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INTRODUCTION 

Mechanics is a branch of the physical sciences concerned with the state 

of rest or motion of bodies that are subjected to the action of forces. 

The study of mechanics involves many more subject areas. However, 

initial study is usually split into two areas; Statics and Dynamics. 

Statics is concerned with bodies that are either at rest or move with a 

constant speed in a fixed direction. It utilizes principles of physics and 

calculus. It is fundamental in many different branches of engineering, 

from mechanical to civil engineering, and the principles of equilibrium, 

moment of inertia, and center of gravity will be revisited in more 

advanced fields. It is because an understanding of these topics is so 

crucial that statics does not cover a wide range of topics. Every 

problem will deal with some combination of two equations: the net 

forces being equal to zero, and/or net moments being equal to zero. 

Dynamics is the study of bodies in motion. Dynamics is concerned with 

describing motion and explaining its causes. The general field of 

dynamics consists of two major areas: kinematics and kinetics. Each of 

these areas can be further divided to describe and explain linear, 

angular, or general motion of bodies. The fundamental concepts in 

dynamics are space (relative position or displacement), time, mass, 

and force. Other important concepts include velocity, acceleration, 

torque, moment, work, energy, power, impulse, and momentum. The 

broad definitions of basic terms and concepts in dynamics will be 

introduced in this chapter. 

Basic Concepts 

                Time is the measure of a succession of events and is a basic 

quantity in dynamics. Time is not involved in the analysis of statics 

problems. Time is a scalar quantity. 

                Length is needed to locate the position of a point in space and 

describes the size of a physical system. Once a standard unit of length 

has been defined, it is possible to define distances and geometric 

properties of a body as a multiple of the unit of length. Length is a 

scalar quantity. 

Volume is a measurement of the physical size of an object. It refers to 

how much space an object takes up. Volume is a scalar quantity. 

                 Mass is a different measurement of the size of an object. The 

mass, measured in kilograms, depends only on the amount of matter 

forming the body. Mass is a scalar quantity. 

                 Density is related to mass and volume. It is defined as the 

mass per unit volume. This means that an object that has a large mass 

but a small volume will have a large density. Density is a scalar 

quantity. 

                Equilibrium is a number of forces act on a body and keep it at 

rest, the forces are said to be a in equilibrium 
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               Speed is a measure of how quickly a body is moving. It is 

defined as distance travelled per unit time. Speed is a scalar quantity. 

Forces are influences on a body or system which, acting alone would 

cause the motion of that body or system to change. A system or body at 

rest and then subjected to a force will start to move. To work with 

forces we need to know the magnitude (size), direction and the point 

of application of the force. Forces are vector quantities.  

                    Displacement is a measure of distance in a particular 

direction. Displacement is a vector quantity. Velocity is the rate of 

change of displacement with respect to time. Velocity is a vector 

quantity. 

                    Acceleration is the rate of change of velocity with respect to 

time. Acceleration is a vector Quantity. 

                     Momentum is defined as the product of an object’s mass and 

its velocity. This is a very important quantity in mechanics. It arises in 

many problems particularly those involving collisions. Momentum is a 

vector quantity. 

 

 



 

1 
 

Law of Forces 

 

NOTES 

Self Instructional Material 

 

 

 

BLOCK I 

LAW OF FORCES AND RESULTANT OF 

FORCES 
 

UNIT- I     LAW OF FORCES 

STRUCTURE 

1.0 Introduction  

1.1 Objectives  

1.2 Resultant And Components: Definition 

1.3 Simple Cases of  Finding the Resultant  

1.4Parallelogram of Forces: Theorem   

1.5Analytical Expression for the Resultant of Two Forces 

1.6 Worked examples 

1.7 Answers to Check Your Progress Questions 

1.8 Summary 

1.9 Keywords 

1.10 Self Assessment Questions and Exercises 

1.11 Further Readings 

1.0 INTRODUCTION 
     In this chapter, we will discuss about Forces acting at a point.  First, we will 

know definition of Forces. After that we will discuss about which kind of forces 

acting at a point. We may define force as any cause which produces or tends to 

produce a change in the existing state of rest of a body or of its uniform motion in a 

straight line. A force will be completely known when we know (i) its magnitude 

(ii) its direction and (iii) its point of application (i.e.) the point of the body at which 

the force acts. Since a straight line has both magnitude and direction, a force can be 

conveniently represented by a straight line through the point of application. Such a 

straight line representing a force is called a vector. The direction of the force is 

indicated by the order of the letters (i.e.) AB (read as a vector AB) represents a 

force acting from A to B and BA represents a force acting from B to A. 
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 Very often we represent a force acting at O in the direction OA by a straight 

line, say BC, parallel to OA and of suitable length. In such cases it must be 

understood that BC represents the force only in magnitude and direction but is not 

its line of action. 

        The force F at A along AB and the force F at B along BA are equal and 

opposite. Therefore, they are in equilibrium and may be removed. Thus we are 

left with a force F at B acting along BX and its effect is the same as the 

original force F at A. This is the principle of transmissibility of a force. 

         It is clear that the point of application of a force acting on a rigid body 

can be taken to be anywhere on its line of action. Thus when a force acts on a 

rigid body, it is not necessary to known its point of application. It is sufficient 

if we know its magnitude, direction and line of action. 

1.1 OBJECTIVES 
After going through this unit, you will be able to: 

 Understand what forces is 

 Explain about Resultant of two forces 

 Discuss forces and resultant of two force examples 

1.2 RESULTANT AND COMPONENTS: DEFINITION 

If two or more forces F1, F2, F3,,....... etc.  act on a rigid body and if a 

single force R can be found whose effect on the body is the same as that of 

all the forces F1, F2, F3,.......... etc. put together, then the single force R is 

called the resultant of the forces F1, F2, F3,.......  etc. and the forces F1, F2, 

F3,.......  etc. are called the components of the force R.  

1.3 SIMPLE CASES OF FINDING THE    RESULTANT 
If forces P and Q act in the same direction simultaneously on a particle, 

the resultant is clearly equal to a forces P + Q acting in the same direction 

on it. If howeverP and Q act in opposite directions, their resultant is clearly 

equal to P ~ 𝑄 and acts in direction of the greater force.  

  When two forces acting at a point are in different directions (i.e.) are 

inclined to each other, their resultant can be found with the help of a 

fundamental theorem in statics known as the law of the parallelogram of 

Forces. 

1.4 PARALLELOGRAM OF FORCES: THEOREM 
  If two forces acting at a point be represented in magnitude and direction, 

by the sides of a parallelogram drawn from the point, their resultant is 

represented both in magnitude and direction by the diagonal of the 

parallelogram drawn through point. 

  Formal proofs of this law have been given by Bernoulli,   
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D‟ Alembert and Duchayla. The law can be verified experimentally. It is 

assumed here and taken as the fundamental principle 

of statics.  

 

 

   Thus if the two forces P and Q acting at A are 

represented in magnitude and direction by the straight lines AB and AD and if 

the parallelogram DAB be completed, then the diagonal AC will represent in 

magnitude and direction the resultant of P and Q. In the language of vectors, 

the above law can be put as  𝐴𝐵      + 𝐴𝐷     = 𝐴𝐶    . 

 

1.5 ANALYTICAL EXPRESSION FOR THE RESULTANT  

OF TWO FORCES 

Let the two forces P and Q acting at A be represented by AB and AD and let 

the angle between them be 𝛼 

                   i.e. ∠BAD =𝛼 . 

  Complete the parallelogram BAD. Then the diagonal AC will represent the 

resultant. 

 

Let R be the magnitude of the resultant 

make an angle 𝜑 with P i.e. and let it 

∠CAB = 𝜑  

⊥ to AB. BC = AD = Q Draw CE 

right angled ∆ 𝐶𝐵𝐸, From the 

𝑆𝑖𝑛 ∠𝐶𝐵𝐸 =
𝐶𝐸

𝐵𝐶
  i.e. sin 𝛼 = 

𝐶𝐸

𝑄
 

∴ CE = Q sin 𝛼... ... ...  (i) 

Cos 𝛼 = 
𝐵𝐸

𝐵𝐶
 = 

𝐵𝐸

𝑄
 

∴ BE = Q cos 𝛼... ... ...   (ii) 

Now R
2
 = AC

2
 = AE

2
 + CE

2
 = (AB + BE)

2
 + CE

2 

 = (P + Q cos 𝛼)
2
 +(Q sin 𝛼)

2 

                                                                                  = 
P

2
 + 2PQ cos 𝛼 + Q

2 

C 

A 

Q 

P 

R 

B 

D 

𝛼 

C D 

Q 

B 
E 

A P 

P 

𝜑 
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         R
2
 =  (P2 +  2PQ cos 𝛼 +  Q2) ......... (1) 

Also tan𝜑 = 
𝑐𝑒

𝐴𝐸
=  

𝑄 sin 𝛼

𝑃+𝑄 cos 𝛼
 ………..(2) 

(1) gives the magnitude and (2) the direction of the resultant in terms of P, Q and 

𝛼.   

Corollary 1.1:  

 If the forces P and Q are at right angles to each other, then 𝛼 = 90°;       
cos𝛼 = 𝑐𝑜𝑠90° = 0 and                                                                             

  sin 𝛼 = 𝑠𝑖𝑛90° = 1 

The above results become simpler and we have  

(2) R =  𝑃2 + 𝑄2 and tan 𝜑 = 
𝑄

𝑃
 

(3)  These results may be easily inferred, since the parallelogram becomes 

a rectangle. 

 

Corollary 1.2:  

    If the forces are equal (i.e.) Q = P, then 

R =  𝑃2 + 2𝑃2 𝑐𝑜𝑠𝛼 + 𝑃2 =  2𝑃2(1 + 𝑐𝑜𝑠𝛼) 

     =  2𝑃2. 2𝑐𝑜𝑠2 𝛼

2
 = 2Pcos

𝛼

2
 

                and tan 𝜑 = 
𝑃 𝑠𝑖𝑛𝛼

𝑃+𝑃𝑐𝑜𝑠𝛼
 = 

𝑠𝑖𝑛𝛼

1+𝑐𝑜𝑠𝛼
  

           = 
2 𝑠𝑖𝑛

𝛼

2
𝑐𝑜𝑠

𝛼

2

2𝑐𝑜𝑠
𝛼

2

 

                                      = tan 
𝛼

2
 

                                i.e. 𝜑 = 
𝛼

2
 

Thus the resultant of two equal forces P, P at an angle 𝛼 is 2 P cos 
𝛼

2
 in a direction 

bisecting the angle between them. 

This fact (that 𝜑 =  
𝛼

2
) is obvious otherwise, as the parallelogram becomes a 

rhombus. 

 Corollary 1.3:   

Let the magnitudes P and Q of two forces acting at an angle 𝛼 be given. 

Then their resultant R is greatest when cos𝛼 is greatest. 

i.e. when cos𝛼 =1 or 𝛼 = 0° 
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In this case, the forces act along the same line in the same direction and R = P 

+ Q. 

The least value of R occurs when cos 𝛼 is least. 

i.e. when cos𝛼 = -1 or 𝛼 = 180° 

In this case, the forces act along the same line but in  opposite direction and  

R = 𝑃~ Q. 

1.6   WORKED EXAMPLES 
        Example 1.1:  The resultant of two forces P, Q acting at a certain angle is X 

and that of P, R acting at the same angle is also X. The resultant of Q, R again 

acting at the same angle is Y. Prove that 

                   P = 
 (𝑋2 + 𝑄𝑅)

1

2 = 
𝑄𝑅(𝑄+𝑅)

𝑄2 +𝑅2−𝑌2  

  Prove also that, if P + Q + R = 0, Y = X. 

Let P and Q act at an angle 𝛼  

From the given data, we have the following results: 

X
2
 = P

2
 + Q

2
 + 2PQcos𝛼                                 ... ... ...(1) 

          X
2
 = P

2
 + R

2
 + 2PRcos𝛼                         ... ... ...(2) 

and  Y
2
 = Q

2
 + R

2
 + 2QRcos𝛼                         ... ... ...(3) 

(1) – (2) gives 0 = Q
2
 – R

2 
+ 2P cos𝛼(𝑄 − 𝑅) 

 

i.e.  0 = (Q - R) (Q + R + 2P cos𝛼) 

 

But Q ≠ 𝑅 and so Q – R is≠ 0 

           ∴ Q + R + 2P cos𝛼 = 0 

             or cos𝛼 = −
𝑄+𝑅

2𝑃
                               ... ... ....(4) 

   Substituting (4) in (1), we have 

   X
2
 = P

2
 + Q

2
 + 2PQ.-(

𝑄+𝑅

2𝑃
) = P

2
 + Q

2
 – Q

2
 – QR 

   or P
2
 = X

2
 + QR  

  i.e. P = (X
2
 + QR)

1/2 

  
Substituting (4) in (3), we have  

Y
2
 = Q

2
 + R

2
 + 2QR.-(

𝑄+𝑅

2𝑃
) 

         = 
Q

2
 + R

2
 – 

𝑄𝑅 𝑄+𝑅 

𝑝
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∴ 
𝑄𝑅 𝑄+𝑅 

𝑝
 = Q

2
 + R

2
 – Y

2 

or P = 
𝑄𝑅(𝑄+𝑅)

𝑄2 + 𝑅2−𝑌2   

If P + Q + R = 0, then Q + R = -P. 

∴ From (4), cos𝛼 = -
𝑄+𝑅

2𝑃
 = 

𝑃

2𝑃
 = 

1

2
 

Putting cos𝛼 = 
1

2
 in (2) and (3), we have 

X
2
 = P

2
 + R

2
 + 2PR... ... ...(5) 

     Y
2
 = Q

2
 + R

2
 + 2QR... ... ...(6) 

(5) – (6) gives 

X
2
- Y

2
 = P

2
 - Q

2
 + P𝑅 – QR 

              = (P - Q)(P + Q + R) 

               = (P - Q). 0 

                = 0 

∴ X = Y. 

Example 1.2: If the resultant R of two forces P and Q inclined to one another 

at any given angle makes an angle 𝜑 with the direction of P, show that the 

resultant of forces (P + R) and Q acting at the same angle will make an angle 
𝜑

2
 

with the direction of P + R. 

First Method: 

Let 𝐴𝐵     = P and  𝐴𝐷     

= Q 

From || gm ABCD,  

 𝐴𝐵     + 𝐴𝐷     = 𝐴𝐶                                 

= R. 

To mark the force P 

+ R,  

produce AB to E so that BE = AC. 

In the || gm DAEF, 

𝐴𝐹     gives the new resultant 

∅ 

P 

R 

Q 

E 

D C 

B A 

F 
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In Δ CAF, CA = CF (each representing R in magnitude) 

∴ ∠𝐶𝐴𝐹 =  ∠𝐶𝐹𝐴 

                 = ∠𝐹𝐴𝐸 (alternate angles) 

i.e. AF bisects ∠𝐶𝐴B 

Second Method: The resultant of P + R and Q can be found in two stages. 

First, the resultant of P along AB and Q along AD is a force R along AC. 

Secondly, we have to find the resultant of the forces R along AC with an extra 

force R along AB. As these are equal, the final resultant bisects the angle 

BAC.  

              Check Your Progress 

1. What is the resultant of forces? 

2. What is the components of the forces? 

3. What is the law of the parallelogram of forces? 

 

 

1.7 Answers to Check Your Progress Questions 
 

 If two or more forces F1, F2, F3,,....... etc.  act on a rigid body and if a single 

force R can be found whose effect on the body is the same as that of all the 

forces F1, F2, F3,.......... etc. put together, then the single force R is called the 

resultant of the forces F1, F2, F3,.......  etc 

 The forces F1, F2, F3,.......  etc. are called the components of the force R. 

 When two forces acting at a point are in different directions (i.e.) are inclined 

to each other, their resultant can be found with the help of a fundamental 

theorem in statics known as the law of the parallelogram of Forces. 

1.8  SUMMARY 
 

 When a number of forces act on a body and keep it at rest, the forces are said to 

be in equilibrium. 

  If two forces be equal and opposite, i.e. if two forces acting on a body be such 

that they have (i) equal magnitude (ii) same line of action and (iii) opposite 

direction, then these two forces are in equilibrium. 

 Conversely, if two forces acting on a body be in equilibrium,                                                                                         

then they must be equal and opposite i.e. they must have (i) same magnitude 

(ii) same line of action and (iii) opposite directions.  

