
way by letting the derivatives equal zero and thesing the fact thap, +
p1 = 1 ,solving forpg and p,(M /M /1 / k with K = 1) . Also, the limiting
(steady, state, equilibrium)solution can be fousdttee limit of the transient

solution of (2.71) as t goes to, we find that

_ P - L
Pr= 70 and p, = p+1

Existence of the limiting distribution is alwayssaged, independent of th
value ofp = A/u, and thus it is identical to the stationary disition (to see
this, put K = 1 in they,, expression for thé&f / M /1 / K of section 2.5).

To get a better feel for the bebawf this queueing system fg
small values of time, let us graph(t) from (2.71). First rewrite (2.71) in th
form

D

=

U

p1(t) = py + be™,

Where,
A p o

=g =7 b=p0-p, andc=A+p
Figure 2.9 shows a sample graph op,(t) for a case wheré > 0(A =
0.2,u = 0.4,p,(0) = 0.7).
We see thap, (t) is asymptotic top;. In addition , if the initial probability
p1(0) equals the stationary probability,, then b = 0 angh;(t) equals the
constantp,for all t. In other words , the queueing process ba translated
into steady state at any time by starting the m®da equilibrium. This
property is , in fact, true for any ergodic quegesystem, independent of any
assumptions about its parameters.

11.3.2 Transient Behavioraff /M /1 / o

The transient derivation foM /M /1 /c is quite a
complicated procedure, so presentation of it isutline form only. A more
complete picture of the details can be found insSrand Harris (1985) an
Saaty (1961). The solution of this problem postddtet of the basic Erlang
work by nearly half a century, with the first pudbled solution due td
Ledermann and Reuter (1954), in which they usedtsgeanalysis for the

L
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general birth-death process. In the same yearddii@nhal paper appeared on
the solution of this problem by Bailey (1954), datkr one by Champernowne
(1956) Bailey's approach to the time-dependent lprabwas via generating
functions for
the partial differential equation, and champern@veias via complex
combinatorial methods. It is Bailey’s approach thas been the most popular
over the years, and this is basically the one We.tRemember that the key
thing that makes this problem more difficult thaayrseem at first is that we
are dealing with an infinite system of liner di#éatial equations.

To begin, let it be assumed thatinitial system size at time O is i.
That is, if N(t) denotes the number in the systerinae t, then N(0) = i. The
differential-difference equations governing thetegs size are given in (1.30)
as

Pn(t) = —(A+ Wpn() + 2pp-1(t) + L Pp+1(t) (n > 0)
po(t) = — Apo(t) + np.(¢)
It turns out that we solve these time-dependenatops using a combination
of probability generating functions , partial di¢atial equations, and Laplace
transforms.
Define
P(z,t) = YXn=opPn(©)z™ (z —complex)

Such that the summation is convergent in and omtiitecircle(i.e., for |z )
, with its Laplace transform defined as

[oe]

P(z,s) = j e StP(z,t)dt ( Re(s) > 0)

0

After the generating function is formed from(2.72)it is found when the
Laplace transform is taken that
; _ z"*1-p(1-2)pg(s) —
P(Z,s) = (FrTSp——r where p, (S) is the
Laplace transform g (t).
Since the Laplace transfofitz, s) converges in the region g|1, Re s
> 0,
Wherever the denominator of the right-hand sid€2073) has zeros in that
region, so must the numerator. This fact is hentefoed to evaluatg,(s).
The denominator has two zeros, since it is quadiatiz and they are(as

functions of s)

A+ pts— JA+ p+s)2—4p

- 2

A+ pts+ J@A+ p+s)?2—4ap

- 2

Where, the square root is taken so that its redlipgositive. It is clear that
|z1| < |z3l,2y + 2,=(A+ p+s)/A and z;z,=p/A . The completion of
derivation is by the use of Rouches theorem in derngnalysis.

Z

Zy
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BLOCK IV

UNIT XII BIRTH AND DEATH
PROCESSES IN QUEUING THEORY

12. 1 Birth and Death Processes
12.2 M/M /1 Model

12.3M /M /o Model
12.4M/M/s/s Loss System

12.5 M/M/s/N Model.

12. 1 Birth and Death Processes

Let us first consider a birth and death proces$ wiate dependent birth and
death ratest,, and u,, respectively. Le¥(t) be the number present at the
instant t, and

Pn(t) = Pr{N(t) =n|N(0) =.}

It was shown in Ch. 3 thafN(t), t >0} is a Markov process with
denumerable state spad®,1,2,..} and that the forward Kolmogoro
equations of the process are:

po(t) = —Aopo(t) + pyp1(t)

prll(t) = _(An + :un)pn (t) + An—lpn—l(t) +
.un+1pn+1(t)’n = 1) 2)

(see equations (4.4) and (4.6), Chapter 3).

We proceed to investigate the steady state sakitidssume that such
solutions exists, thedim;_.p,(t) = p, = Pr{N = n}, Nbeing the random
variable giving the number of units. Puttipg(t) = p,, and p,,(f) =0, we
get from the above the following difference equadiin steady state:

0 =—Aopo + U1p1
(2.1)

0=- (An + .un)pn + An—lpn—l(t) + Un+1Pn+1, N =
1,2,.. (2.2)
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Alternatively, we can obtain the steady state badaequations by using the
rate — equality principle.