 When two or more forces are acting together at a point it is always possible to 

find a single force which will have exactly the same effect as these forces. This 

single force is called the resultant force. 

http://scienceuniverse101.blogspot.com/2011/12/newtons-second-law-of-motion-momentum.html
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 Conversely, if two forces acting on a body be in equilibrium,                                                                                         

then they must be equal and opposite i.e. they must have (i) same magnitude 

(ii) same line of action and (iii) opposite directions.  

 When two or more forces are acting together at a point it is always possible to 

find a single force which will have exactly the same effect as these forces. This 

single force is called the resultant force. 

1.9  KEY  WORDS 
 

 Equilibrium: When a number of forces act on a body and keep it at rest, the 

forces are said to be in equilibrium. 

 Equilibrium of two forces: If  two forces be equal and opposite, i.e. if two 

forces acting on a body be such that they have (i) equal magnitude (ii) same 

line of action and (iii) opposite direction, then these two forces are in 

equilibrium. Conversely if two forces acting on a body be in equilibrium, then 

they must be equal and opposite i.e. they must have (i) same magnitude (ii) 

same line of action and (iii) opposite directions. 

 Resultant force: When two or more forces are acting together at a point it is 

always possible to find a single force which will have exactly the same effect 

as these forces. This single force is called the resultant force. 

 1.10 SELF ASSESSMENT QUESTIONS AND EXERCISES  
   

1. Two forces of given magnitudes P and Q act at a point at an angle 𝛼. What will 

be (i) the maximum (ii) minimum value of resultant 

2. The greatest and least magnitudes of the resultant of two forces of constant 

magnitudes are R and S respectively. Prove that, when the forces act at an 

angle 2𝜑, the resultant is of magnitude  𝑅2𝑐𝑜𝑠2𝜑 + 𝑆2𝑠𝑖𝑛2𝜑 

3. The resultant of two forces P and Q is at right angles to P. Show that the 

angle between the forces is cos
-1

(-
𝑃

𝑄
). 

4. The resultant of two forces P and Q is of magnitude P. Show that, if P be 

doubled, the new resultant is at right angles to Q and its magnitude will be 

 4𝑃2 −𝑄2  . 

5. Two equal forces act on a particle; find the angle between them when the 

square of their resultant is equal to three times their product 

6. Two equal forces are inclined at an angle 2𝜃. Their resultant is their 3 

times as great as when they are inclined at an angle 2𝜑. Show that 

𝑐𝑜𝑠𝜃 = 3 𝑐𝑜𝑠𝜑. 
7. The resultant of two forces P and Q is R. If Q be doubled, R is doubled. R 

is also doubled if Q is reversed.  

Show that 𝑅′ + 𝑅′ 2
= 2(P

2
+Q

2
) 

 

 

http://scienceuniverse101.blogspot.com/2011/12/newtons-second-law-of-motion-momentum.html
http://scienceuniverse101.blogspot.com/2011/12/newtons-second-law-of-motion-momentum.html
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1.11 FURTHER READINGS 

Dr. M. K. Venkataraman, Statics, Agasthiar   Publications,                                         

17
th 

Edition, 2014. 

Dr. M. K. Venkataraman, Dynamics, Agasthiar Publications, 13
th 

Edition, 

2009. 

 P. Duraipandian, Laxmi Duraipandian & Muthamizh Jayapragasam, 

Mechanics,S.Chand & Co.Pvt.Ltd,2014. 
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UNIT-II TRIANGLE OF FORCES 

STRUCTURE 

2.0 Introduction 

2.1 Objectives 

2.2 Triangle of Forces 

2.3 Perpendicular Triangle of Forces 

2.4 Converse of the Triangle of Forces 

2.5 Examples 

2.6 Answers to Check Your Progress Questions 

2.7 Summary 

2.8 Keywords 

2.9 Self Assessment Questions and Exercises 

2.10 Further Readings 

2.0 INTRODUCTION 
      In this chapter we shall consider, the forces on a body with which we are 

chiefly concerned in statics can be classified as follows: (i) An attraction (ii) a 

tension and (iii) a reaction. We shall describe briefly these subdivisions of a force 

if three forces acting at a point are in equilibrium, then they can be represented in 

magnitude as well as direction by the three sides of a triangle taken in order such 

that its sides are parallel to the direction of the forces respectively. These are 

forces acting between two bodies which are not necessarily connected. When the 

bodies tent to approach each other, the force is called attraction and when they 

tent to separate out, the force is repulsion. Such forces are exerted without any 

visible means. 

2.1 OBJECTIVES 
     After going through this unit, you will be able to: 

 Understand what triangle of forces is 

 Explain about perpendicular triangle of forces 

 Discuss triangle and resultant of force examples 

2.2 TRIANGLE OF FORCES 
The simple deduction from the parallelogram of forces is the following theorem, 

known as the Triangle of forces. 
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If the three forces acting at a point can be represented in magnitude and 

direction by the sides of a triangle taken in order, they will be in equilibrium. 

 

 

            Let the forces, P, Q, R act at a point O and be represented in 

magnitude and direction by the sides AB, BC, CA of the triangle ABC. We 

have to prove that they will be in equilibrium. 

          Complete the parallelogram BADC. As AD is equal and parallel to 

BC, AD also represents Q in magnitude and direction. 

        P + Q =𝐴𝐵     + 𝐴𝐷     

                     = 𝐴𝐶     (by || gm law.) 

         This shows that the resultant of the forces P and Q at O is represented 

in magnitude and direction by AC. 

       The third force R acts at O and it is represented in magnitude and 

direction by CA. 

     Hence P + Q + R = 𝐴𝐶     at O + 𝐶𝐴     at O 

                                       = 0  (as the two vectors at O are equal and                                        

opposite) 

    ∴ The forces are in equilibrium. 

𝐈𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐭 𝐧𝐨𝐭𝐞: In the above theorem, the forces P, Q, R are represented by 

the sides of the triangle ABC only in magnitude and direction but not in 

position. The forces act at a point and do not act along the sides of the triangle. 

  

Corollary:  

         From the proof of the above theorem, it is clear that the resultant of the 

forces represented in magnitude and direction by the two sides AB and BC of 

the triangle ABC, is represented in magnitude and direction by AC. 

         This principle is stated as follows: 

Q 

C 

A 

Q 

P 

R 

B 

D 

P 

Q 

R 
L 

N 

M 

O 
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             If two forces acting at a point are represented in magnitude and 

direction by two sides of a triangle taken in the same order, the resultant will 

be represented in magnitude and direction by the third side taken in the reserve 

order.  

      In the notation of vectors, the above means that 

                    𝐴𝐵    + 𝐵𝐶    =  𝐴𝐶      
 

2.3   PERPENDICULAR TRIANGLE OF FORCES 
  If three forces acting at a point are such that their magnitudes are 

proportional to the sides of a triangle and their directions are perpendicular to the 

corresponding sides, all inwards or all outwards, then also the forces will be in 

equilibrium.  

                      
 

Let the forces P, Q, R meet at O. 

ABC is a triangle such that magnitudes of P, Q, R are proportional to the sides BC, 

CA and AB respectively of ∆𝐴𝐵𝐶 and their directions are perpendicular to the 

corresponding sides all outwards. 

 We have to prove that they will be in equilibrium. 

      If we rotate the ∆𝐴𝐵𝐶 through 90° in its own plane, we will get a new triangle 

A‟B‟C‟ whose sides are parallel to the given forces and represent the forces both in 

magnitude and direction. 

      Hence by the triangle of forces, P, Q, R are in equilibrium. 

Note: The above result will also be true, if the directions of the forces, instead of 

being perpendicular to the corresponding sides, make equal angles in the sense 

with them. The proof is exactly similar. 

2.4  CONVERSE OF THE TRIANGLE OF FORCES 
       If three forces acting at a point are in equilibrium, then any triangle drawn 

so as to have its sides parallel to the directions of the forces shall represent 

them in magnitude also. 

B’ 

C’ 

A’ 

C 

B C 

O 

P 

Q 
R 
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        Let the three forces P, Q, R acting at O along the directions OL, OM and ON 

keep it in equilibrium. XYZ is triangle such that the sides YZ, ZX and XY are 

parallel to the directions of P, Q, R respectively. We have to prove that the sides of 

∆𝑋𝑌𝑍are proportional to the magnitudes of P, Q and R given that P + Q + R = 0 

(statically). 

   Along OL, cut off OA to represent the magnitude of P on some scale.  

         i.e. let 𝑂𝐴     = P 

  On the same scale, make 𝑂𝐵     = Q. 

To get the resultant of P and Q, complete the || gm AOB. 

The P + Q = 𝑂𝐴     + 𝑂𝐵     = 𝑂𝐷    . 

But P + Q + R =0   

   i.e. 𝑂𝐷     + R =   0  or R =𝐷𝑂       

         This shows that the third force R is represented in magnitude on the same 

scale by DO and that DON is a straight line. 

        Hence the three forces P, Q and R are parallel and proportional to the 

sides of the triangle OAD. 

        Now any triangle like XYZ whose sides are parallel to the directions of P, 

Q and R will be similar to∆𝑂𝐴𝐷 and hence 

    
𝑌𝑍

OA
 = 

𝑍𝑋

AD
 = 

𝑋𝑌

DO
 

But   
𝑃

OA
 = 

𝑄

OB
 = 

𝑅

DO
; 

   ∴ 
𝑌𝑍

𝑃
 = 

𝑍𝑋

Q
  = 

𝑋𝑌

R
 

 i.e. The sides ∆𝑋𝑌𝑍 will be proportional to P, Q, R. 

 

 

 

Z Y 

X 

M 

L 

N 

B D 

O A P 

Q 
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2.5   WORKED EXAMPLES 
 

Example 2.1:  

          Two forces act on a particle. If the sum and difference of the forces are 

at right angles to each other, show that the forces 

are of equal magnitude. 

              Let the forces P and Q acting at A be 

represented in magnitude and direction by the 

lines AB and AD. Complete the parallelogram 

BAD. 

Then P + Q = 𝐴𝐵     + 𝐴𝐷     = 𝐴𝐶     (|| gm law) 

∴ 𝐴𝐶     is the sum of the two forces. 

                    P - Q = 𝐴𝐵     - 𝐴𝐷     

                              = 𝐴𝐵     + 𝐷𝐴     

                              =  𝐷𝐴     + 𝐴𝐵      

                              =  𝐷𝐵     (by triangle law) 

∴ 𝐷𝐵     is the difference of the two forces. 

It is given that 𝐴𝐶     and 𝐷𝐵     are at right angles. 

i.e. In parallelogram ABCD, the diagonals AC and BD cut at right angles. 

∴ ABCD must be rhombus. 

∴ AB = AD  i.e. P = Q in magnitude. 

Example 2.2:  

            A and B are two fixed points on a horizontal line at a distance c apart. Two 

fine light strings AC and BC of lengths b and a respectively support a mass at C. 

Show that the tensions of the strings are 

in the ratio b(a
2
 + c

2
 – b

2
) : a(b

2
 + c

2
 – a

2
) 

 Let T1 and T2 be the tensions along the 

strings CA and CB and W, the weight of 

the mass at C, acting vertically 

downwards along CE. 

Produce EC to meet AB at D. 

Q 

P 

D C 

B 
A 

c 

b 

a 

E 

T2 
T1 

C 

B 

D 
A 

W 
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Since C is at rest under the action of the three forces, we have by Lemi‟s 

theorem, 

𝑇1

sin ∠𝐸𝐶𝐵
 =  

𝑇2

sin ∠𝐸𝐶𝐴
 ... ... ..(1) 

Now sin∠𝐸𝐶𝐵 =  sin (180°−∠𝐷𝐶𝐵) 

                              =  sin∠𝐷𝐶𝐵  

                               = sin (90° −∠𝐴𝐵𝐶) 

                                 = cos ∠𝐴𝐵𝐶 

            sin∠𝐸𝐶𝐴 =  sin (180° −∠𝐴𝐶𝐷) 

                              =  sin∠𝐴𝐶𝐷  

                               = sin (90° −∠𝐵𝐴𝐶) 

                                 = cos ∠𝐵𝐴𝐶 

Hence (1) becomes 

      
𝑇1

cos ∠𝐴𝐵𝐶
 =  

𝑇2

cos ∠𝐵𝐴𝐶
 

     
𝑇1

𝑇2
 =  

cos ∠𝐴𝐵𝐶

cos ∠𝐵𝐴𝐶
  = 

cos 𝐵

cos 𝐴
          ... ... .. (2) 

     In ∆𝐴𝐵𝐶, we know that  

    Cos B =
a2  +c2  – b2

2𝑐𝑎
  and Cos A =

b2 + c2 – a2

2𝑏𝑐
   

Hence (2) becomes  

       
𝑇1

𝑇2
 =( 

a2  +c2  – b2

2𝑐𝑎
 ) . (

2𝑏𝑐  

b2  + c2 – a2 ) 

            = 
b(a2  +c2   – b2)

a(b2 + c2 – a2)
  

                              Check Your Progress 

1. What is the triangle of forces? 

2. What is the perpendicular of forces? 

3. What is the converse of triangle of forces? 

4. What is the perpendicular triangle? 
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2.6 ANSWER TO CHECK YOUR PROGRESS QUESTION 
 

1. If the three forces acting at a point can be represented in magnitude and 

direction by the sides of a triangle taken in order, they will be in 

equilibrium. 

2.   If three forces acting at a point are such that their magnitudes are proportional 

to the sides of a triangle and their directions are perpendicular to the 

corresponding sides, all inwards or all outwards, then also the forces will be in 

equilibrium. 

3. If three forces acting at a point are in equilibrium, then they can be represented 

in magnitude as well as direction by the three sides of a triangle taken in order 

such that its sides are parallel to the direction of the forces respectively. 

4. The perpendicular from the vertex to the base line (the height) in an 

isosceles triangle divides the triangle into two equal right angled triangles. The 

sides of a right angled triangle ABC satisfy Pythagoras' rule, that is a
2
 + b

2
 = c

2
. 

Also the converse is true. 

 2.7  SUMMARY 
 

 The forces P, Q, R are represented by the sides of the triangle ABC only in 

magnitude and direction but not in position.    The forces act at a point and do 

not act along the sides of the triangle. 

 If the directions of the forces, instead of being perpendicular to the 

corresponding sides, make equal angles in the sense with them. The proof is 

exactly similar. 

 If three forces acting at a point are such that their magnitudes are proportional 

to the sides of a triangle and their directions are perpendicular to the 

corresponding sides, all inwards or all outwards, then also the forces will be in 

equilibrium. 

 The perpendicular from the vertex to the base line (the height) in an 

isosceles triangle divides the triangle into two equal right angled triangles. The 

sides of a right angled triangle ABC satisfy Pythagoras' rule, that is a
2
 + b

2
 = c

2
. 

Also the converse is true. 

 If three forces acting at a point are in equilibrium, then they can be represented 

in magnitude as well as direction by the three sides of a triangle taken in order 

such that its sides are parallel to the direction of the forces respectively. 

2.8  KEY  WORDS 

 Converse of triangle: If three forces acting at a point are such that their 

magnitudes are proportional to the sides of a triangle and their directions are 

perpendicular to the corresponding sides, all inwards or all outwards, then also 

the forces will be in equilibrium. 

 Perpendicular triangle: The perpendicular from the vertex to the base line 

(the height) in an isosceles triangle divides the triangle into two equal right 

angled triangles. The sides of a right angled triangle ABC satisfy Pythagoras' 

rule, that is a
2
 + b

2
 = c

2
. Also the converse is true. 
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 Triangle of forces: If the three forces acting at a point can be represented in 

magnitude and direction by the sides of a triangle taken in order, they will be in 

equilibrium 

 

2.9  SELF ASSESSMENT QUESTIONS AND  EXERCISES 
     

1, Two forces act at a point and are such that if the direction of one is reversed, the 

direction of the resultant is turned through a right angle. Prove that the two forces 

must be equal in equilibrium. 

2. Three forces X, Y, Z acting at a vertices A, B, C respectively of a triangle, each 

⊥ to the opposite side, keep it in equilibrium. 

 

                                          Prove that 
𝑋

𝑎
=

𝑌

𝑏
=

𝑍

𝑐
 

 

3. A weight is suspended by means of two equal strings attached to two points in a 

horizontal line. Show that if the lengths of the strings are increased, their tension is 

diminished. 

 

4. A string ACB has its extremities tied to two fixed points A and B in the same 

horizontal line. To a given point C in the string, is knotted a given weight W. Find 

the tension of the string CA in the from 
𝑊𝑏

4𝑐∆
(𝑐2+𝑎2−𝑏2) where ∆ is the area and a, 

b, c are the sides of the ∆ABC. 

5. If the tree forces represented in magnitude and direction by the bisectors of the 

angles of a triangle, all acting from the vertices be in equilibrium, show that the 

triangle must be equilateral. 

2.10  FURTHER READINGS 

Dr. M. K. Venkataraman, Statics, Agasthiar   Publications,                                         

17
th 

Edition, 2014. 

  Dr. M. K. Venkataraman, Dynamics, Agasthiar Publications, 13
th 

Edition, 

2009. 

 P. Duraipandian, Laxmi Duraipandian & Muthamizh Jayapragasam, 

Mechanics,S.Chand&Co.Pvt.Ltd,2014.
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UNIT III POLYGON OF FORCES 

STRUCTURE 

3.0 Introduction  

3.1 Objectives  

3.2 The Polygon of Forces 

3.3 Lami‟s Theorem 

3.4 An Extended form of the parallelogram law of forces 

3.5 Worked examples 

3.6 Answers to Check Your Progress Questions 

3.7 Summary 

3.8 Keywords 

3.9 Self Assessment Questions and Exercises 

      3.10 Further Readings 

3.0    INTRODUCTION 
               In this chapter we shall consider, Polygon law of vector addition states 

that if a number of vectors can be represented in magnitude and direction by the 

sides of a polygon taken in the same order, then their resultant is represented in 

magnitude and direction by the closing side of the polygon taken in the opposite 

order. Lami's theorem states that if three forces acting at a point are in 

equilibrium, each force is proportional to the sine of the angle between the other 

two forces. Consider three forces A, B, C acting on a particle or rigid body 

making angles α, β and γ with each other. If a body is subjected to many forces on 

its plane at a single point then they are called as Coplanar Concurrent Forces. The 

effect of the forces acting on the body is unknown. It is necessary to determine the 

resultant force of the coplanar forces to know this effect. Copy the link given 

below and paste it in new browser window to get more information on Law Of 

Polygon 

3.1    OBJECTIVES 
 

After going through this unit, you will be able to: 

 Understand what polygon of forces is 

 Explain about Lami‟s theorem 

 Discuss polygon of forces and Lami‟s theorem examples 
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3.2   THE POLYGON OF FORCES 
          

               If any number of forces acting at a point can be represented in 

magnitude and direction by the sides of a polygon taken in order, the forces 

will be in equilibrium. 

 

 
 

Let the forces P1, P2, ... ... Pn acting at O be represented in magnitude and 

direction by the sides B1B2, B2B3, ........BnB1 of the polygon B1B2B3.........Bn. 

      

       We have to prove that the forces will be equilibrium. 

Compounding the forces by vector law, step by step, we have 

       P1 + P2 = B1B2
        + B2B3

         = B1B2
        

  P1 + P2 + P3 = B1B3
        + B3B4

         = B1B4
        

And P1 + P2 + P3 + .....+ Pn-1 = B1Bn−1
          + Bn−1Bn

            = B1Bn
        

It is to be noted that in each of the equilibrium above, the resultant on the right 

side, of the forces named on the left side, acts at the point O. 

The last force Pn is represented by  BnB1
        

∴ P1 + P2 + P3 +.....+ Pn-1 + Pn= B1Bn
        at O + BnB1

        at O 

                                                      = 0  

 ∴  The forces are in equilibrium. 

 

Note 1:  
         The above theorem is true even when the forces acting at O are not inb 

the same plane 

 

Note 2:    

        The converse of the Polygon of Forces is not true. The converse of the 

triangle of forces is true because whenever the directions of three forces acting 

at a point and keeping it in equilibrium are known, all triangles drawn with 

their sides parallel to these directions, will be similar and hence represent the 

forces in magnitude also. But in the case of more than three forces acting at a 

A1 P1 

P2 

O 

P3 

A2 

B5 

B4 

B3 

B2 
B1 
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point and keeping it in equilibrium, we cannot say that the sides of any 

polygon drawn with its sides parallel to the directions of the forces shall 

represent them in magnitude also. If we draw two such polygons, they will be 

merely equiangular and not necessary similar. All that we can say is that a 

polygon can be drawn with the sides parallel and proportional to the forces. 

 

3.4   LAMI’S THEOREM 
 

Father Lami gave the converse of the triangle of forces in the following 

trigonometrical form: 

          If three forces acting at a point are in equilibrium, each force is 

proportional to the sine of the angle between the other two. 

       We have proved that the sides of the triangle OAD represent the forces P, 

Q, R in magnitude and direction. 

    Applying the sine rule to ∆𝑂𝐴𝐷, we have 

 
𝑂𝐴

sin ∠𝑂𝐷𝐴
 =  

𝐴𝐷

sin ∠𝐷𝑂𝐴
 =  

𝐷𝑂

sin ∠𝑂𝐴𝐷
                                     ... ... ....(1) 

But ∠𝑂𝐷𝐴 = alt. ∠𝐵𝑂𝐷 = 180° - ∠𝑀𝑂𝑁  

∴ sin  ∠𝑂𝐷𝐴 = sin(180° −  ∠𝑀𝑂𝑁) = sin  ∠𝑀𝑂𝑁    … …. ....(2) 

Also ∠𝐷𝑂𝐴 = 180° - ∠𝑁𝑂𝐿  

∴ sin  ∠𝐷𝑂𝐴 = sin(180° −  ∠𝑁𝑂𝐿) = sin  ∠𝑁𝑂𝐿 ....(3) 

and  ∠𝑂𝐴𝐷 = 180° - ∠𝐵𝑂𝐴 =  180° - ∠𝐿𝑂𝑀 

∴ sin  ∠𝑂𝐴𝐷 = sin(180° −  ∠𝐿𝑂𝑀) = sin  ∠𝐿𝑂𝑀 ....(4) 

Substituting (2), (3), (4) in (1), we have 

𝑂𝐴

sin ∠𝑀𝑂𝑁
 =  

𝐴𝐷

sin ∠𝑁𝑂𝐿
 =  

𝐷𝑂

sin ∠𝐿𝑂𝑀
 

i.e. 
𝑃

sin ∠𝑀𝑂𝑁
 =  

𝑄

sin ∠𝑁𝑂𝐿
 =  

𝑅

sin ∠𝐿𝑂𝑀
 

or  
𝑃

sin  𝑄,𝑅 
 =  

𝑄

sin  𝑅,𝑃 
 =  

𝑅

sin  𝑃,𝑄 
 

3.5 AN EXTENDED FORM OF THE PARALLELOGRAM  

LAW OF FORCES: THEOREM 
                 If forces 𝜆𝑂𝐴     and 𝜇𝑂𝐵     act at a point O along the lines OA and OB, 

their resultant will be the forces (𝜆 + 𝜇) 𝑂𝐶     where C is the point on AB such 

that  
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                      𝜆.𝐴𝐶 = 𝜇.𝐶𝐵. 

 
         Forces represented by 𝜆.𝑂𝐴 and 𝜇.𝑂𝐵 act along the lines OA and OB. 

Take the point C on AB such that 𝜆.𝐴𝐶 = 𝜇.𝐶𝐵 

        From ∆𝑂𝐶𝐴, 𝑂𝐴     =  𝑂𝐶     +  𝐶𝐴       
     ∴ 𝜆.𝑂𝐴     = 𝜆.𝑂𝐶     + 𝜆.𝐶𝐴                                           ... ... ...(1) 

From ∆𝑂𝐶𝐵, 𝑂𝐵     =  𝑂𝐶     +  𝐶𝐵       
∴ 𝜇.𝑂𝐵     = 𝜇.𝑂𝐶     + 𝜇.𝐶𝐵                                              ... ... ...(2) 

Adding (1) and (2), 

𝜆.𝑂𝐴     + 𝜇.𝑂𝐵     = (𝜆 + 𝜇). 𝑂𝐶     + 𝜆.𝐶𝐴     + 𝜇.𝐶𝐵           ... ... ....(3) 

By construction of the point C, we have 𝜆.𝐴𝐶 = 𝜇.𝐶𝐵. 

    ∴ The forces 𝜆.𝐶𝐴     and 𝜇.𝐶𝐵     are equal and opposite forces acting at C. 

∴ 𝜆.𝐶𝐴     + 𝜇.𝐶𝐵     =  0  

Hence (3) gives 

𝜆.𝑂𝐴     + 𝜇.𝑂𝐵     = (𝜆 + 𝜇). 𝑂𝐶                                      ... ... ....(4) 

Important Corollary:  

        If we put 𝜆 = 1 = 𝜇, C becomes the midpoint of AB. 

      Then (4) gives, 

        𝑂𝐴     + 𝑂𝐵     = 2 𝑂𝐶     ... ... ...(5) 

i.e. The resultant of two forces represented completely by 𝑂𝐴     and 𝑂𝐵     is 

represented by 2𝑂𝐶    , where C is the middle point of AB. 

         This result which will be greatly useful in the solution of a number of 

problems is also obvious from the parallelogram law since 𝑂𝐴     + 𝑂𝐵     = 𝑂𝐷     

(Refer to fig above in which AOBD is a || gm) 

   C is the midpoint of the diagonal OD and so 𝑂𝐷     = 2 𝑂𝐶    . 

 

3.6  WORKED EXAMPLES 
    

Example 3.1: 

ABC is a given triangle. Forces P, Q, R acting along the lines OA, OB, OC 

are in equilibrium. Prove that 

𝑂𝐴     

 

𝑂𝐵     

D B 

A O 

C 

𝜇.𝑂𝐵     

 

𝜆.𝑂𝐴     

B 

A O 
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(i)    P:Q:R = a
2
(b

2
 + c

2
 – a

2
) :  b

2
(a

2
 + c

2
 – b

2
) : c

2
(a

2
 + b

2
 – c

2
) if O is the                       

circumcentre of the triangle. 

(ii) P:Q:R = cos
𝐴

2
∶ cos

𝐵

2
∶  cos

𝐶

2
  if O is the in - centre of the triangle. 

(iii) P:Q:R = a : b : c if O is the ortho centre of the triangle. 

(iv) P:Q:R = OA : OB : OC if O is the centriod of the triangle, 

 

 

 

By Lemi‟s theorem, we have  

          
𝑃

sin ∠𝐵𝑂𝐶
 =  

𝑄

sin ∠𝐶𝑂𝐴
 =  

𝑅

sin ∠𝐴𝑂𝐵
                              … … ....(1) 

          (i) When  O is the circumcentre of the ∆𝐴𝐵𝐶, 

             ∠𝐵𝑂𝐶 = 2 ∠𝐵𝐴𝐶 = 2A; ∠𝐶𝑂𝐴 = 2 and  ∠𝐴𝑂𝐵 = 2C 

             ∴ (1) gives  
𝑃

sin 2𝐴
 =  

𝑄

sin 2𝐵
 =  

𝑅

sin 2𝐶
 

        ∴   
𝑃

2sin 𝐴𝑐𝑜𝑠𝐴
 =  

𝑄

2sin 𝐵𝑐𝑜𝑠𝐵
 =  

𝑅

2sin 𝐶𝑐𝑜𝑠𝐶
                   … ... ...(2) 

But Cos A =
b2  + c2  – a2

2𝑏𝑐
    and sin A =

2∆

𝑏𝑐
  , where ∆ is the area. 

      ∴  2 sin A cos A = 2 
2∆

𝑏𝑐
  

(b2 + c2 – a2)

2𝑏𝑐
   

                                     =  
2∆(b2 + c2 – a2)

𝑏2𝑐2
  

    Similarly   2 sin B cos B =  
2∆( a2  +c2  – b2)

𝑐2𝑎2
   

              and    2 sin C cos C =  
2∆( a2+b2−c2  )

𝑎2𝑏2
   

So (2) becomes 

             
𝑃 .𝑏2𝑐2

2∆(b2  + c2  – a2)
  = 

𝑄 .𝑐2𝑎2

2∆(  a2 +c2   – b2)
    = 

𝑅.𝑎2𝑏2

2∆(  a2+b2−c2)
 

O 

F 

D 

E 

C B 

A 

R 
Q O 

P 

C B 

A 
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                   Multiplying throughout by 
2∆

𝑎2𝑏2𝑐2
, we get  

          
𝑃

a2(b2  + c2  – a2)
  = 

𝑄

b2(  a2 +c2  – b2)
    = 

𝑅

c2( a2+b2−c2)
 

    (ii)  When O is the in- centre of the triangle, 

                           OB and OC are the bisectors of  ∠𝐵 and ∠𝐶. 

            ∠𝐵𝑂𝐶 = 180° − 
B

2
− 

C

2
 =  180° − (

B

2
+ 

C

2
 ) 

                          =  180° − (90° -  
A

2
 ) 

                           = 90° + 
A

2
 

            Similarly ∠𝐶𝑂𝐴 = 90° + 
B

2
   and ∠𝐴𝑂𝐵 = 90° + 

C

2
 

                  So (i) becomes 

 

           
𝑃

sin (90° + 
A

2
)
  = 

𝑄

sin (90° + 
B

2
)
    = 

𝑅

sin (90° + 
C

2
)
 

                i.e.  
𝑃

cos  
A

2

  = 
𝑄

cos  
B

2

    = 
𝑅

cos  
C

2

 

(iii)   Let O be the ortho-centre of the triangle. 

           AD, BE, CF are the altitudes. 

           Quadrilateral AFOE is cyclic. 

                        (∵  ∠𝐴𝐹𝑂 + ∠𝐴𝐸𝑂= 90° + 90° = 180°  )  
 ∠𝐹𝑂𝐸+ A = 180° or ∠𝐹𝑂𝐸= 180° − 𝐴 

    ∠𝐵𝑂𝐶 = vertically opposite ∠𝐹𝑂𝐸= 180° − 𝐴   

Similarly ∠𝐶𝑂𝐴= 180° − 𝐵  and  ∠𝐴𝑂𝐵= 180° − 𝐶. 

Hence (1) becomes 

     
P

sin (180°−A  )
  = 

Q

sin (180°−B )
    = 

R

sin (180°−C )
  

i.e.    
P

sin A
  = 

Q

sin B
    = 

R

sin C
 

i.e. .    
P

a
  = 

Q

b
    = 

R

c
  (since .    

a

sin A
  = 

b

sin B
    = 

c

sin C
) 

When O is the centriod of the triangle, 

we know that ∆𝐵𝑂𝐶 = ∆𝐶𝑂𝐴 = ∆𝐴𝑂𝐵 
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      and each = 
1

3
  ∆𝐴𝐵𝐶 

  ∆𝐴𝐵𝐶 = 
1

2
  OB. OC sin ∠𝐵𝑂𝐶 = 

1

3
  ∆𝐴𝐵𝐶 

∴ sin ∠𝐵𝑂𝐶 = 
2∆𝐴𝐵𝐶

3 OB .OC  
  

Similarly sin ∠𝐶𝑂𝐴 = 
2∆𝐴𝐵𝐶

3 OC .OA  
 and sin ∠𝐴𝑂𝐵 = 

2∆𝐴𝐵𝐶

3 OA .OB  
 

Hence (1) becomes  

         
P.3 OB .OC

 2∆𝐴𝐵𝐶
 = 

𝑄 .3 OC .OA

 2∆𝐴𝐵𝐶
 = 

R.3 OA .OB

 2∆𝐴𝐵𝐶
  

i.e. P. OB.OC = Q.OC.OA = R.OA.OB 

Dividing by OA.OB.OC throughout, 

P

OA
  = 

𝑄

OB
  = 

𝑅

OC
   

Example 3.2: 

           Weights W, w, W are the attached to points B, C, D respectively of a 

light string AE where B, C, D divide the string into 4 equal lengths. If the 

string hangs in the form of 4 consecutive sides of a regular octagon with the 

ends A and E attached to points on the same level, show that 

                  𝑊 = ( 2 + 1) w 

                 ABCDE 

is a part of a regular 

octagon 

 

   We know that 

each interior angle 

of a regular 

polygon of n sides 

= (
2𝑛−4

𝑛
) × 90° 

 

 

Putting n = 8, each interior angle of ABCDE = (
2 ×8 −4

8
) × 90° 

                                                                                     = 
12

8
 × 90° = 135° 

22
1

2
° 

 
W 

T4 

E 

T3 

D 

C 

M 

T2 

w 

W 

B 

67
1

2
° 

T1 

A 
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             Let the tensions in the portions AB, BC, CD, DE be T1, T2, T3, T4  

respectively. The string BC pulls B towards C and pulls C towards B, the tensions 

being the same throughout its length. This fact is used to denote the forces acting at 

B, C and D. 