Fig. 10. 1 State — transition — rate diagram iofhb— death

process
Form the state — transition — rate diagram (Hi@..1) it is clear that,
for n=0, Aopo = 1Py

And forn >0, (A + un)pn + An_1Pp-1 () +

HUn+1Pn+1s

(which are the equations (2.1) and (2.2)).
From (2.2), we have for = 1, 2.,
Un+1Pn+1 — AnPn = UnDn — An—1Pn-1

= Un-1Pn-1 — An—2Pn—2 (puttingn —
1 forn)

= U1p1 — AoPo
=0 (from(2.1)),

So that Pn+1 = o Pn
Hn+1

= (2 G

_ Andp—1.-Ag
Un+1ln-H1 0

A
Or pn = [1}=1 zklpo, n=1,2,..

(2.3)

Since),;_; p, Mmust be unity,
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o .
{1 + Yo [T ™ 1} po = 1.
Mk
(2.4)
Hence a necessary and sufficient condition forettistence of a steady state |is

Ak—1
Uk

the convergence of the infinite serlgg_; [1x-; — When it convergesy,

can be found from (2.4).

The queuing processes arising in some of the stdndadels can bsg
considered as birth and death processes and th@ystéate solutions can be
obtained easily by using the above. In the M/M/1deloconsidered in Sed.
10.2, \An=4n=0,1,1,...,and u, = u,n = 1,2, ... Putting these values in
(2.3) and (2.4) we at once get the steady statgisos.

12. 2. M/M/1 Model

In order to study the M/M/1 model , first look intbe general mode
namely M/M/s model

Here we consider a queuing model w1 < s < o) servers or channels

paralleland having identical input and service time distiilns (as in the
model M/M/1). In other words, the present model M) considers a Poissop
process with parameter as its input process and has, for each of the
channels, i. i. d. exponential service time disttibn with mean rate:. If
n(< s) channels are busy, the number of service completeithe whole
system is given by a Poisson process with mgaand the time between twp
successive service completions is exponential witan1/nu; whereas if
n(<s) channels are busy, the time between two successergice
completions is exponential with meatysu. If N(t) is the number present i
the system at the instant t, the transition desssdre as follows:

—

Apni1 At = Pr{N(t+dt) =n+1|N(t) =n} =
Adt + o(dt)

Apnir At = Pr{N(t+dt) =n—1|N(t) =n} =
Updt + o(dt)

anm dt = Pr{N(t + dt) = m | N(t) = n} = +o(dt),
m+n—1n+1

Where Up =1y, if 0<n<s
=su, if n=s.

ThusN(t) is a birth and death process with constant ar(ivath) rated,, = 1

and state — dependent service (death) rates as igiy2.5).
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Let p,(t) = Pr{N(t) = n|N(0) =.}, and let the steady state solutions exist.
The state — transition rate diagram is given in E@ 2.

7 gl (s=Du SK SK
Fig. 10. 1 State transition — rate diagram of MiM/s model

Putting the values of,, and u,, in (2.3) and (2.4) we getp, and p,,,n =
1,2, .., as follows. Denot&/suby p.

Forn <s,

AA.A _wr A
Wew..mwo " Po = nupn—l’

Pn =
(2.6a)

And, forn>s

A.A.n factors

Pr = [ (@) (510} ((sH) - (s)(n—s)Factors} PO
— A" @a/w" _s W/WF
T slpuSsnsyn- = Po = slsn- stsnsPo = pn ’ s! 0
=p"ps -
(2.6h)

The condition;—, p, = 1 gives

(,1/) @/w" /v
Po _1+251 . Ens . 251 I’,L +

slsn=s
sS woo A\
s!zn:s(su) '

n
For existence of steady state solutions, the s8ljes (ﬁ) must converge,

and for this happen the utilization facpe A/su must be than 1. Then

s— 1 @a/mn /s
po =1+ E n! s1(1-A/su)’

2.7)

Thus the distribution of N, whem = A/su < i is given by (2.6), wherg, is
given by (2.7).
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Note :

1. The solutiong,, satisfy the following recurrence relations

pn==(2) Pucs n=12..5s-1
= %(ﬁ)n Pn-1 = PPn-1, n=s,s+1,..

Forn < s,{p,} behave as a Poisson distribution andrfor s as a geometrig
distribution [when n is finite.]

2. The probability that as arriving unit has to tgigiven by

C(s, A/w) = Pr{N = s} = X35 Pn

_ W s
sia-p P T 1y

This is known as Erlang’s second (or C) formula.teBsive tables arg
available.

Particular Cases
12.2.1M /M /1 Model
By puttings = 1, we get from previuos model equation (2.7) an@l(R.
po=1—-p=1-2A/u
P1 = PPo, P2 =P°Po,--
pn=p"(1-p)n=0,11,..

The distribution of the number in the system esmetric.

12.3M/M/co Model

Lettings — oo, we get from (2.7) and (2.8a),
po=e "Mt p=(A/1po, Pzzg(ﬁ/ﬂ)zpo,--

_ (l/ﬂ)ne—l/ﬂ, n=20,12,..

n n!

The distribution of N is Poisson with paraenel/ .
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12. 4 Model M/M/s/s: Loss Model (Due to Erlang

This model envisages that a unit, who finds, aival; that all the s —
channels are busy, leaves the system without wditinservice. This is called
a (s - channeljoss system and was first investigated by Erlang. Thaleh
was also examined earlier (see Example 5(d) and 6(g3).

For this birth and death process, we have

A =4, Unp=nu, n=0,1,2,..s =1
(2.9)

A =0, Un = SU, N = S.
(2.10)

The state transition — rate diagram is given in E@3

A A A A A

I gl (s=2)u (s=Du S

Fig. 10. 1 State transition — rate diagram fofVi¢/s model
From (2.3) and (2.4) we get the steady state pribtiad

_ @/wr
T o

n Do n=0,1,..,s

-1

A/ wk (A/w)*
_ /wt/n! _
Thus Pn = —i mek ,n=0,1,2,..,s.
=0 kI

The probability that an arriving unit is lost teeteystem (which is the same as
that an arrival finds that all the channels areybarsd leaves the system or is
lost) is given by

__@Q/wr/n
n S0/ Wk k!

ag/s!