          In   ∆𝐵𝐶𝐷, ∠𝐵𝐶𝐷= 135° 

      ∴ ∠𝐶𝐵𝐷= ∠𝐶𝐷𝐵= 
45°

2
 = 22 

1°

2

 
 

      ∴ ∠𝐴𝐵𝐷= ∠𝐴𝐵𝐶 −  ∠𝐶𝐵𝐷= 135° − 22 
1°

2

  
= 112 

1°

2

  

       We know that every regular polygon is cyclic. 

      ∴ A, B, C, D, E lie on the same circle. 

     ∴  ∠𝐸𝐴𝐵 = 180° − ∠𝐵𝐷𝐸 

                      = 180° − {∠𝐵𝐷𝐸 − ∠𝐵𝐷𝐶} 

                      = 180° − {135° −  22 
1°

2
} 

                      = 45° + 22 
1°

2

  
= 67 

1°

2
 

∴ ∠𝐸𝐴𝐵 + ∠𝐴𝐵𝐷 = 67 
1°

2
 + 112 

1°

2

  
= 180 °. 

∴ AE || BD. 

∴  BD also is horizontal 

                Let the vertical line through B meet AE at L and the vertical line 

through C meet  BD at M.   

Applying Lami‟s theorem for the three forces at B, we get 

         
𝑊

sin ∠𝐴𝐵𝐶
 = 

𝑇2

sin (180°− ∠𝐴𝐵𝐿 )
 

i.e.       
𝑊

sin 135°
 = 

𝑇2

sin  ∠𝐴𝐵𝐿
 = 

𝑇2

sin 22 
1°

2
 
 

(∵ in rt. ∠𝑑∆𝐴𝐵𝐿,∠𝐴𝐵𝐿= 180° − 67 
1°

2
) 

∴ T2 =  
𝑊

sin 135°
 sin 22 

1°

2

  
.........(1) 

Similarly applying Lami‟s theorem for the three forces at C,  

We have   
𝑤

sin ∠𝐵𝐶𝐷
 = 

𝑇2

sin (180°− ∠𝑀𝐶𝐷)
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i.e.       
𝑤

sin 135°
 = 

𝑇2

sin  ∠𝑀𝐶𝐷
 = 

𝑇2

sin (90°−22 
1°

2
 )
 = 

𝑇2

cos 22 
1°

2
 
 

(∵ in rt. ∠𝑑∆𝐴𝐵𝐿,∠𝐴𝐵𝐿= 180° − 67 
1°

2
) 

∴ T2 =  
𝑤

sin 135°
 cos22 

1°

2

  
.........(2) 

Equating the two values of T2 from (1) and (2), we have  

 
𝑊

sin 135°
 sin 22 

1°

2
 = 

𝑤

sin 135°
 cos22 

1°

2
 

i.e. .       
𝑤

𝑊
 = tan22 

1°

2
 =  2 −1 

∴ W =   
𝑤

 2−1
 = 

𝑤 2+1

( 2−1)( 2+1)
 =   

𝑤 2+1

1
 

         = 𝑤( 2 + 1) 

Example 3.3: 

                  A weight is supported on a smooth plane of inclination 𝛼 by a 

string inclined to the horizon at an angle 𝛾. If the slope of the plane be 

increased to 𝛽 and the slope of the string unaltered, the tension of the string is 

doubled. Prove that cos𝛼−2cos𝛽 = tan 𝜆 

 

 

 

P is the position of the weight. The forces 

acting at P are (i) its weight W downwards  

(ii) the normal reaction R perpendicular to the 

inclined plane and (iii) the tension T along 

the string at an angle 𝛾 to the horizontal. By 

Lami‟s theorem for the three forces at P, 

      
T

sin (180°−  𝛼  )
  = 

W

sin [90°−( 𝛾−𝛼  )]
    

          i.e.    
T

sin 𝛼
  = 

𝑊

cos ( 𝛾−𝛼  )
    

        ∴ T =  
𝑊 sin 𝛼

cos ( 𝛾−𝛼  )
                                            

........ ... ...(1) 

   In the second case, the inclination of the plane is 𝛽. 

   There is no change in 𝛾. 

   If T1 is the tension in the string, we will have 

       T1=  
𝑊 sin 𝛽

cos ( 𝛾−𝛽  )
                                                ... ... ... ...(2) 

𝛾 
𝛼 

90° 

 

90° − 𝛼 

 

90° 
P 

T 
R 

W 
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       But T2 = 2 T (given) 

      ∴  
𝑊 sin 𝛽

cos ( 𝛾−𝛽  )
 = 

2𝑊 sin 𝛼

cos ( 𝛾−𝛼  )
 

  ∴  sin𝛽 cos( 𝛾 − 𝛼 ) = 2sin 𝛼 cos( 𝛾 − 𝛽 ). 

i.e.  sin 𝛽 (cos𝛾cos𝛼 + sin𝛾𝑠𝑖𝑛𝛼) = 2sin 𝛼 ( cos𝛾cos𝛽 + sin 𝛾 sin𝛽 ). 

                         sin𝛽 cos𝛾 cos𝛼 = 2sin 𝛼 cos𝛾cos𝛽 + sin𝛼  sin 𝛾 sin𝛽  

                                                        = sin 𝛼 (2 cos𝛾cos𝛽 + sin 𝛾 sin𝛽 ) 

                                 ∴   
cos 𝛼

sin 𝛼
 =  

2cos 𝛾cos 𝛽+sin 𝛾sin𝛽  

sin 𝛽 cos 𝛾
 

                 i.e.  cot𝛼 = 2cot𝛽 + tan 𝛾 or cot𝛼 - 2cot𝛽 = tan 𝛾. 

  Example 3.4:    Two beads of weights 𝓌 and 𝓌‟ can slide on a smooth circular 

wire in a vertical plane. They are connected by a light string which subtends an 

angle 2𝛽 at the centre of the circle when the beads are in equilibrium on the upper 

half of the wire. Prove that the inclination of the string to the horizontal is given by 

        tan 𝛼 = 
𝓌 ~  𝓌’

𝓌+ 𝓌’
 tan 𝛽 

 Let A and B be the beads of weights 𝓌 

and 𝓌‟ connected by a light string and 

sliding on a circular wire. 

           In equilibrium position, ∠𝐴𝑂𝐵 = 

2𝛽. O being the centre of the circle. 

         ∴ ∠𝑂𝐴𝐵 = ∠𝑂𝐵𝐴 =  90° −  𝛽. 

Let AB make an angle 𝛼 with the 

horizontal AN. 

AL and BM are the vertical lines through A and B. 

∠𝑂𝐴𝐿 =  90° −  ∠𝑂𝐴𝑁 =  90° − (∠𝑂𝐴𝐵 = ∠𝑁𝐴𝐵) 

                                              = 90° − (90° − 𝛽 +  𝛼  )     

                                              = 𝛽 −  𝛼 

Since AL || BM, ∠𝐴𝐵𝑀 + ∠𝐵𝐴𝐿 = 180° 

∴ ∠𝐴𝐵𝑀 = 180° − ∠𝐵𝐴𝐿 = 180° − (90° −  𝛼) = 90° +  𝛼 

∴ ∠𝑂𝐵𝑀 = ∠𝐴𝐵𝑀 −  ∠𝐴𝐵𝑂 

                  = 90° +  𝛼 − (90° − 𝛽 ) = 𝛼 + 𝛽 

     The forces acting on the bead  𝓌 at A are 

B A 

R’ 
R 

O 
w w

’’’ 

M 
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[i] weight 𝓌 acting vertically downwards along AL 

[ii] normal reaction R due to contact with the wire along the      radius OA 

outwards. 

and [iii] tension T in the string along AB. 

Similarly the forces acting on the bead 𝓌′ at B are 

    [i] weight 𝓌′ acting vertically downwards along BM 

    [ii] normal reaction R‟ due to contact with the wire along the radius OB 

outwards. 

and [iii] tension T in the string along BA. 

Applying Lami‟s theorem for the three forces at A, 

               
𝓌

sin [180°−( 90°− 𝛽)]
  =  

T

sin (180°− 𝛽− 𝛼  )
   

  i.e.   
𝓌

cos  𝛽
  =  

T

sin (𝛽− 𝛼  )
                                        … ... ... (1) 

 Similarly applying Lami‟s theorem for the three forces at B, 

               
𝓌′

sin [180°−( 90°− 𝛽)]
  =  

T

sin (180°− 𝛽+ 𝛼  )
   

     i.e.   
𝓌′

cos  𝛽
  =  

T

sin (𝛽+ 𝛼  )
                                         ......... (2) 

  Dividing (1) by (2) we have 

                     
𝓌

𝓌′
  =  

sin (𝛽+ 𝛼  )

sin (𝛽− 𝛼  )
 

                
𝓌−𝓌′

𝓌+𝓌′
  =  

sin (𝛽+ 𝛼)− sin (𝛽− 𝛼)

sin (𝛽+ 𝛼)+sin (𝛽− 𝛼)
 

                             = 
2 cos 𝛽  sin 𝛼

2 sin 𝛽 cos 𝛼
  =  

tan 𝛼

tan 𝛽
 

              tan 𝛼 =  
𝓌−𝓌′

𝓌+𝓌′
 tan𝛽. 

Example 3.5: 

            ABC is a triangle. G is its centriod and P is any point in the plane of the 

triangle. Show that the resultant of forces represented by 𝑃𝐴    , 𝑃𝐵    ,  𝑃𝐶     is 3 𝑃𝐺     

and find the position of P, if the three forces are in 

equilibrium. 

 

   

Let A be the midpoint of BC. 

k 

2 

1 

B A’ 

P 

C 

A 
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       Then 𝑃𝐵     + 𝑃𝐶     = 2 𝑃𝐴    ′ 
        𝑃𝐴    + 𝑃𝐵    +  𝑃𝐶     = 𝑃𝐴      + 2 𝑃𝐴    ′ 
                                 = 1.  𝑃𝐴      + 2. 𝑃𝐴    ′     

                            = (1+2)  𝑃𝐾       ....(1) 

 

    where K is the point on AA‟ such that 1.AK=2.KA‟ 

     i.e. 
𝐴𝐾

𝐾𝐴′
 = 

2

1
 

     i.e. K divides the median AA‟ in the ratio 2:1. 

    ∴ K is the same as G, the centroid of the ∆. 

    ∴ (1) becomes 𝑃𝐴    + 𝑃𝐵    +  𝑃𝐶     = 3 𝑃𝐺      .   

   If the three forces 𝑃𝐴    , 𝑃𝐵    ,  𝑃𝐶     are inequilibrium, then their resultant should 

be zero. 

i.e.  𝑃𝐺      =  0  

 ∴ PG = 0 

i.e. P must be taken at the centroid G of the triangle. 

Note 3:  

         From the above, we find that if G is the centroid on a ∆𝐴𝐵𝐶, forces 

represented by GA, GB, GC will be in equilibrium. 

      i.e. 𝐺𝐴    + 𝐺𝐵    +  𝐺𝐶     = 0  

 This result is worth remembering. 

Example 3.6:  

         Five forces acting at a point are represented 

in magnitude and direction by the lines joining 

the vertices of any pentagon to the midpoints of 

their opposite sides. Show that they are in 

equilibrium. 

 

   

ABCDE is a pentagon and P, Q, R, S, T are 

the midpoints of the sides CD, DE, EA, AB 

and BC respectively.    

𝐴𝑃    + 𝐵𝑄    +  𝐶𝑅    +  𝐷𝑆    + 𝐸𝑇     = 0   

Using the corollary of 10 we have, 

 

E 

Q 

D 

P 

C 

B S 

T R 

A 
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2𝐴𝑃     = (𝐴𝐶    +  𝐴𝐷    ) 

 i.e   𝐴𝑃     =  
1

2
 (𝐴𝐶    +  𝐴𝐷    ) 

Similarly  𝐵𝑄     =  
1

2
 (𝐵𝐷    +  𝐵𝐸    ) 

                     𝐶𝑅     =  
1

2
 (𝐶𝐸    +  𝐶𝐴    ) 

                     𝐷𝑆     =  
1

2
 (𝐷𝐴    +  𝐷𝐵    ) 

          and   𝐸𝑇     =  
1

2
 (𝐸𝐵    +  𝐸𝐶    ) 

Adding up, we have 

      𝐴𝑃    + 𝐵𝑄    +  𝐶𝑅    +  𝐷𝑆    + 𝐸𝑇            

                 = 
1

2
 [𝐴𝐶    +  𝐴𝐷     + 𝐵𝐷    +  𝐵𝐸     + 𝐶𝐸    +  𝐶𝐴      

                             + 𝐷𝐴    +  𝐷𝐵     + 𝐸𝐵    +  𝐸𝐶    ] 

                  = 
1

2
 ×  0   

                             ∵(the concerned vectors are equal and   opposite) 

                   = 0  

Example 3.7: 

        OA, OB, OC are the lines of action of two forces P and Q and their 

resultant R respectively. Any transversal meets the lines in L, M and N 

respectively,  

                  Prove that  
𝑃

𝑂𝐿
+ 

𝑂

𝑂𝑀
=  

𝑅

𝑂𝑁
   

 

 

Let 𝑂𝐴    = P and 𝑂𝐵     = Q. Complete the || gm 

AOB. 

   𝑂𝐶     = R. 

Let 
𝑂𝐴

𝑂𝐿
 = 𝜆  and 

𝑂𝐵

𝑂𝑀
 = 𝜇 . 

   ∴OA = 𝜆.OL and OB = 𝜇 OM 

 ∴ 𝑂𝐴     + 𝑂𝐵     = 𝜆 𝑂𝐿     + 𝜇 𝑂𝑀      

                   = (𝜆 + 𝜇) 𝑂𝐾     .......(1)  where K is a 

point on LM. 

But 𝑂𝐴     + 𝑂𝐵     = 𝑂𝐶                         …....(2) 

   Hence the forces (𝜆 + 𝜇) 𝑂𝐾     and  𝑂𝐶     must be 

the same. 

   i.e. K must be a point on OC also. 

     ∴ K is the point of intersection of OC and LM. 

  i.e. K is clearly the same as N. 

   Equating the magnitudes of the two equal forces on the right    hand sides 

of (1) and (2), we get 

                            

M 

L 

C B 

O 
A 

N 
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                      (𝜆 + 𝜇). OK = OC 

                i.e.(𝜆 + 𝜇). ON = OC 

                           or 𝜆 + 𝜇  = 
𝑂𝐶

𝑂𝑁
 

        i.e. 
𝑂𝐴

𝑂𝐿
+  

𝑂𝐵

𝑂𝑀
=  

𝑂𝐶

𝑂𝑁
 

 

             or  
𝑃

𝑂𝐿
+ 

𝑄

𝑂𝑀
=  

𝑅

𝑂𝑁
 

Example 3.8: 

        ABC is a triangle, with a right angle at A. AD is the perpendicular on BC. 

Prove that the resultant of the forces 
1

𝐴𝐵
 acting along AB and 

1

𝐴𝑐
 acting along 

AC is 
1

𝐴𝐷
  acting along AD. 

From Geometry, we have the following well known results  

   𝐴𝐵2 = BC. BD; 𝐴𝐶2 = BC. CD; 𝐴𝐷2 = BD. DC 

 

The forces 
1

𝐴𝐵
 acting along AB and 

1

𝐴𝐶
 acting 

along AC can be considered respectively as the 

forces 
1

𝐴𝐵2. AB acting along AB and  
1

𝐴𝐶2. AC 

acting along AC. 

If we take 𝜆 = 
1

𝐴𝐵2 and 𝜇  = 
1

𝐴𝐶2 

then 𝜆.𝐴𝐵2 = 𝜇.𝐴𝐶2 (each being = 1) 

i.e. 𝜆.𝐵𝐶.𝐵𝐷 = 𝜇 BC. CD 

i.e. 𝜆. BD = 𝜇. CD 

Hence the resultant of forces 𝜆.𝐴𝐵     and 𝜇. 𝐴𝐶     is the force (𝜆 + 𝜇). 𝐴𝐷     

     i.e. The resultant of forces 
1

𝐴𝐵
 along AB and 

1

𝐴𝐶
 along AC is the force   (𝜆 +

𝜇).AD acting along AD. 

 Magnitude of the resultant 

=  (𝜆 + 𝜇).AD 

  = (
1

𝐴𝐵2 +  
1

𝐴𝐶2) AD 

    

  = (
𝐴𝐶2+ 𝐴𝐵2

𝐴𝐵2𝐴𝐶2 ) AD 

 

90° 

𝐷 
𝐶 𝐵 

𝐴 
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  = 
𝐵𝐶2

𝐴𝐵2𝐴𝐶2  . AD = 
𝐵𝐶2

𝐵𝐶 .𝐵𝐷 .𝐵𝐶 .𝐶𝐷
. AD  

 

  =  
1

𝐵𝐷 .𝐶𝐷
. AD = 

1

𝐴𝐷2 .𝐴𝐷 = 
1

𝐴𝐷
 

 

      and this acts along AD. 

 

Example 3.9:  

           P is a point in the plane of the triangle ABC and I is the incentre. Shoe 

that the resultant of forces represented by PA.sin𝐴, PB. .sin𝐵 and PC.sin𝐶 is 

4PI. .cos
𝐴

2
. cos

𝐵

2
cos

𝐶

2
 

 

 

Let AD be the internal bisector of ∠𝐴 

and I the incentre. 

Then we know that 

 

 

 

 

           
𝐵𝐷

𝐷𝐶
=  

𝐴𝐵

𝐴𝐶
=  

𝑐

𝑏
=  

sin 𝐶

sin 𝐵
 

     ∴  sin𝐵.BD = sin 𝐶.DC                                     ... .. ..(1) 

   Also, as BI bisects ∠𝐵, 
𝐴𝐼

𝐼𝐷
=  

𝐴𝐵

𝐵𝐷
 

   As BI bisects ∠𝐶, 
𝐴𝐼

𝐼𝐷
=  

𝐴𝐶

𝐶𝐷
 

   ∴  
𝐴𝐼

𝐼𝐷
=  

𝐴𝐵

𝐵𝐷
 =

𝐴𝐶

𝐶𝐷
 

    ∴  
𝐴𝐼

𝐼𝐷
 is also  

𝐴𝐵+𝐴𝐶

𝐵𝐷+𝐶𝐷
 = 

𝐴𝐵+𝐴𝐶

𝐵𝐶
 = 

𝑐+𝑏

𝑎
 = 

sin 𝐵+ sin 𝐶

sin 𝐴
  

                       i.e. AI sin𝐴 = (sin𝐵 +  sin𝐶).ID          ... ... ...(2) 

    Now, 

       𝑃𝐵    . sin𝐵+ 𝑃𝐶     sin 𝐶 = (sin𝐵 +  sin𝐶).𝑃𝐷            ... ... ...(3) 

                                    [since sin𝐵.𝐵𝐷=sin𝐶. DC from (1)]     

       ∴   𝑃𝐴    . sin𝐴+ 𝑃𝐵    . sin𝐵+ 𝑃𝐶     sin𝐶  

                                   = 𝑃𝐴    . sin𝐴 (sin𝐵 + sin 𝐶).𝑃𝐷     

                                   = (sin𝐴 + sin𝐵 +  sin 𝐶).𝑃𝐼           ... ... ....(4) 

P 

I 

D C B 

A 
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                                         = (sin𝐴 + sin𝐵 +  sin 𝐶).𝑃𝐼    ..... ... ....(4) 

                        since AI.sin𝐴 = (sin𝐵 +  sin𝐶).ID from (2) 

 But we know that in a ∆, 

 sin𝐴 + sin𝐵 +  sin 𝐶 = 4 cos
𝐴

2
 cos

𝐵

2
cos

𝐶

2
   ....(5) 

 Using (5) in (4), we have 

            the required resultant = 4cos
𝐴

2
. cos

𝐵

2
cos

𝐶

2
. 𝑃𝐼    

 

                              Check Your Progress 

1. What is the statement of Polygon of forces? 

2. What is the statement of Lami‟s theorem? 

3. What is the statement of Parallelogram of forces? 

 

3.7 ANSWERS TO CHECK YOUR PROGRESS QUESTIONS 
1. If any number of forces acting at a point can be represented in magnitude and 

direction by the sides of a polygon taken in order, the forces will be in 

equilibrium. 

2.  If three forces acting at a point are in equilibrium, each force is proportional 

to the sine of the angle between the other two. 

3. If forces 𝜆𝑂𝐴     and 𝜇𝑂𝐵     act at a point O along the lines OA and OB, their 

resultant will be the forces (𝜆 + 𝜇) 𝑂𝐶     where C is the point on AB such that  

𝜆.𝐴𝐶 = 𝜇.𝐶𝐵. 

3.8  SUMMARY 
 

 The resultant of two forces represented completely by 𝑂𝐴     and 𝑂𝐵     is 

represented by 2𝑂𝐶    , where C is the middle point of AB. 

 If three forces acting at a point are in equilibrium, each force is proportional to 

the sine of the angle between the other two. 

 If any number of forces acting at a point can be represented in magnitude and 

direction by the sides of a polygon taken in order, the forces will be in 

equilibrium. 

 If forces 𝜆𝑂𝐴     and 𝜇𝑂𝐵     act at a point O along the lines OA and OB, their 

resultant will be the forces (𝜆 + 𝜇) 𝑂𝐶     where C is the point on AB such that 

𝜆.𝐴𝐶 = 𝜇.𝐶𝐵. 

3.9  KEYWORDS 
 Polygon of forces: If any number of forces acting at a point can be 

represented in magnitude and direction by the sides of a polygon taken in 

order, the forces will be in equilibrium. 
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 Lami’s theorem: If three forces acting at a point are in equilibrium, each 

force is proportional to the sine of the angle between the other two. 

 Parallelogram of forces: If forces 𝜆𝑂𝐴     and 𝜇𝑂𝐵     act at a point O along the 

lines OA and OB, their resultant will be the forces (𝜆 + 𝜇) 𝑂𝐶     where C is the 

point on AB such that  

𝜆.𝐴𝐶 = 𝜇.𝐶𝐵. 

3.10 SELF ASSESSMENT QUESTIONS AND EXERCISES 
 

1. A, B, C are three points on the circumference of a circle and forces P and Q 

act along AB and BC respectively. If their resultant is a force R along the 

tangent at B, Show that 
𝑃

𝐵𝐶
=

𝑄

𝐴𝐵
=

𝑅

𝐴𝐶
. 

 

2. A bead is free to slide on a smooth vertical circle and is connected by a 

string equal in length to the radius of the circle, to the highest point of the 

circle; find the tension of the string and the reaction of the circle. 

 

3. The ends of a piece of string are attached to two heavy rings P and Q of 

weights W1 and W2 respectively which are free to slide on two smooth rods BA 

and BC respectively inclined at angle 𝛼 and  𝛽 to the horizon and lying in the 

same vertical plane. Show that in the position of equilibrium, the string is 

inclined to the horizon at an angle   𝑡𝑎𝑛−1[
𝑊1 cot 𝛽~𝑊2 cot 𝛼

𝑊1 +𝑊2
]. 

 

4. Show that the system of forces represented by the lines joining any point to the 

vertices of a triangle is equivalent to the system represented by the lines joining 

the same point to the middle points of the sides of the triangle. 

 

5. The sides BC, CA, AB of a ∆ABC are bisected in D, E, F respectively. Show 

that the forces represented by DA, EB and FC are in equilibrium. 

 

6. Three forces PA, PB, PC diverge from the point P and three forces AQ, BQ, 

CQ converge to the point Q. Show that the resultant of the six forces is 

represented in magnitude and direction by 3PQ and that it passes through the 

centroid of the triangle ABC. 

 

7. If ABCD is a parallelogram and P any point, show that the forces represented 

by PA and PC are equivalent to the forces represented by PB and PD. 

 

8. If P is any point within the quadrilateral ABCD, find the resultant of the forces 

represented by PA, PB, PC, PD and hence find the position of the point P so 

that these forces may be in equilibrium. 
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9. Q is any point within the quadrilateral ABCD. P, Q, R, S are the midpoints of 

the sides. Show that the forces represented by OA, OB, OC, OD have the same 

resultant as the forces represented by OP, OQ, OR, OS. 

 

10.  PQRS is a quadrilateral. Prove that the resultant of the forces completely 

represented by the sides PQ, QR, PS, SR is represented in magnitude and 

direction by 2PR, and that its line of action bisects QS. 

 

11.  ABCD is quadrilateral and E is the point of intersection of the lines joining the 

middle points of the opposite sides. If O is any point in that plane, show that 

the resultant of the forces 𝑂𝐴    , 𝑂𝐵    , 𝑂𝐶    , 𝑂𝐷     is equal to 4𝑂𝐸    . 

 

12.  ABCDEF is a regular hexagon and O is any point. Prove that the resultant of 

forces represented by OA, OB, OC, OD, OE, OF is a force 6 OP, where P is the 

centre of the circumcircle of the hexagon. 

 

13. ` ABC is a triangle. Find the resultant of the forces at A represented in 

magnitude and direction by 

(i) 3AB and 2AC   (ii) 3AB and 2CA 

 

3.11   FURTHER READINGS 

  Dr. M. K. Venkataraman, Statics, Agasthiar   Publications,                                         

17
th 
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  Dr. M. K. Venkataraman, Dynamics, Agasthiar Publications, 13
th 

Edition, 

2009. 

 P. Duraipandian, Laxmi Duraipandian & Muthamizh Jayapragasam, 

Mechanics,S.Chand&Co.Pvt.Ltd,2014.
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UNIT IV  RESOLUTION OF FORCES 
 

STRUCTURE 

4.0 Introduction  

4.1 Objectives  

4.2 Resolution of a Forces 

4.3Components of a Forces 

4.4 Theorem on Resolved Parts 

4.5 Resultant of any Number of  Forces 

4.6 Resultant of any Number of Coplanar Forces 

4.7Condition of Equilibrium 

4.8Worked examples 

4.9 Answers to Check Your Progress Questions 

   4.10 Summary 

4.11 Keywords 

4.12 Self Assessment Questions and Exercises 

4.13 Further Readings 

4.0  INTRODUCTION 
           In this chapter we will consider, resolution of  force F  can be resolved 

into (or replaced by) two forces, which together produces the same effects 

that of force F. These forces are called the components of the force F. This 

process of replacing a force into its components is known as resolution of a 

force into components. A force can be resolved into two components, which 

are either perpendicular to each other or inclined to each other. If the two 

components are perpendicular to one another, then they are known as 

rectangular components and when the components are inclined to each other, 

they are called as inclined components. The force F can now be resolved into 

two components Fx and Fy  along the x and y axes and hence, the components 

are called rectangular components. Further, the polygon constructed with 

these two components as adjacent sides will form a rectangle OABC and, 

therefore, the components are known as rectangular components. 

4.1  OBJECTIVES 
             After going through this unit, you will be able to: 
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 Understand what resolution of forces is 

 Explain about theorems on resolved parts 

 Discuss resolution of forces and condition of                                         

equilibrium  examples 

4.2   RESOLUTION OF A FORCE 
        Two forces given in magnitude and direction have only one resultant, for we 

can construct only one parallelogram when two adjacent sides are given. 

Conversely, a single force can resolved into two components in an infinite 

number of ways, since any number of parallelograms can be constructed on a 

given line AC as diagonal. If BADC is any one of these, the force AC is 

equivalent to the two component forces AB and AD. 

                          The most important case of resolution of a force occurs, when 

a given force is to be resolved in two directions at right angles, one of these 

directions being given. In this case, the magnitudes of the component forces 

are easily got as follows: 

Let OC represent the given forces F and OX be a line inclined at an angle 𝜃 to 

OC. Let OY be perpendicular to OX. Draw 

CA ⊥to OX and complete the 

parallelogram OACB. Then the force OC 

is equivalent to the two component forces 

OA and OB. 

                   Also OA = OC. cos 𝜃 = F. 

cos𝜃 

                    and OA = AC= OC. sin𝜃 = F. 

sin 𝜃  

             When a given force is resolved into two components in two mutually 

perpendicular directions, the components are referred to as the resolved parts 

in the corresponding directions. 

             OA is the resolved part of F along OX, while OB is the resolved part 

of F along OY. 

  

                                                                                                           

   𝜃 is obtuse and OA is in a direction 

opposite to OX.  

In this case, the resolved part of F along OX 

is negative. Its value as before is Fcos 𝜃, 

which is negative, as 𝜃 is obtuse. 

 

       Hence we have the following important 

proposition: 

 

F 

B C 

A O 

𝜃 

X 

X 

𝜃 
F 

O 

C 

A 

B 

Y 
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        A force F is equivalent to a force F cos𝜃 along a line making an angle 𝜃 

with its own direction together with a force F sin 𝜃 perpendicular to the 

direction of the first component. 

Corollary 1.  

               When 𝜃 = 0,  cos 0 = 1. The resolved part = F. 

              

   i.e. the resolved part of a force in its own direction is the force itself.                     

 

Corollary 2.  

              When 𝜃 = 90°,  cos 90° = 0. The resolved part = 0.     

i.e. A force has no resolved part in a direction perpendicular to itself. 

 

4.3  COMPONENTS OF A FORCE ALONG TWO 

 GIVEN DIRECTIONS: 
    

         

 

                     Let OC represent a given force F 

and OX, OY be two lines making angle 

𝛼 and 𝛽 with OC.   

 

                                  Draw CA parallel to OY and CB 

parallel to OX, making the 

parallelogram OACB as shown in 

the figure. 

                  Then OA and OB are the components of the force OC along OX 

and OY respectively. 

      From      ∆𝑂𝐴𝐶, 

       
𝑂𝐴

sin ∠𝑂𝐶𝐴
 =  

𝐴𝐶

sin ∠𝐴𝑂𝑐
 =  

𝑂𝐶

sin ∠𝑂𝐴𝐶
 

 

     i.e.  
OA

sin  β
  = 

AC

sin  α
 = 

OC

sin [180°−( 𝛼+β  )]
 

  

     i.e.   
OA

sin  β
  = 

AC

sin  α
 = 

𝐹

sin ( 𝛼+β  )
 

 

 

∴    OA = 
𝐹 sin  β

sin ( 𝛼+β  )
  and OB = AC = 

𝐹 sin  α

sin ( 𝛼+β  )
 

 

               It should be noted that the component of a force in a given direction 

is different from the resolved part of the force in that direction. To find the 

component of a force in any direction, we must be given the direction of the 

Y 

X 

F 

𝛼 

𝛽 𝛽 

B C 

A O 
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other component also, On the other hand, to find the resolved part, we need 

only the given direction, since the other direction must be at right angles to it. 

In other hand, the component of a force in a direction is a variable quantity, 

while the resolved part of the force in a direction is a fixed quantity, its value 

being F cos 𝜃 as shown already. 

 

4.4    THEOREM ON RESOLVED PARTS 
 

                       The algebraic sum of the resolved parts of two forces in any 

direction is equal to the resolved part of the resultant in the same direction. 

 
           Let AB and AD represent completely the forces P and Q and AX be the 

direction in which the forces are to be resolved. Complete the parallelogram 

ABCD so that the resultant R is represented by AC. 

 

   Draw BL, DN and CM perpendiculars to OX and BK ⊥to CM. 

 

    Then AL, AN and AM are the resolved parts of the forces P, Q, R along 

AX. 

 

       AD makes an obtuse angle with AX and so the resolved part of Q is -AN. 

 We have to show that AL ± AN = AM. 

 The triangles DAN and CBK are congruent and hence AN = BK. 

 AL ± AN = AL ± BK = AL ± LM = AM. 

     Obviously the above theorem can be extended to the resultant of any 

number of forces acting at a point. 

     Suppose P1, P2, P3 are three forces acting at O. 

      Let R1 be the resultant of P1 and P2 and R2 be the resultant of R1 and P3. 