= m(putting afor A/u)
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The formula (2.12) is known &%lang'’s loss formula or blocking formuknd
is denoted byB(s,a), while (2.11) is known as Erlang’s first formular (
simply Erlang’s formulga the corresponding distribution being truncat
Poisson).

Note :

1 Attempts have been made since Erlang’s timeet@iglize Erlang’s results.

Mention may be made of the works of Pollaczek, P&asten, Fortet, Sevast
yanov and Takacs. It has been shown that Erlarmgisifla (2.11) holds for|
any distribution of service time (having meayu) provided the input is
Poisson (with parametay, i. e. it holds for the model M/ G/s/s (loss &ys).

2. See also Example 5(d) Ch. 3.
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UNIT XIIl NON — MARKOVIAN
QUEUING MODELS

13.1 Introduction

13.2 M/G/1 queue
13.3 Pollaczek — Khinchine formula

13.4 GI/M/1 Model

13.1 Introduction

So long we have been discussing queuing procedsiehl are either birth and
death or non — birth and death processes. Thejnaggher case Markovian
and the theory of Markov chain and processes doelldpplied in their studies.
We shall now consider models where the distribtiohthe inter-arrival time
or the service this do not possess the memoryesperty, i.e. are not
exponential. The proce$d/(t)} giving the state of the system or system size
at time t will then be no longer Markovian; howevéne analysis of the
process can be based on an associated process ishiMharkovian. Two
techniques are generally being used for this perpiendall (1951) use the
concept of regeneration point (due to Palm) byaklgt choice of regeneration
points and extracts, from the procéaKt)}, Markov chain in discrete time at
those points. This is known as the technique ofeialed Markov chains. The
second important technique due to Cox(1955) (seekabilson and Kooharian
(1960)) and known as supplementary variable tecl&imvolves inclusion of
such variable(s).

We discussed below Kendall's method.

13.2 Queues with Poisson Input: Model M/G/1

Assume that the input process is Poissdh witensity4 and that the
service times are i. i. d. random variables hawangrbitrary distribution with
mean1/u. Denote the service time hy its d. f., byB(t), its p. d. f., when it

exists, byb(t)(= B'(t)), and its L.T. by
B*(s) = [, e tdB(b).

Let t,,n=1,2,..,(t, = 0) be then'™ departure epoch, i.e. the instant at

which then®” unit completes his service and leaves the systérese points

t, are the regeneration points of the procéakt)}. The sequence of points

{t,} forms a renewal processV(t, + 0), the number in the system
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immediately after tha'" departure has a denumerable state sf§de2,..},
Write N(t, +0) = X,,n=0,1,.. and denote by, the random variablg
giving the number of units that arrive during tieevice time of thea" unit.

Then Xn+1 = Xn - 1 + An+1, lf Xn 2 1
= An+1 if Xn=0
(3.1)

Now the service times of all the units have theesamtribution so that
A, =Afor n=1,2,..We have

e_lt(lt)r

Pr{ A = r | service time of a unitist} = -

o= At

And so kr=Pr{A=1}["
(3.2)

W ab), r=01,2,..

r

gives the distribution of A, the number of arrivdisring the service time of §
unit. The probabilities

bij = Pr{Xni1 =j|Xn= i}

Are given by
Pij:kj—i+1» i=1j=2i—-1
=0, i>21,j<i-1
(3.3)
Poj =Dij = k;, j=0.

The relations (3.3) clearly indicate tHat,,n = 0} is a Markov chain having
t. p. m.

kokiks

koklkz e
P=(py) = [ 0 kik }
|--|- en

(3.4)

As every state can be reached from every othex,dta¢ Markov chaiit,,} is
irreducible. Again ap;; > 0, the chain is aperiodic. It can also be shown tf

nat,
nd

when the traffic intensitp = 1/u < 1, the chain is persistent, non — null aj
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hence ergodic. We can then apply the ergodic theooé Markov chain
(Theorem 2.11).

13. 3. Pollaczek — Khinchine Formula

The limiting probabilities

'Uj = limn_,oopi(]@, ] = 0, 1, 2, -

Exist and are independent of the initial state heTprobabilitiesv =
(v, v1,..), Xv; = l,are gives as the unique solutions of

V =VP.

Let K(s) = Yk;s’ and V(s) = Yv;s/ denote the p. g. f. of the distributions of
{k;}and {v;} respectively.

. (oo o= j
We have K(s) = 520 kys! = 35057 {7 22 ap(o)

0 j!
= ["e(-2=9) t 4B (t)

= B*(1— 1s).
(3.5)

Hence E(A) =K'(1) = —AB*D(0) = 1/u = p.
(3.6)

Now V = VP gives an infinite system of equations. Multiplyitige (k + 1)st
equation bys*, k = 0,1, ... and adding ovek, we get, on simplification, for
0<p<l],

1-K'(D}(1-5) K(s)
K(s)-s

V(s) =1

(see
Example 8, Ch. 2)
PuttingK'(1) = p we get
_ @-p)(A-s)K(s)
V(S) - K(s)-s

(3.7)

_ (1=p) =5)B* (A—As)
- B*(A-As)-s

This is known as Pollacke - Khinchine (P. K.) formula.
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13. 3. 1 Busy Period

The expected duration of the busy period T follaomsnediately from the
result noted in Example 10(a), Fo 1, we have

E(I)
E(D)+E(T) '

bo = limnaw{N(t) =0} =

Clearly, the idle period here is exponential with medry4, since the inter-
arrival distribution is so. As stated in the rensanoted earlier in this sectior
pn = vy, for all n. From equation (3.7) we find thag, the constant term in
V(s), is given byv, = 1 — p, so that

1 1/1
po=1-p= 1/A+E(T)

Whence E(T) = ﬁ = 1;*(_12 (v being the service time).
(3.8)

Note thatE (T) for an M/G/1 queue has the same form as thatrfoAvi/1
queue.