      Applying the theorem to the two sets of three forces P1, P2, R1 and R1, P3, 

R2, we have 

       resolved part of R1 along OX =  resolved part of P1  

                                                            + resolved part of P2   .... ...(1) 

C 

D 

Q 

R 

P 

K 
B 

N M L A 

K 

X 

Q 

D 

C 

R 

B 

P 

M L N A 
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       and resolved part of R2 along OX = resolved part R1  

                                                                                         + resolved part of P3   ... ...(2) 

 

       Combining (1) and (2), we have 

 

 resolved part of R2 = resolved part of P1 + resolved part of P2    

                                         + resolved part of P3 and so on. 

 

Hence in a generalized form, we have the theorem 

         The algebraic sum of the resolved parts of a number of forces in any 

direction is equal to the resolved part of the resultant in the same direction. 

         In the application of this theorem, it is to be noted that all the forces are 

resolved in the same direction and each resolved part has to be taken with its 

proper sign. 

 

4.5  RESULTANT OF ANY NUMBER OF FORCES: 

GRAPHICAL METHOD 

 
       

           

E 

D 

C 

B A 
S 

R Q 

P O 
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                    Let P, Q, R, S be the forces acting at O. 

        Take a point A and draw lines AB, BC, CD and DE to represent 

successively the forces P, Q, R and S in magnitude and direction. 

      Compounding the forces be vector law, step by step, we have 

                          P + Q = 𝐴𝐵     + 𝐴𝐶     =𝐴𝐶     

 

                  P + Q + R = 𝐴𝐶     + 𝐶𝐷     = 𝐴𝐷     

 

and    P + Q + R + S = 𝐴𝐷     + 𝐷𝐸     = 𝐴𝐸     

                   Hence the required resultant is represented is magnitude and direction 

by the line AE. The same construction will apply for any number of forces. The 

figure ABCDE is said to be the force-polygon. 

          The force-polygon can be constructed by drawing the vectors 

corresponding to the forces in any order. In fig 31, the order of the third and 

the fourth forces have been interchanged but AE is the same in each case. 

4.6 RESULTANT OF ANY NUMBER OF COPLANAR 

FORCES 
       

                  Let forces P1, P2, P3, .... Pn act at O. Through O, draw two lines OX 

and OY at right angles to each other in the plane of the forces. Let the lines of 

action of P1, P2,... Pn make angles 𝛼1, 𝛼2, .... 𝛼𝑛  with OX. Let R be the 

resultant inclined at angle 𝜃 to OX. 

E 

D’ 

C 

B A 
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Then,   

       Rcos 𝜃  = resolved part of the resultant along OX 

                      = algebraic sum of the resolved parts of  

                                   P1, P2,... Pn along OX. 

                      = P1 cos𝜃1 + P2  cos𝜃2... + Pn cos𝜃𝑛  

                       = X (say)                                               .............(1) 

        Rsin𝜃  = resolved part of the resultant along OY 

                       = algebraic sum of the resolved parts of  

                                            P1, P2,... Pn along OY. 

                                = P1 sin𝜃1 + P2  sin𝜃2... + Pn sin𝜃𝑛   

                                  = Y (say)                         .............(2) 

   Squaring (1) and (2) and adding, we have 

                     𝑅2 = 𝑋2 + 𝑌2 

                 i.e. R =  𝑋2  +  𝑌2                     ...........(3) 

  Dividing (2) by (1), we get 

          tan 𝜃= 
𝑌

𝑋
     i.e. 𝜃 = 𝑡𝑎𝑛−1(

𝑌

𝑋
)             .......(4) 

 Equations (3) by (4) give respectively the magnitude and direction of the 

resultant. 

 

 

𝜃3 

𝜃2 

 
𝜃1 

Pn 

Y 

R 
P2 

P1 
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4.7   CONDITION OF EQUILIBRIUM 
      

                 Forces acting at a point are in equilibrium when their resultant is 

zero. We shall now give the conditions which must be satisfied by a number of 

forces acting at a point of a rigid body or on a particle, in order that the body, 

or the particle may be at rest. 

Geometrical or graphical conditions:  

                    We have already studied the Triangle of Forces and the Polygon 

of Forces. 

     If forces acting at a point are represented in magnitude and direction by 

lines forming the successive sides of a polygon, then for equilibrium, the 

polygon must be closed. When there are only three forces acting on a particle, 

the conditions of equilibrium are often most easily found by applying Lami‟s 

theorem. 

Analytical Conditions: 

  If we resolve the forces in any two directions at right angles and the sums of 

the components in these directions be X and Y, the resultant R is given by R
2
 = 

X
2 
+ Y

2
. 

              If the forces are in equilibrium, R = 0. 

              Then X
2 

+ Y
2 
= 0 

           Now, the sum of the squares of two real quantities cannot be zero unless 

each quantity is separately zero. 

  ∴ X = 0 and Y = 0. 

     Hence, if any number of forces acting at a point are in equilibrium, the 

algebraic sums of the resolved parts of the forces in any two perpendicular  

directions must be zero separately. 

     Conversely if the algebraic sum of the resolved parts of the forces acting at 

a point in any two perpendicular directions are zero separately, the forces will 

be in equilibrium. 

    This is because when X = 0 and Y = 0, we must have R = 0. 

4.8  WORKED EXAMPLE 
Example 4.1: 

 Show that a given force may be resolved into three components, acting in three 

given lines which are not all parallel or all concurrent. 
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 Let the three lines form a ∆𝐴𝐵𝐶 and let the 

given force F meet the side BC in D. Then F 

can be resolved into two components acting 

along BC and DA respectively. The 

component along DA can be resolved into two 

components along AB and AC respectively. 

 Suppose two of the lines AB and CD are 

parallel and LM is the third line. Let the given 

force F meet CD at E. F can be resolved into 

two components along CD and EL. The 

component along EL can be resolved into two 

components acting along BA and ML 

respectively. 

Example 4.2:  

          ABCD is quadrilateral and forces acting at a point are represented in 

direction and magnitude by BA, BC, CD and DA. Find their resultant. 

         We have 𝐵𝐶     + 𝐶𝐷     + 𝐷𝐴     = 𝐵𝐴     

   ∴  𝐵𝐴     + (𝐵𝐶     + 𝐶𝐷     + 𝐷𝐴    )  = 𝐵𝐴    +  𝐵𝐴     = 2 𝐵𝐴      

Hence the resultant is 2BA, both in magnitude and direction  

Example 4.3:   

              ABCDEF is a regular hexagon and at A, act forces represented by   

𝐴𝐵    , 2𝐴𝐶    , 3𝐴𝐷    , 4𝐴𝐸     and 5𝐴𝐹    . Shoe that the magnitude of the resultant is AB. 

 351 and that it makes an angle 𝑡𝑎𝑛−1(
7

  3
) with AB. 

   Let a be the side of the hexagon. 

 

F 

D 

C 

A 

E 

Y 

X 

30° 
90° 

120° 

90° 

30° 

 

F 

A 
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      Each interior angle of a regular hexagon = 120° 

              ∴ ∠𝐶𝐴𝐵 = ∠𝐴𝐶𝐵 =  30° 

                              = ∠𝐹𝐴𝐸 = ∠𝐹𝐸𝐴  

               From the isosceles ∆ ABC, 

                AC = 2AB.cos30°  

                       = 2a 
 3

2
 = a 3 = AE 

∠𝐴𝐸𝐷 = 90°        ∴ 𝐴𝐷2 = 𝐴𝐸2 + 𝐸𝐷2 = 3𝑎2 + 𝑎2 = 4𝑎2 

               ∴ AD = 2a 

Since the vertices of a regular hexagon lie on a circle, 

      ∠𝐷𝐴𝐵 = ∠𝐷𝐶𝐵 =  180° 

       ∴ ∠𝐷𝐴𝐵 = 180° − 120° =  60° 

      ∴ ∠𝐷𝐴𝐵 = 30° and ∠𝐸𝐴𝐷 =  30°. 

      The magnitudes of the forces acting at A are a, 2a 3, 6a, 4a 3 and 5a as 

shown in the figure. 

      Take AB and AE as axes of x and y and let R be the resultant inclined at an 

angle 𝜃 to AB. 

 Resolving the forces along AB and AE, we have 

         Rcos 𝜃  =  a + 2a 3 cos 30° + 6a cos 60° + 5a cos 120° 

                        =  a + 2a  3 
 3

2
 + 6a.

1

2
−5a.

1

2
 

                        = 
9𝑎

2
                                               .. ... ...(1) 

and    Rsin𝜃 =  2a 3 cos 60° + 6a cos 30° + 4a 3 + 5a cos 30° 

                          = 5a 3  + 
11a 3 

2
   

                           = 
21a 3 

2
                             …………....(2) 

      Squaring (1) and (2), and adding,  

      𝑅2 =  (
9𝑎

2
)2  + (

21𝑎 3

2
)2 = 

81𝑎2

4
 + 

441

4
× 3𝑎2 



 

46 
 

Resolution of Forces 

 

NOTES 
 

Self Instructional Material 

 

             =  
1404

4
𝑎2 = 351𝑎2 

∴ R = a 351 = AB.  351 

Dividing (2) by (1), 

tan 𝜃 = 
21𝑎 3

2
 × 

2

9𝑎
  = 

21 3

9
 = 

7 3

3
 = 

7

 3
 

Hence the resultant is a force of magnitude AB  351, 

In a direction making an angle 𝑡𝑎𝑛−1(
7

  3
) with AB 

 

Example 4.4:  

           Forces acting at a point are represented in magnitude and direction by   

            𝐴𝐵    , 2𝐵𝐶    , 2𝐶𝐷    , 𝐷𝐴     and 𝐷𝐵     where ABCD is a square. Show that the forces 

are in equilibrium. 

  𝐴𝐵     + 2𝐵𝐶     + 2𝐶𝐷     + 𝐷𝐴     + 𝐷𝐵      

                            = (𝐴𝐵     + 𝐵𝐶     + 𝐶𝐷     + 𝐷𝐴    ) + ( 𝐵𝐶     + 𝐶𝐷     + 𝐷𝐵     )     

                            = 0  [since the forces in the first set of brackets                            

are in equilibrium by the polygon of forces (square ABCD) and the forces in 

the second set are in equilibrium by the triangle of forces (triangle BCD)] 

        Hence the given set of forces are in equilibrium. 

Example 4.5:  

             ABCD and 𝐴′𝐵′𝐶 ′𝐷′  are parallelograms, prove that forces 𝐴𝐴′     , 𝐵′𝐵     , 

𝐶𝐶′      and 𝐷′𝐷      acting at a point will keep it at rest. 

 

       Let G and G‟ be the points of intersection of the diagonals.  

By the polygon of forces, from the quadrilateral AGG‟A‟,  

G’ 

A’ 

D’ 

C’ 

B’ G 

D 

B C 
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                      𝐴𝐴′      = 𝐴𝐺     + 𝐺𝐺′      + 𝐺′𝐴′       

Similarly     𝐵′𝐵      = 𝐵′𝐺′       + 𝐺′𝐺      + 𝐺B     

                       𝐶𝐶′      = 𝐶𝐺     + 𝐺𝐺′      + 𝐺′𝐶′      

                       𝐷′𝐷      = 𝐷′𝐺′       + 𝐺′𝐺      + 𝐺D     

Adding up, 

                      𝐴𝐴′      + 𝐵′𝐵      +  𝐶𝐶′      + 𝐷′𝐷      = 0    

                    (∴ the concerned vectors in the right side are equal and opposite). 

Example 4.6:  

          E is the middle point of the side CD of a square ABCD. Forces 16, 20, 

4 5, 12 2 kg.wt. act along AB, AD, EA, CA in the directions indicated by 

the order of the letters. Show that they are in equilibrium. 

 

    Take AB and AD as axes of x and 

y. 

    Produce EA to F and let    ∠𝐵𝐴𝐹= 

𝜃 

    Produce CA to G. 

    ∠𝐵𝐴𝐺= ∠𝐵𝐴𝐶 +  ∠𝐶𝐴𝐺 

                = 45° + 180° =  225°    

Let R be the resultant of the forces inclined at an angle 𝜃 to AB. 

Resolving the forces along AB and AD, we have 

Rcos 𝜃 = 16 +12 2 cos 225° + 4 5 cos 𝜃 

               = 16 + 12 2 cos(180 ° + 45°) + 4 5 cos 𝜃 

               = 16 + 12 2 × − cos 45°  + 4 5 cos 𝜃 

               = 16 - 12 2 × 
1

 2
  + 4 5 cos𝜃 

                = 4 + 4 5 cos𝜃                                            ... ... (1) 

∠𝐵𝐴𝐸= ∠𝐵𝐴𝐹 − ∠𝐸𝐴𝐹 =  𝜃 − 180°  

20 

𝜃 

F 
G 

x 

D 
E 

C 

B A 

y 
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and  ∠𝐷𝐸𝐴= alt. ∠𝐵𝐴𝐸 =  𝜃 − 180°   

in rt. 𝜃d ∆ 𝐴𝐸𝐷, AE
2 

= AD
2 

+ DE
2 

                 = a
2
 + 

a2

4
  a being the side of the square  

                 = 
5a2

4
  

       ∴  AE =
a 5

2
 

 cos(𝜃 −  180°) = 
DE

AE
 = 

(
𝑎

2
)

a 5

2

  = 
1

 5
  

  i.e.  cos(180° −  𝜃) = 
1

 5
 = − cos 𝜃 

    ∴ cos 𝜃 = −
1

 5
 

From (1), 

         Rcos 𝜃 = 4 + 4 5 × −
1

 5
 = 0              ... ... ...(2) 

         Rsin 𝜃 = 12 2 sin 225° + 4 5 sin𝜃 + 20 

                      = 12 2 sin(180 ° + 45°) + 4 5 sin 𝜃 + 20 

                      = - 12 2 sin 45°  + 4 5 sin𝜃 + 20 

                      = - 12 2 × 
1

 2
  + 4 5 sin𝜃 + 20 

                       = 8 + 4 5 sin𝜃                               ... ... (3) 

From rt. ∠d ∆ 𝐴𝐸𝐷,  

     sin(𝜃 −  180°) = 
AD

AE
 = 

𝑎

a 5

2

  = 
2

 5
  

    i.e.  −sin(180° −  𝜃) = 
2

 5
  

       ∴ sin 𝜃 = −
2

 5
 

From (3), 

             Rsin 𝜃 = 8 + 4 5 × −
2

 5
 = 8 – 8 = 0    ... ... ...(4) 

  Squaring (2) and (4) and adding, 
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   R
2
 = 0 + 0 =  0 

       i.e R = 0 

   The forces are in equilibrium. 

 

                              Check Your Progress 

1. What is the resolved part? 

2. What is the resolution of a forces into components? 

3. What is the force-polygon? 

 

4.9 ANSWERS TO CHECK YOUR PROGRESS QUESTIONS 
1. Resolution of  force F  can be resolved into two forces, which together 

produces the same effects that of force F. These forces are called the 

components of the force F. 

2. Resolution of  force F  can be resolved into (or replaced by) two forces, 

which together produces the same effects that of force F. These forces are 

called the components of the force F. This process of replacing a force into 

its components is known as resolution of a force into components. 

3. The required resultant is represented is magnitude and direction by the line 

AE. The same construction will apply for any number of forces. The figure 

ABCDE is said to be the force-polygon. 

4.10  SUMMARY 
 

 The algebraic sum of the resolved parts of two forces in any direction is 

equal to the resolved part of the resultant in the same direction. 

 Two forces given in magnitude and direction have only one resultant, for 

we can construct only one parallelogram when two adjacent sides 

 If any number of forces acting at a point are in equilibrium, the algebraic 

sums of the resolved parts of the forces in any two perpendicular  

directions must be zero separately. 

 If the algebraic sum of the resolved parts of the forces acting at a point in 

any two perpendicular directions are zero separately, the forces will be in 

equilibrium. 

 If G is the centroid on a ∆𝐴𝐵𝐶, forces represented by GA, GB, GC will be 

in equilibrium. 

i.e. 𝐺𝐴    + 𝐺𝐵    +  𝐺𝐶     = 0  

 The resolved part of a force in its own direction is the force itself.     
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4.11  KEY WORDS 
 Resolved part: The algebraic sum of the resolved parts of a number of 

forces in any direction is equal to the resolved part of the resultant in the 

same direction. 