Thus, given the mean arrival and service ratesexipected duration of a bus|
period in a queue with Poisson input is independenthe form of the
distribution of the service time.

13. 4 GI/M/1 -Model

Here we assume that the service time distributsoexiponential with mear
1/u and that the inter — arrival time is a randomafale u, having an arbitrary
distribution with meari /4. Denote the d. f. of u by(t) and its p. d. f., when
it exists, bya(t); its L. T. is given by

A*(s) = [" e StdA(t)
(4.1)
So that A0) = L 4(5) lmo = (~D* EQWX)
(4.2)
And fork = 1,A*W(0) = — 1/

Lett,,n=1,2,..,(t, = 0) be the epoch at which thé" arrival occurs.
The processV(t, —0) =Y,, n=0,1,2,.. gives the number in the syste
immediately before the arrival of thé" unit. Then

Yny1 =Y +1— By, if Yn =0, Bpyr < Yogq,

M
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Where B,,,, is the number of units served durig,,; — t,), i.e. the inter-
arrival time between the™ and (n + 1)st unit. As B, is independent of n,
i.e. B, for all n, its distribution is given by

gr=Pr{B =1r}= fomw dA(t), r=0,1,2, ...
(4.3)

13. 4. 1 Steady State Distribution

The arrival point conditional probabilities

pij = Pr{Yn+1 =] |Yn =i}

Are given by
Dij = Gi+r-j» l+12]21, i=0
(4.4)
=0,i+1<},
Thus po=1-Yipj=1— 23'211 Jitr—j
=1-Y1-09r = hi (say), i 2 0.
(4.5)

Since allp;;'s depend only ot and j, {Y,, n = 0} is a Markov chain having
t. p. m.

hogo 0 0 0

[
| hi9190 0 O
P = (pij) = l[ h2929190 0O

e —

(4.6)

As g, > 0, the chain is irreducible and aperiodic. It carodle shown that it is
ergodic, persistent non — null when< 1. Thus, when p < 1,i.e. in the
ergodic case, the limiting arrival point systemegmobabilities

Uj = limnﬁmPiS-n)
Exist and are given as the unique solution of {fstesn of equations

V =VP,
4.7)
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Where V= (v vy,..), Xv;=1.
We now proceed to find V.

LetG(s) = Y%, g-s” be the p. g. f. ofg,}, i.e. of ther. v. B, the number o
units served during an inter — arrival intervale Wave

G(s) = X720 GrS"
=32 s 7 qae)
= [" e HI9t dA(L)
= A*(u(l — s)).
Also E(B) = G'(1) — uA*® (0)
The equations (4.7) can be written as

_ [e'e)
Vo = 27‘:0 Urhr

(4.8)

v = =0 Vryj-19r, J 2 1.
(4.9)

Denoting the displacement operator Byso E" (vy) = vy, etc.), we can
write (4.9) as a difference equation

E(vj-1) = v =27% 6,E"(vj-1), j21
or, {E =320 9+E"}(vj-1) = 0
Or, {E-GE)v_,=0, j—-1=1.

This equation can be solved by the method giveippendix Sec. A. 2. Theg
characteristic equation of the difference equaison

r(z2)=z—-G(z)=z—A"(u—puz) =0.

It can be shown that whe@®'(1) =1/p > 1,i.e. p < 1,r(z) has only one
zero inside |z| = 1. Assume thatp < 1,then, if the root ofr(z) =

0 inside |z| = 1 is denoted byr, and the roots on and outsifld = 1 are
denoted by,, s, s,, ... then the solution of (4.10) is

vj = Coroj + Zi DiSij, ] = 0.

WhereC,, D; are constants.

f
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But since };v; =1, D; = Ofor all i. Thus, whenp <1, we get, v; =

Coroj,j > 0and from
j=ovj = 1, we getCy = 1 — 1, so that
v, =(1- ro)roj,j > 0.

The steady — state arrival point system size hgsoanetric distribution with
meanr, /(1 — 1), 1, being the unique root @fz) = 0 lying inside|z| = 1.

Remark:

We take as regeneration points the arrival epatlease of GI/M/1 model and
departure epochs in case of M/G/1 model. The qgepiincesses occurring in
the two models M/G/1 and GI/M/1 are non Markovihawever by extracting
processes at these regeneration points, it has fiessible to obtain Markov
chains from those processes. The embedded Markaw<lndicatesystem
stateat regeneratiopoints. What one needs also is the distributiogesferal
time system state

Let us now consider the queuing processGtM/1, having for its
embedded Markov chaitY,,}, whereY,, in the system size immediately prior
of n¥" arrival. We have obtainefb;}, the limit distribution of{Y,}. Define
Z(t) =Y, t, <t <t,y1. Then{Z(t)}, where Z(t) gives the system size at
the most recent arrival, is a semi — Markov prockasing {Y,} for its
embedded Markov chaify,, t,}is an irreducible Markov renewal process.