 Condition of equilibrium: If any number of forces acting at a point are in 

equilibrium, the algebraic sums of the resolved parts of the forces in any 

two perpendicular  directions must be zero separately. 

 Conversely if the algebraic sum of the resolved parts of the forces acting at 

a point in any two perpendicular directions are zero separately, the forces 

will be in equilibrium. 

 Two forces given in magnitude and direction have only one resultant, for 

we can construct only one parallelogram when two adjacent sides 

 The resolved part of a force in its own direction is the force itself.        

4.12 SELF ASSESSMENT QUESTIONS AND EXERCISES 
 

1. If a force P be resolved into two forces making angles of 45° and 15° with its 

direction, show that the latter force is 
 6

3
P. 

 

2. Find the components of force P along two directions making angle of 45° and 

60° with P on opposite sides. 

 

 

3. Two forces P and Q have a resultant R and the resolved part of R in the 

direction of P is of magnitude Q. Show that the angle between the forces in 

2𝑠𝑖𝑛−1 
𝑃

2𝑄
. 

 

4. AD is an altitude of a triangle ABC. Show that the force AD acting along AD 

components 
𝑎2+𝑏2−𝑐2

2𝑎2 AB and 
𝑐2+𝑎2−𝑏2

2𝑎2 AC along AB and AC respectively. 

 

 

5. If E, F are the feet of the perpendiculars from B and C upon the opposite sides 

of the triangle ABC, show that a forces P acting along EF can be replaced by 

Pcos𝐴, Pcos𝐵 , P cos𝐶 acting along the sides of the triangle. 

 

6. M is the point of trisection of the side AC of a ∆ABC which is nearer to A. N is 

the point of trisection of the side AB which is nearer to B. Resolve a force 

represented in magnitude and direction by MN into three forces acting each 

along a side   triangle. 

 

 

7. ABCDE is a pentagon. Forces acting on a particle are represented in magnitude 

and direction by AB, BC, CD, 2DE, AD and AE. Find their resultant. 
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8. ABCD is a quadrilateral forces acting at a point are represented in magnitude 

and direction by AB, AD, BC and DC. Show that the resultant is along AC and 

its magnitude is 2AC. 

 

 

9. The sides BC and DA of a quadrilateral ABCD are bisected in F and H 

respectively; show that if two forces parallel and equal to AB and DC act on a 

particle, then the resultant is parallel to HF and equal to 2 HF 

 

10.  Three forces P, Q, R in one plane act on a particle, the angles between R and 

Q, P and R, and P and Q being 𝛼,𝛽 𝑎𝑛𝑑 𝛾 respectively. Show that their 

resultant is equal to 

 

 {𝑃2 + 𝑄2 + 𝑅2 + 2𝑄𝑅 cos𝛼 + 2𝑅𝑃 cos𝛽 + 2𝑃𝑄 cos𝛾} 

 

11.  If forces of magnitude P, Q, R act at a point parallel to the sides BC, CA, 

AB of a triangle ABC respectively, prove that the magnitude of their 

resultant is 

 {𝑃2 + 𝑄2 + 𝑅2 − 2𝑄𝑅 cos𝐴 − 2𝑅𝑃 cos𝐵 − 2𝑃𝑄 cos𝐶} 

Hence deduce the triangle of forces. 

 

12.  Fifteen coplanar forces act at a point and are represented in magnitude and 

direction by the lines drawn from each of the vertices of a pentagon to the 

midpoints of those sides on which the vertex does not lie. Show that they 

are in equilibrium. 

13.  Three equal forces acting at a point are in equilibrium. Show that they are 

equally inclined to one another. 

 

14.  Three forces act perpendicularly to the sides of a triangle at their 

midpoints and are proportional to the sides. Prove that they are in 

equilibrium. 

 

4.13   FURTHER   READINGS 

Dr. M. K. Venkataraman, Statics, Agasthiar   Publications,                                         

17
th 

Edition, 2014. 

  Dr. M. K. Venkataraman, Dynamics, Agasthiar Publications, 13
th 

Edition, 

2009. 

 P. Duraipandian, Laxmi Duraipandian & Muthamizh Jayapragasam, 

Mechanics, S. Chand & Co. Pvt. Ltd, 2014.
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                            BLOCK II 

PARALLEL FORCES, COUPLES AND 

FRICTIONS 

 

UNIT – V FORCES ACTING ON A  

RIGID BODY 

STRUCTURE 

5.0 Introduction 

5.1 Objective 

5.2 Parallel Forces 

5.3 Resultant of Two Like and Unlike Parallel Forces 

5.4 Resultant of a Number of  Parallel Forces 

5.5 Condition of Equilibrium of Three Coplanar 

5.6 Centre of Two Parallel Forces 

5.7 Moment of a Forces 

5.8 Physical Significance of the moment of a Forces  

5.9 Geometrical Representation of a Moment 

5.10 Sign of the Moment 

5.11 Unit of the Moment 

5.12 Varigon‟s Theorem 

5.13 Generalised Theorem of Moments 

5.14 Worked Examples  

5.15 Answer to Check Your Progress Questions  

5.16 Summary 

5.17 Keywords 

5.18 Self Assessment questions and exericises 

5.19 Further Reading 

 

5.0  INTRODUCTION 
 In the previous unit we have considered the method of finding the 

resultant of two forces which meet at a point. We shall now consider how 

to find the resultant of two parallel forces. Such forces do not meet in a 

point and so we cannot find their resultant by direct application of the law 

of parallelogram of forces. 

        Two parallel forces are said to be like when they act in the same 

direction; they are said to be unlike when they act in opposite parallel 

directions. 

5.1  OBJECTIVE 

After going through this unit, you will be able to: 
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 Understand what is meant by parallel force. 

 Discuss the theorems on forces acting on a rigid body. 

 Describe moments. 

 

5.2 PARALLEL FORCES 
Let like parallel forces P and Q act at the points A and B of the rigid 

body respectively and let them be represented by the lines AD and BL. At A 

and B, introduce two equal and opposite forces F of arbitrary magnitude 

along the line AB and let them be represented be AG and BN. These two new 

forces will balance each other and hence will not affect the resultant of the 

system. 

 The two forces F and 𝑃 acting at the point A can be compounded into 

a single force 𝑅1 represented by the diagonal AE of ADEG. Similarly the two 

forces F and Q acting at the point B will have a resultant 𝑅2 represented by 

the diagonal BM of the parallelogram BLMN. 

 Produce EA and MB and let them meet at O. The two resultants 𝑅1 

and 𝑅2 can considered to act at O. At O draw Y‟OY || to AB and OX || to the 

directions of P and Q. Reresolve 𝑅1 and 𝑅2 at O into their original 

components. 

              𝑅1 at O is equal to a force F along OY‟ and a force P along OX. 𝑅2 

at O is equal to a force F along OY and a force Q along OX. The two Fs at O 

cancel each other, being equal and opposite. We are now left with two forces 

P and Q acting OX. Hence their resultant is a force (𝑃 + 𝑄) acting along OX 

i.e. acting in a direction parallel to the original directions of P and Q.    

O F F 

P 

Q 

Y’ Y 

G F A 

R1 

R2 

C B F 

E D 

P 
x 

Q 

L M 

N 

Fig 1 
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 Thus the magnitude of the resultant of two like parallel forces is their 

sum. The direction of the resultant is parallel to the components and in the 

same sense.  

To find the position of the resultant: 

Let OX meet AB at C. 

Triangles OAC and AED are similar. 

∴
𝑂𝐶

𝐴𝐷
=

𝐴𝐶

𝐸𝐷
 i.e. 

𝑂𝐶

𝑃
=

𝐴𝐶

𝐹
 or 𝐹.𝑂𝐶 = 𝑃.𝐴𝐶           … . . (1) 

Triangles OCB and BLM are similar. 

∴
𝑂𝐶

𝐵𝐿
=

𝐶𝐵

𝐿𝑀
 i.e. 

𝑂𝐶

𝑄
=

𝐶𝐵

𝐹
 or 𝐹.𝑂𝐶 = 𝑄.𝐶𝐵           … . . (2) 

From (1) and (2), we have 𝑃.𝐴𝐶 = 𝑄.𝐶𝐵 

i.e. 
𝐴𝐶

𝐶𝐵
=

𝑄

𝑃
 

i.e. the point C divides AB internally in the internally in the inverse 

ratio of the forces. 

5.3 
RESULTANT OF TWO LIKE AND UNLIKE 

PARALLEL FORCES 
Let P and Q be two unequal and unlike parallel forces acting at the points A 

and B of the rigid body. Let 𝑃 > 𝑄 and let them be represented by AD and BL. At 

A and B, introduce two equal and opposite forces F of arbitrary magnitude along 

the line AB and let them be represented by AG and BN. These two new forces will 

balance each other and hence will not affect the resultant of the system. 

The two forces F and P acting at A can be compounded into a single force 

𝑅1 represented by the diagonal AE of the parallelogram AGED. Similarly the two 

forces F and Q acting at B have a resultant 𝑅2 represented by the diagonal BM of 

the parallelogram BLMN.   

Produce AE and MB and let them meet at O. The two resultants  𝑅1 and  𝑅2 

can be considered to act at O. At, O draw Y‟OY || to AB and OX parallel to 

direction of P and Q. Reresolve 𝑅1 and  𝑅2 at O into their original components. 𝑅1 

at O is equal to a force F along OY‟ and a force P along XO. 𝑅2 at O is equal to a 

force F along OY and a force Q along OX. The Fs at O cancel each other, begin 

equal and opposite. We are now left with a force P along XO and a force Q along 

OX. Clearly the resultant is a force 𝑃 − 𝑄(as 𝑃 > 𝑄) acting along XO i.e. acting in 
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a direction parallel to that of P. 

 

Thus the magnitude of the resultant of two unlike parallel forces is 

their difference. The direction of the resultant is parallel to and the sense of the 

greater component.      

To find the position of the resultant: 

Let OX meet AB at C. 

Triangles OCA and EGA are similar. 

∴
𝑂𝐶

𝐸𝐺
=

𝐶𝐴

𝐺𝐴
 i.e. 

𝑂𝐶

𝑃
=

𝐶𝐴

𝐹
 or 𝐹.𝑂𝐶 = 𝑃.𝐶𝐴           … . . (1) 

Triangles OCB and BLM are similar. 

∴
𝑂𝐶

𝐵𝐿
=

𝐶𝐵

𝐿𝑀
 i.e. 

𝑂𝐶

𝑄
=

𝐶𝐵

𝐹
 or 𝐹.𝑂𝐶 = 𝑄.𝐶𝐵           … . . (2) 

From (1) and (2), we have 𝑃.𝐶𝐴 = 𝑄.𝐶𝐵 

i.e. 
𝐶𝐴

𝐶𝐵
=

𝑄

𝑃
 

i.e. The point C divides AB externally in the inverse ratio of the 

forces. 

Note. As 𝑃 > 𝑄, CB must be > 𝐶𝐴. Hence the resultant passes nearer the 

greater force. 

Failure of the above construction: 

O F 

F 

P 

Q 

Y’ Y 

G F A 

R1 

R2 

C B 

F 

E 

D 

P 

x 
Q 

L M 

N 

Fig. 2 
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The construction for finding the resultant of two unlike parallel forces 

P and Q will fail, if 𝑃 = 𝑄 i.e. if the forces are equal in magnitude. In that 

case, in fig. 2, triangles AGE  and BNM will be congruent.  

∠𝐺𝐴𝐸 = ∠𝑁𝐵𝑀 and the lines AE and MB will be parallel.   

There will be no such point as O.  

Hence we conclude that the effect of two equal and unlike parallel 

forces cannot be replaced by a single force. Such pair of forces have no 

single resultant and they constitute what is called a couple, which will be 

considered later on.     

5.4 NUMBER OF PARALLEL FORCES ACTING ON  

A RIGID BODY 
If a number of parallel forces P, Q, R,… acting on a rigid body, their 

resultant can be found by successive applications of 5.3 & 5.4. First, we find 

the resultant 𝑅1 of P and Q; then we find the resultant  𝑅2 of 𝑅1 and R and 

this process is continued, until the final resultant is obtained. If the parallel 

forces are all like, the magnitude of the final resultant is the sum of the forces. 

If the parallel forces are not all like, the magnitude of the resultant is the 

algebraic sum of the forces each taken with its proper sign. 

5.5 CONDITIONS OF EQUILIBRIUM OF THREE  

COPLANAR PARALLEL FORCES 
Let P, Q, R be three forces parallel in one plane and be in 

equilibrium. Draw a line to meet the lines of action of these forces at A, B 

and C respectively.  

 If all the three forces are in 

the same sense, equilibrium will 

be clearly impossible. Hence two 

of them (say P and Q) must be 

like and the third R unlike.  

 The resultant of P and Q is 

(𝑃 + 𝑄), parallel to P or Q and 

hence, for equilibrium, R must be 

equal and opposite to  𝑃 + 𝑄 . 

             ∴ 𝑅 = 𝑃 + 𝑄 and the line 

of action of 𝑃 + 𝑄must pass through C. 

              ∴ 𝑃.𝐴𝐶 = 𝑄.𝐶𝐵 

i.e. 
𝑃

𝐶𝐵
=

𝑄

𝐴𝐶
  

and each =
𝑃+𝑄

𝐶𝐵+𝐴𝐶
=

𝑃+𝑄

𝐴𝐵
=

𝑅

𝐴𝐵
 

P P+Q 
Q 

A C 

R 

B 

Fig. 3 



 

57 

      

Low of Forces 

 

NOTES 

 

Forces Acting On a 

Rigid Body 

 

NOTES 
 

 

Self Instructional Material 

 

i.e. 
𝑃

𝐶𝐵
=

𝑄

𝐴𝐶
=

𝑅

𝐴𝐵
. 

Thus, if three parallel forces are in equilibrium, each is proportional to 

the distance between the other two. 

5.6 CENTRE OF TWO PARALLEL FORCES 
Let P and Q be two parallel forces acting at two points A and B. Then, their 

resultant R passes through a point C, which divides AB internally or externally in 

the ratio 𝑄:𝑃. 

i.e. 
𝐴𝐶

𝐶𝐵
=

𝑄

𝑃
   …….(1) 

The position of C given by (1), depends only upon the positions of A and B 

and then magnitudes of the forces P and Q. It does not depends on the actual 

direction of P and Q. In other words, whatever be the common direction of 

parallelism of the forces P and Q, their resultant will always pass through a certain 

fixed point. This fixed point is called the centre of the fixed point. Thus the centre 

of two parallel forces is a fixed point through which their resultant always passes 

whatever be the direction of parallelism.  

More generally, the resultant of a system of parallel forces of given 

magnitudes, acting at given points of a body, will always pass through a fixed 

point, for all directions of parallelism. This point is called the centre of parallel 

forces.  

Example 1. Two men, one stronger than the other, have to remove a block of 

stone weighing 300kgs. With a light pole whose length is 6 metre. The weaker 

man cannot carry more than 100kgs. Where must the stone be fastened to the 

pole, so as just to allow him his full share of weight? 

Let A be the weaker man bearing 100 kgs., his full share of the weight 

of the stone and B the stronger man bearing 200 kgs. Let C be the point on AB 

where the stone is fastened to the 

pole, such that 𝐴𝐶 = 𝑥. Then the 

weight of the stone acting at C is 

the resultant of the parallel forces 

100 and 200 at A and B 

respectively.  

 ∴ 100.𝐴𝐶 = 200.𝐵𝐶  

i.e. 100𝑥 = 200  6 − 𝑥 =
1200 − 200𝑥 

 ∴ 300𝑥 = 1200 or 𝑥 = 4. 

Hence the stone must be fastened to the pole at the point distant 4 

meters from the weaker man. 

x 6-x 

200 

A 

C 

300 

B 

Fig. 4 
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Example 2. Two like parallel forces P and Q act on a rigid body at A and 

B respectively.  

a) If Q be changed to 
𝑃2

𝑄
, show that the line of action of the resultant is the 

same as it would be if the forces were simply interchanged. 

b) If P and Q interchanged in position, show that the point of application of 

the resultant will be displaced along AB through a distance d, where 

𝑑 =
𝑃−𝑄

𝑃+𝑄
.𝐴𝐵.  

(a) Let C be the centre of two parallel forces with P at A and Q at B.  