Let N(t) denote the system size at an arbitrary time toen
fij(© =Pr{Z(t) =j | Z(0) = i}
p;ij(t) = Pr{N(t) = j | Z(0) = i};

Thef; = lim,.f;;(t)gives the limiting probability that the system sifethe
s—M.P.Z(t) is j, whereas p; =lim p;;(t) as — oo, gives the limiting
probability that the system size of the generaktproces®V(t) is j.

We have to look for relationship, if any, existibgtween the three limit
distributions{v;},, {f;}and{p;}.

From theorem 7.1, we find that and f; are related as follows:
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— _uiMj
fi = YiviM;’
(4.12)

WhereM; is the expected time spent in the state | duradhevisit.

The transitions, in case of this model, occur atdtrival points which are itg
regeneration points. Thug;, the expected time spent in a state | during e
visit is the expected inter-arrival time. IN otheords, M; = 1/A for all i.
Putting the value af; in (4.13), we get

Yvj

vi /A
f}'_ J —

TS /A Siv vy forall),

= (1 —ro)r) (from (4.11)).

In order to obtairp; in terms off;(and terms of v;)we have to make use @
the relationship betweefi and p; .

It is shown that for this particular model,

pj = (A/1) fj/7o,

= /WA =)y =y, j21
And po=1—-21/u.
We get

Mean =p/(1—1y) and variance
=p(1—p+19)/(1—1p)>.

b
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UNIT — XIV Non -Birth -Death Queuing
ProcessesBulk Queues

14.1 THEM* /G /1 QUEUE:

14.2 The state Probabilities

14. 3. The Waiting — Time Probabilities
14.4.Alternative algorithm

14.5 TheM* /G /c Queue

4.6 TheM*/D/c queue

14.1 THEM* /G/1 QUEUE:

A useful model is the single — servéfX/G/1queue where batches of
customers arrive according to a Poisson procesh wate A and the batch
size X has a discrete probability distributi¢fi;, j = 1, 2,..} with finite
meanp. The customers are served individually by a sisgleer. The service
times of the customers are independent random blasiawith a common
probability distribution functiorB(t). Denoting by the random variable S the
service time of a customer, it is assumed thatstdrger utilizationp defined

by
p = ABE(s)

Is smaller than 1. The analysis for tMg/G /1 queue can be extended to the
MX/G/1 queue.In section 9. 3. 1 we give an algorithm for thatet
probabilities. The computation of the waiting — eimrobabilities is discussed
in section 9. 3. 2.

14. 2 The State Probabilities

The stochastic procegé(t), t = 0} describing the number of customers in
the system is regenerative. The process regenéisgtfieach time an arriving
batch finds the system empty. The cycle lengthaasntinuous distribution
with finite mean. Thus the procegs(t)} has a limiting distributiofp;}. The
probability p; can be interpreted as the long — run fractionimietthat |

142



customers are in the system. The probabipty allows for the explicit
expression

po=1-p.

To see this, we apply the ‘ reward principle’ thads used in section 2.3 t

obtain Little’s formula. Assume that the systemrnea reward at rate 1

whenever a customer is in service. Then the averagard per time unit
represents the fraction of time that the servdiusy. The long — run averag
reward earned per customer is equaEtg), while the long — run averag
arrival rate of customers 3. Hence the long — run average reward ear
per time unit equaldp E(s). The long — run fraction of time that the server,
busy equalsl —p,. This shows thatl —p, = A8 E(s) = p.A recursion
scheme for the is given in the following theorem.

Theorem 14. 3
The state probabilitiep; satisfy the recursion

pj = /1p0 Z£=1 ﬁsaj—s + /12;;=1(Z;(=0 p; Zs>k—i ﬁs)aj—S’ ] -
12..,

Where
a, = [ rO{1 - B}, n=0,1,..
with 7, (t) = P{ atotal of n customers will arrive in (0, t).}

Proof: The proof is along the same lines as the prooffefofem 9. 2. 1. The
only modification is with respect to the up — atwvn-crossing relation (9
2. 1). We now use the following up — and down —ssiag argument : thd
number of down — crossings from a state in thg/ket 1,k + 2, ...} to a state
outside this during one cycle equals the numbaspstrossings from a stat
outside the set{k + 1,k + 2, ...} to a state in this set during one cycle. TH
relation (9.2.5) generalize to

E(Ny) = XK E(TDA Yor—iBs, k=0,1,...
The remainder of the proof is analogous to the fpobdheorem 9. 2. 1.

The recursion scheme (9. 3. 2) is not as easyjty &s the recursion schem
(9. 2. 1). The reason is that the computation efdbnstants,, is quite burden
-some. In general, numerical integration must bedusvhere each functiof
evaluation in the integration procedure requinesapplication of Adelson’s

hed
S

112
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e
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recursion scheme for the computation of the comgdeoisson probabilities
1, (t),n = 0;

The best general — purpose approach for tmpatation of the state
probabilities is the discrete FFT method. An expliexpression for the
generating function

P(z) = }?';opjzj, lz| <1

Can be given. It is a matter of tedious algebraetave from ((9. 3. 2)) that

1-Aa(z) {1-G(z})
1-2a(z) {1-G(z})/(1-2)

P(z)=(1-p)
(9. 3. 3)

Where

G(2) = X720 Bi7 and a(z) = [, e *1-6@1 (1 — B(D))dL.

The derivation uses thae~*{1-¢(®% is the generating function of the
compound Poisson probabilities;, (t); see Theorem 1. 2.1. Moreover, the
derivation uses that the generating function ofdtevolution of two discrete

probability distributions is the product of the geating functions of the two

probabilities distributions. The other detailstioé derivation of (9. 3. 3) are

left to the reader. For constant and phase-typeices; no numerical

integration is required to evaluate the functiefz) in the discrete FFT

method.

Asymptotic expansion:

The state probabilities allow for an asymptotic axgion when it is assumed
that the batch-size distribution and the servioeetdistribution are not heavy-
tailed. Let us make the following assumption.

Assumption 14. 3. 1

(a) The convergence radrisf G(z) = X7, ;2 is larger than 1. Moreover,
J, est{1 — B(t)}dt < oofor somes > 0.

(b) lims_p fowe“{l — B(t)}dt = o, where B is the supremum over all s
with

J, est{1 - B(t)}dt] < oo,
() limy_g,G(x) = 1 + B/A for some numbeR, with 1 < Ry < R.
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Under this assumption we obtain from Theorem @ Appendix C that

pj~0 T/ as j — oo,
(9. 3.4)

Wherer is the unique solution to the equation

Aa(D){1-G6(x)}=1-1
(9.3.5)
On (1, Ry) and the constant is given by
-1

(1-1)6' (1)
1-G(1)

o=01-p)1-7) |1 @1 -6} -
9. 3. 6)

+1]

A formula for the average queue size

The long — run average number of customers in eusuL, =
721G — Dp;. Using the relationP’(1) = X2, jp;, we obtain after some
algebra from (9. 3. 3) that
_1 2y P: L _p [EX?)
Ly = 2 (1+¢5) 1-p + 2(1-p) [E(X) 1]’
Where X denotes the batch size. Note that the ffiast the expression fdr,
gives the average size in the standard M/G/1 quebde the second par
reflects the additional effect of the batch sizéwe formula forL,implies
directly a formula for the long — run average ddalagueue per customer. B
Little’s formulaL, = AW, .

14. 3. The Waiting — Time Probabilities

The concept of waiting distribution is more sulftiethe case of batch arrival
than for the case of single arrivals. Let us asstimé customers from eac

arrival group are numbered as 1, 2,... Service tdoousrs from the same

arrival group is given in the order in which thasestomers are numbered. F
customers from different batches the service isrder of arrival. Define the
random variableD,, as the delay in queue of the customer who resdive
nt" service. In the batch — arrival quelien,,_,., P{D,, < x} need not exist. Tg
see this, consider the particular case of a cohdiatth size of 2. Ther
P{D,, > 0} = 1 for n even an®{D,, > 0} < 1 for n odd. The limit

We() = limyoo = Sh_y P{D < x},  x20

[

DI
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Always exists. To see this, fix x and imagine taaeward of 1 is earned for
each customer whose delay in queue is no more xhadmsing renewal —
reward theory, it can be shown that the libtjf(x) exists and represents the

long — run fraction of customers whose delay inugus no more than x. If
the batch size distribution is non — arithmetigrthim,,_, ., P{D,, < x}exists
and equalst; (x).

Denote by
b*(s) = f, e *b(x)dx

The Laplace transform of the probability dendify) of the service time of a
customer. LeBs-(s) be the Laplace transform of the probability dgneitthe
total time needed to serve all customers from atehb It is left to the reader
to verify that

Bsc(s) = Z?ﬂﬁk[b*(S)]" = G(b*(s)).
The following result now holds:

[y e {1 = W ()}dx = e,

9. 3.7) )

Where

1-G(b"(s))

*Y\ (l—p)s * —

S=A+ABgc(s)

With g =Y, kB, denoting the average batch size. The waiting -e tim
probabilities W, (x) can be numerically obtained from (9. 3. 7) by gsin
numerical Laplace inversion .

We give only a heuristic sketch of the oroof of 8 7). A rigorous
treatment is given in Van Ommeren (1988). An esakpart of the proof is
the following result. Fok = 1,2, ..., let

nk = the long — run fraction of customers taking #f& position in their
batch.

Then it holds that
1 (o]
nk=EZj=kﬁj; k=1,2,..
(9. 3.8)

To prove this result, fix k and imagine that a redvaf 1 is earned for each
customer taking thé&®" position in its batch. Then the long — run average
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reward per customer igc by definition. By the renewal — reward theoreng th
long —run average reward per customer equals thgected reward
Y= Bjearned for a single batch divided by the expectdhbsizes. This

gives (9. 3. 8). Consider now a test customer lggtmnto a batch that arrive
when the system has reached steady state. Dend@&%bythe delay in queus
of this test customer. The del&y™ can be written aB(* = X, + X,, where

X, is the delay caused by the customers presenbédiste the batch of the test
customer arrives andl; is the delay caused by customers belonging to
batch of the test customer. The random varialiijeend X, are independen{

of each other and s#@ (e‘SD(w)) = E(e SX0)E(e~5%1), Assuming that the

position of the test customer in the batch is iisted according ténk}, we
have by (9. 3. 8) that

U7y

—

R = B O = IS O TR

1-G(b*(s))

_lymo p yo * k-1 _
= g 2=k B Ziczalb™()] BI1-b*(s)]

To find E (e~5%0), note that an arriving group of customers can besicered
as a singly arriving super-customer. The probabdensity of the total time
The probability density of the total time to seweuper — customer has the
Laplace transformBs-(s). In other words, the delay in queue of the fifst
customer of each batch can be described by a sthMi&/1 queue for which
the service — time density has the Laplace tramsf@d.(s). Thus, using the
result for the M/G/1 queue.

—sX, _ (1_p)5
E(e™) = S—A+AB5c(s)

Since fooo e {1 - W,(x)}dx =s71 [1 -E (e‘SD(w))] by relation in
Appendix E, we have now derived (9. 3. 7) heuralyc

14.4 Alternative algorithm:

=

A simpler algorithm than numerical Laq inversion can be given fd
the M¥/D /1 queue with deterministic services, This alterratigorithm is
discussed in Section 9. 5. 3 in the more generaiest of theM* /D /1 queue.
A simple algorithm is also possible when the sentime of a customer is i
mixture of Erlangian distributions with the samalecparameters. In this cage
the service time of a customer can be interpretedaarandom sum of
independent phases each having an exponentialiybdi®d length with the
same mean. Th&¥* /G /1 queue with generalized Erlangian services is @ fa
anMY /M /1 queue in which the batch size Y is distributedhastotal number

-
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of service phases generated by all customers irbateh. For this particular
M*/G/1 queue the waiting - time probabilitié, (x) can be computed by a
modification of the algorithm gives in Example 515

Approximations for the waiting — time probabilities

Suppose that Assumption 9. 3. 1 is satisfied ahbl(t) denote the density of
the service — time distribution functid(t). Then the following asymptotic
expansion applies:

1— W, (x) ~ye ®* asx > o,
Whereé is the smallest positive solution to
2 BT e bydt) =142
And the constant is given by
y =S8 12 [P et b®)de T2, B () e b(t)dt}j_l]_l

X[1— [ e% b(tyde] .

14.5 TheM* /G /c Queue

In the M*X /G /c queue the customers arrive in batches rather gimayhy. The
arrival process of batches is a Poisson proces$sratieéA. The batch size has a
probability distribution{s;, j = 1,2,..} with finite meang. The service times
of the customers are independent of each othehawel a general distribution
with meanE(s). There are c identical servers. It is assumed tthetserver
utilization p, defined by

_ MBE(S)

)
c

Is smaller than 1. The customers from differentbes are served in order of
arrival and customers from the same batch are denviéne same order as their
positions in the batch. A computationally tractabfealysis can only be given
for the special cases of exponential services atdrihinistic services. We
first analyse these two special cases. Next weusis@ two — moment
approximation for the genersd* /G /c queue.
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14.5.1 TheMX /M /c queue

The proces$L(t)} describing the number of customers present is

continuous — time Markov chain. Equating the rate/tsich the process leave
the set of statef,i + 1,..} to the rate at which process this set of states,
find for the state probabilitigs; the recursion scheme

min(i, ¢) up; = LjoPrd Lssi-kBsr i = 1,2, ...
(9. 6.32)
Whereu = %S) Starting withp, := 1, we successively compujg, p,, .. and
next obtain desireg; by normalization. The normalization can be based
Little’s relation

vy +c(1—-X55p) =cp
(9. 6.33)

Stating that the average number of busy serveraleqo The computational
effort of the recursion scheme can be reduced bgguthe asymptotic
expansion,

pj~at 7/ asj - o,
©. 6. 34)

Wherer is the unique solution of the equation

At[1-B@)] =cp(1—1)
(9. 6. 35)

On the interval1, R) and the constart is given by

_ =D R (e=ipiti/c
1-A72B" () /(cp)

(9. 6. 36)

Here B(z) = Z;‘;lﬁjzf and R is the convergence radius of the power s¢
B(2). To establish the asymptotic expansion, it is agslthatR > 1. In other
words, the batch — size distribution is not heavgited. The derivation of the
asymptotic expansion (9. 6. 34) is routine. Defthe generating functior]
P(z) = X% ijj, |z] < 1.lt is a matter of simple algebra to derive from@9.
32) that

(1/¢) X2 (c—Dp;zt

P(2) = e syt

Next, by applying Theorem C.1 in Appendix C, weaobt(9. 6. 34).

[72)
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From the generating function we also dem¥ter considerable algebra
that the long — run average queue size is given by
1

_ c—1:(n p__(E(Xx?) P
Lq = c(1-p) i=oJ(c —Dp; + 2(1—p){E(X) 1} t 1, P

Where the random variable X denotes the batch size.

Next we discuss the computation of the steady te gtibability distribution
function W, (x) of the waiting time of a customer. The functidty, (x), is
defined in the same way as in section 9. 3. 2.ifid W, (x), we need the
probabilities

z; = the long — run fraction of customers who havehgottustomers in
front of them just after arrivalj,= 0, 1, ...

The delay in queue of a customer who ha&sc other customers in front of
him just after arrival is the sum ¢f— ¢ + lindependent exponentials with
common meanl/cu. Hence this conditional waiting time has &pn ..,
distribution and so

) K
_ j—c - (cux)
1-W,(x) = X527 Yo C“XT, x = 0.

A computationally better representation Fgj(x) is
k
1— Wo(x) = Bpe (1 - 3hiez), x 2 0.
(9. 6. 37)

The probabilitiesz; are easily expressed in terms of theTo do so, let
1 oo
nk=EZ]=kﬁ]’ k=1,2, e

Then, as shown in Section 9. 3. 2, The probabijitygives the long — run
fraction of customers who take th& position in their batch. Since the long —
run fraction of batches finding m other customeamsspnt upon arrival equals
Pm, We find

2j = Yo Pmllj-m+1, J =0,1,...

For the case of exponential services this formudam de considerably
simplified. Using the recursion relation (9. 6. 3&g have

Zj = %mln(} + 1, C)pj+1, ] = 0; 11 e
9. 6. 38)

150



This completes the specification of the exact algor (9. 6. 37) for the
computation of the waiting — time probabiliti®, (x). The computational
effort can further be reduced by using an asympttpansion fod — W (x).
Inserting (9. 6. 34) and (9. 6. 38) into (9. 6.,3¥¢ find after some algebr
that

—c 1
-0~ 250 asx e

(9. 6. 39) 1

Wheret and o are given by (9. 6. 35) and (9. 6. 36).

14.6 TheM* /D /c queue

Suppose that the service time of each customea onstant D.
Denoting byp;(t) the probability that j customers are presentaett, we
find by the same arguments as used in SectionDtlt

pi(t+D) =3 op ) 1(D) + Te e (®) 1y (D), j =
0,1,..

Where the compound Poisson probabilitgD) is defined by

r;(D) = the probability that exactly j customers arriveridg a given time
interval of length D, j =0, 1, ...

Lettingt — oo, we find the system of linear equations

pj = 15(D) TicoPi + Tty Tokre @D j=0,1,...
(9. 6. 40)

Together with the normalizing equatigifZ,p; = 1. Just as in the M/D/q
case, this infinite system of equations by usirg geometric tail behavior o
thep;. It holds that

pj~at as j- oo,
©. 6. 41)

Wherert is the unique root of the equation

TceAD{l_B(T)} = 1
(9. 6. 42)

On the interval (1, R) and the constaris given by

0

f
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o= [c—ADTB" ()] Xj= Op](TJ—T)
(9. 6.43)

As before f(z) = Zjilﬁjzf and the numbeR denotes the convergence
radius of power serieg (z).

It is assumed thaR > 1.

In general however , it is computationally simgl@rcompute the state
probabilities p; by applying the discrete FFT method to the geiregat

functionP(z) = Z}?';lpjzf. In the same way as (9. 6. 6) we derived, we obtain

p _ Z]'?;gpj(zf—zc).
(2) = cobasan

(9. 6. 44)

Since the generating function of the compound Baiggobabilitiesr;(D) is
given by e*P1-8@}.  Before the discrete FFT method can be applied, th
unknown probabilitie®,, .....p._,; must be removed from (9. 6. 44). To do so,
we proceed in the same way as in Section 9. 6.dlrawrite P(z) in the
explicit form

_ c(1-p)(1-2) c—1 (2=zk
P(2) = - wisay Hi=1 75 )

(9. 6. 45)

Wherez, = 1, z,, ..., Z,_, are the c distinct roots afe?P11-(®} = 1 inside
or on the unit circle. The computation of the romts...z._, is discussed in
Appendix G. The asymptotic expansion (9. 6. 41lpfe$ from the generating
function (9. 6. 44) and Theorem C. 1 in AppendixATso, we obtain after
considerable algebra from (9. 6. 44) that the lengn average size is given

by

|(p)? = clc = 1) + ZZRclc — 1D —jG - Dip; +

4~ 2c(1-p)
CPEX2EX—1,

Where the random variable X denotes the batch $ize.relation can be used
as an accuracy check on the calculated valuesgirthbabilitieg;.
Waiting — time probabilities in the MX /D /c queue

In the batch — arrivaM*/D/c queue, the waiting — time probability
W (x) is defined as the long — run fraction of customengse time in queue
is no more tharx, x = 0, The expression (9. 6. 9) fa¥,(x) in the M/D/c
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queue can be extended to M& /G /cqueue. For any with (k —1) D < x <
kD and k = 1,2, .., it holds that

Wo(x) = k20 Minar 2ico "™ Que—1-m—;7j (KD — x)
(9. 6. 46)

WhereQ; = Y&} p; for j = 0,1, ... and the probabilityy,. is defined by
T]T =%2;o=rﬁj; r = 1,2, e

This result is due to Franx (2002). Its proof via# omitted . The asymptoti
expansion

A4

1-W,(x) ~y e MPO-Ux gox - oo
(9. 6. 47)

Holds with

_ _olp@®-1]
T (-2t g

Where t and o are given by (9. 6. 42) and (9. 6. 43). This resaln be
derived in a similar way as expansion (9. 6. 1¥)the M/D/c queue was
obtained.

14.6 TheM* /D /c queue

—t

An exact and tractable solution for th&/D/c queue is in general no

possible except for the special cases of detertitrasd exponential services.

Using the solutions for these special cases, weusaful approximations fol
the generalM*/G/c queue. A practically useful approximation to the
average delay in queue per customer is

anpp =(1- CSZ)Wq(det) + CSZWq(exp),

Provided that? is not too largésay,0 < c¢2 < 2) and the traffic load is no
very small. It was pointed out in Section 9. 3 thhe first — order

approximation%(l + c$)W, (exp) is not applicable in the batch — arriva

gueue. A two — moment approximation to the perteswi(P) of the waiting —
time distribution of the delayed customers is pded by

napp(p) =(1- Csz)ndet(p) + Csznexp(p), 0<p<
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However, it turns out that in the batch — arrivalse the two — moment
approximation ton(p) works only for the higher percentiles. Fortunately
higher percentiles are usually the percentilemtdrest in practice. Table 14.
6. 3 gives theM*/E,/c queue the exact and approximate values of the
conditional waiting — time percentileg P) both for the case of a constant
batch size and the case of a geometrically digtohibatch size. In both cases
the mean batch sizB(X) = 3. The normalizationE(S) = 1is used for the
service time. The percentileg,, (p) for exponential service ang..(p) for
deterministic services have been computed fromaflyenptotic expansion (9.
6. 39) and (9. 6. 47). These asymptotic expansamesdy apply for moderate
measure for the traffic load is the probability tthall servers are
simultaneously busy. This probability is B =1 — f;(l) p;. As a rule of
thumb, the asymptotic expansions can be for prcturpose forx >

E(X)E(S)
—F when Pg > 0.2.

BEST
WISHES
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