Then 𝑃.𝐴𝐶 = 𝑄.𝐶   ….(1) 

If Q is changed to 
𝑃2

𝑄
, (p remaining the same), let D be the new centre of 

parallel forces.  

Then 𝑃.𝐴𝐷 =
𝑃2

𝑄
 𝐷𝐵   ….(2)  

i.e. 𝑃𝑄.𝐴𝐷 = 𝑃2.𝐷𝐵  

or 𝑄.𝐴𝐷 = 𝑃.𝐷𝐵    ….(3)  

Relation (3)shows that D is the 

centre of two like parallel forces, 

with Q and A and P at B.  

(b) When the forces P and Q are 

interchanged in position, D is the 

new centre of parallel forces. 

 𝐶𝐷 = 𝑑.  

From (3), 𝑄.  𝐴𝐶 + 𝐶𝐷 = 𝑃. (𝐶𝐵 − 𝐶𝐷) 

i.e. 𝑄.𝐴𝐶 + 𝑄. 𝑑 = 𝑃.𝐶𝐵 − 𝑃. 𝑑 

or  𝑄 + 𝑃 . 𝑑 = 𝑃.𝐶𝐵 − 𝑄.𝐴𝐶 

               = 𝑃 𝐴𝐵 − 𝐴𝐶 − 𝑄(𝐴𝐵 − 𝐶𝐵)  

   = 𝑃.𝐴𝐵 − 𝑃.𝐴𝐶 − 𝑄.𝐴𝐵 + 𝑄.𝐶𝐵  

   =  𝑃 − 𝑄 .𝐴𝐵   [∵ 𝑃.𝐴𝐶 = 𝑄.𝐶𝐵 𝑓𝑟𝑜𝑚 (1)] 

    Or 𝑑 =
𝑃−𝑄

𝑃+𝑄.𝐴𝐵
     

Example 3. Three like parallel forces, acting as the vertices of a triangle, 

have magnitudes proportional to the opposite sides. Show that their 

resultant passes through the incentre of the triangle. 

| 

P Q 

A C D B 
| 

Fig. 5 
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 Let like parallel forces, P, Q, R act at A, B, 

C. 

 It is given that 
𝑃

𝑎
=

𝑄

𝑏
=

𝑅

𝑐
   

 …..(1) 

Let the resultant of Q and R meet 

BC at D. 

We know that the magnitude of the 

resultant is Q+R. 

Also 
𝐵𝐷

𝐷𝐶
=

𝑓𝑜𝑟𝑐𝑒  𝑎𝑡  𝐶

𝑓𝑜𝑟𝑐𝑒  𝑎𝑡  𝐵
=

𝑅

𝑄
 

     =
𝑐

𝑏
 from (1)   

      

      =
𝐴𝐵

𝐴𝐶
 

∴ 𝐴𝐷 is the internal bisector of ∆𝐴. 

We have now to find the resultant of the two like parallel forces, 𝑄 + 𝑅 

at D and P at A.  

Let this resultant meet AD at I.  

Then 
𝐴𝐼

𝐼𝐷
=

𝑓𝑜𝑟𝑐𝑒  𝑎𝑡  𝐷

𝑓𝑜𝑟𝑐𝑒  𝑎𝑡  𝐵
=

𝑄+𝑅

𝑃
 

   =
𝑏+𝑐

𝑎
 from (1)    ….(2) 

From result (2), if it is clear that I is the incentre of the ∆. 

 [If I is the incentre of ∆𝐴𝐵𝐶 and AD bisects ∠𝐴 internally, we have 

the result 
𝐴𝐼

𝐼𝐷
=

𝑏+𝑐

𝑎
]. 

 

 

When forces act on a particle, the only motion that can occur is a motion of 

translation. But a force acting on a rigid body may produce either a motion of 

translation or rotation or of translation and rotation combined. When there is a 

motion of translation alone, the force is measured by the product of the mass 

of the particle and the acceleration produced on it by the force. In the case of 

rotation, the idea of the turning effect or moment of a force is introduced. 

5.7  MOMENT OF A FORCES 

P 

A 

Q 

Q+R R 

B D C 

I 

Fig. 6 
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 Consider a sheet of cardboard pivoted freely at a fixed point O. If a 

force F acts along a straight 

line AB, it is clear that there 

will be no rotation if AB does 

not pass through O, the force 

will tend to rotate the sheet 

about O. This tendency to 

rotate the body will increase as 

the magnitude of the force 

increases and also as the 

perpendicular distance from O 

on the line of action of the 

force increases. Let ON be the 

length of the perpendicular 

from O on the line of action of 

F. The tendency to rotate varies as F when ON is constant. It also varies as 

ON when F is constant. Hence it varies as 𝐹 × 𝑂𝑁 i.e. the product of F and 

ON, when both these quantities vary. This product is called the moment of 

F about O. Thus the moment of a force about a point is defined to be the 

product of the force and the perpendicular distance of the point from the 

line of action of the force. 

 

 The point F.ON will become zero only if either F is zero or ON is zero. 

When 𝑂𝑁 = 0, the point O is on the line of action of F. Hence if the moment 

of a force about a point is zero, either, (i) the force itself is zero, or 

(ii) the line of action of the force passes through that point. 

From the definition of the moment of a force about a point it is 

clear that it is a fitting measure for the turning effect of the force about the 

point. Thus the physical meaning for the moment of a force about a point is 

that it measure the tendency to rotate the body about that point. 

 

  

 

5.8 PHYSICAL SIGNIFICANCE OF THE MOMENT  

OF A FORCE 

A 

O 

P 

N B F 

Fig. 7 
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Let a force F acting on a body be represented in magnitude, direction and line 

of action by the line AB.  

Let O be any given point and ON the perpendicular from O on the 

AB or AB produced.  

The moment of the force F about O = 𝐹 × 𝑂𝑁 = 𝐴𝐵 × 𝑂𝑁 =
2∆ 𝐴𝑂𝐵. 

Hence if a force is represented completely by a straight line, its 

moment about any point is given by twice the area of the triangle which the 

straight line subtends at that point. 

 

In fig., when the force F acts along AB, it will tend to the lamina in the 

anticlockwise direction i.e. in a direction opposite to that in which the hands of 

clock move. In such cases, the moment is said to be positive. If the force tends 

to turn the body in a clock wise direction, its moment is said to be negative. 

Thus the moment, of a force about a point has both magnitude and 

direction and is therefore a vector quantity. 

5.11 UNIT OF MOMENT 
 The moment of a unit force about a point at a unit perpendicular distance 

from the line of action of the force is defined as the unit for the measurement 

of moments. If the unit of force be a poundal and unit of distance be one foot 

the unit of moment is a poundal-foot. If the unit of force be a dyne and unit of 

distance be one centimeter, the unit of moment is a dyne-cm. 

 

 

5.9 GEOMETRICAL REPRESENTATION OF A  

MOMENT 

5.10 SIGN OF THE MOMENT 

O 

A F B N 

O 

A F B N 

Fig. 8 
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5.12  VARIGON’S THEOREM 
 The algebraic sum of the moment of two forces about any point in their plane 

is equal to the moment of their resultant about that point. 

 

 To prove this theorem, we consider two cases 

Case I: Let the forces be parallel. 

 Let P and Q be two parallel forces and O any point in their plane. Draw AOB 

perpendicular to the forces to meet their lines of action in A and B.  

 The resultant of P and Q is a force 𝑅(= 𝑃 + 𝑄) acting at C such that 𝑃.𝐴𝐶 =
𝑄.𝐶𝐵. 

In fig 9(a), 

The algebraic sum of the moments of P and Q about O 

 = 𝑃.𝑂𝐴 + 𝑄.𝑂𝐵 

= 𝑃 𝑂𝐶 − 𝐴𝐶 + 𝑄(𝑂𝐶 + 𝐶𝐵)  

=  𝑃 + 𝑄 .𝑂𝐶 − 𝑃.𝐴𝐶 + 𝑄.𝐶𝐵  

=  𝑃 + 𝑄 .𝑂𝐶   [∵ 𝑃.𝐴𝐶 = 𝑄.𝐶𝐵] 

= 𝑅.𝑂𝐶 = moment of R about O. 

When the parallel forces P and Q are unlike and unequal, the theorem can 

be proved exactly in the same way. 

 

 

 

 

 

P 

P+Q+R 

Q 

A C B 
P 

O 

Q 

A C 

R+P+Q 

B 

Fig. 9(a) Fig. 9(b) 
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Case II:  

 Let the forces meet at a point. 

 

 Let the two forces P and Q act at A as shown in figs 10(a) and 10(b) and 

let O be any point in their plane. Through O, draw a line parallel to the 

direction of P meeting the line of action of Q at D. Choose the scale of 

representation such that length AD represents Q in magnitude. On the same 

scale, let length AB represent P. Complete the parallelogram BAD so that the 

diagonal AC represents the resultant R of P and Q. 

 In either figure, the moment of P, Q, R, about O are represented by 

2∆𝐴𝑂𝐵, 2∆𝐴𝑂𝐷 and 2∆𝐴𝑂𝐶 respectively. 

In fig. 10(a), O lies outside the ∠𝐵𝐴𝐷 and the moments of P and Q are 

both positive. 

The algebraic sum of the moments of P and Q 

 = 2∆𝐴𝑂𝐵 + 2∆𝐴𝑂𝐷  

 = 2∆𝐴𝐶𝐵 + 2∆𝐴𝑂𝐷   [∵ ∆𝐴𝑂𝐵 = ∆𝐴𝐶𝐵] 

 = 2∆𝐴𝐷𝐶 + 2∆𝐴𝑂𝐷  [∵ diagonal AC bisects the ||gm.] 

 = 2(∆𝐴𝐷𝐶 + ∆𝐴𝑂𝐷)  

 = 2∆𝐴𝑂𝐶  

O 

D C 

A 

Q R 

P 
B 

O D C 

A 

Q 

R 

P 
B 

Fig. 10(a) 
Fig.10(b) 
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 = moment of R about O. 

 In fig. 10(b), O lies inside the angle BAD. The moment of P about O is 

positive while that of Q is negative.  

The algebraic sum of the moments of P and Q 

 = 2∆𝐴𝑂𝐵 − 2∆𝐴𝑂𝐷  

 = 2∆𝐴𝐶𝐵 − 2∆𝐴𝑂𝐷   

 = 2∆𝐴𝐷𝐶 − 2∆𝐴𝑂𝐷   

 = 2(∆𝐴𝐷𝐶 − ∆𝐴𝑂𝐷)  

 = 2∆𝐴𝑂𝐶  

 = moment of R about O. 

5.13 GENERALIZED THEOREM OF MOMENTS 

 (PRINCIPLE OF MOMENTS) 
If any number of coplanar forces acting on a rigid body have a 

resultant, the algebraic sum of their moments about any point in their plane is 

equal to the moment of their resultant about the same point. 

Let 𝑃1,𝑃2,…. be any number of coplanar forces and O any point in their 

plane. Let 𝑅1 be the resultant of 𝑃1 and 𝑃2,𝑅2 that of 𝑅1 and 𝑃3,𝑅3 that of  𝑅2 

and 𝑃4 and so on until th final resultant R is obtained. 

Applying Varignon‟s theorem to the forces 𝑃1,𝑃2 and 𝑅1, we have 

moment of 𝑃1 about O + moment of 𝑃2 about O = moment of 𝑅1 about 

O ….(1) 

 Similarly, applying the theorem to the forces 𝑅1 ,𝑃3 and 𝑅2, we have 

moment of 𝑅1 about O + moment of 𝑃3 about O = moment of 𝑅2 about 

O ….(2) 

 Combining (1) and (2), we have 

moment of 𝑃1 about O + moment of 𝑃2 about O+ moment of 𝑃3 about O = 

moment of 𝑅2 about O. Proceeding thus, till all the forces are exhausted, we 

prove the above theorem. 

Let 𝑝1 , 𝑝2 ,…. be the perpendicular distances of O from the lines of 

action of the forces  𝑃1,𝑃2 ,…. respectively and 𝑝 the perpendicular distance of 

O from the line of action of the resultant R. 

Then the above theorem can be written as  
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𝑃1𝑝1 + 𝑃2𝑝2 + ⋯ = 𝑝𝑅  

i.e.  𝑃1𝑝1 = 𝑝𝑅   …(1) 

From this theorem, we derive the following important corollaries: 

Corollary 1. If the basic point O about which moment is taken, happens to lie 

on the line of action of the resultant R, then 𝑝 = 0. 

 ∴ From (1),  𝑃1𝑝1 = 0. 

Hence the algebraic sum of the moments of any number of coplanar 

forces about any point on the line of action of their resultant is zero. 

Corollary 2. Suppose  𝑃1𝑝1 = 0. 

Then from (1), 𝑝𝑅 = 0. 

 ∴Either 𝑝 = 0. It means that the basic point O about which moment is 

taken, lies on the line of action of the resultant. 

If 𝑅 = 0, it means there is no resultant for the system i.e. the forces are 

equilibrium. 

Thus if the algebraic sum of the moments of any number of forces about 

any point in their plane in zero, then either their resultant passes through the 

point about which moments are taken or the resultant is zero. In the latter case, 

the forces will be in equilibrium. 

Corollary 3. Suppose 𝑅 = 0 i.e. the forces are in equilibrium. 

Then form (1)  P1p1 = 𝑝 × 0 = 0. 

Hence if a system of coplanar forces is in equilibrium, the algebraic 

sum of their moments about any point in their plane is zero. 

This theorem enables us to find points on the line of action of a 

resultant of a system of forces. For, we have only to find a point about which 

the algebraic sum of the moments of the forces is zero and then the resultant 

must pass through that point. 

5.14  WORKED EXAMPLES 
Example 4. Two men carry a load of 224 𝑘𝑔. wt, which hangs from a light 

pole of length 8m. Each end of which rests on a shoulder of one of the men. The 

point from which the load is hung is 2𝑚. Nearer to one man than the other. 

What is the pressure 

on each shoulder? 

AB is the 

light pole of length 

8m. C is the point 

R1 R2 

x C 

224 

A B 

Fig. 11 
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from which the load of 224 𝑘𝑔𝑠. is hung. 

Let 𝐴𝐶 = 𝑥. Then 𝐵𝐶 = 8 − 𝑥. 

It is given that  8 − 𝑥 − 𝑥 = 2. 

i.e. 8 − 2𝑥 = 2 or 2𝑥 = 6. 

 ∴ 𝑥 = 3. i.e. 𝐴𝐶 = 3 and 𝐵𝐶 = 5. 

 Let the pressure at A and B be 𝑅1 and 𝑅2 𝑘𝑔.𝑤𝑡. respectively. Since the 

pole is in equilibrium, the algebraic sum of the moments of the three forces 𝑅1, 
𝑅2 and 224 𝑘𝑔.𝑤𝑡. about any point must be equal to zero. 

 Taking moments about B, 

 224𝐶𝐵 − 𝑅1.𝐴𝐵 = 0            (as the moment of 𝑅2 about B is 0) 

 i.e.  224 × 5 − 𝑅1 × 8 = 0. 

 ∴ 𝑅1 =
224 ×5

8
= 140.  

Taking moments about A, 

𝑅2  𝐴𝐵 − 224.𝐴𝐶 = 0.  

 i.e. 8𝑅2 − 224 × 3 = 0. 

 ∴ 𝑅2 =
224 ×3

8
= 84.  

Note 1. For equilibrium, the weight of 224 𝑘𝑔𝑠 must be equal and opposite to 

the resultant of 𝑅1 and 𝑅2. 

∴ 𝑅1 + 𝑅2 = 224. 

Hence from this relation, we may find 𝑅2 after finding 𝑅1. 

Note 2. In practice, instead of equating the algebraic sum of the moments of 

the forces about any point to zero, it will be convenient to equate the sum of 

the moments in one direction to the sum of the moments in the other 

direction. Hence in the above, taking moments about B, we have 𝑅1 .𝐴𝐵 =
224.𝐵𝐶. 

Example 5. A uniform plank of length 2𝑎  and weight 𝑊 is supported 

horizontally on two vertical props at a distance 𝑏 apart. The greatest weight 

that can be placed at the two ends in succession without upsetting the plank 

are 𝑊1 and 𝑊2 respectively. Show that 
𝑊1

𝑊+𝑊1
+

𝑊2

𝑊+𝑊2
=

𝑏

𝑎
. 

              Let AB be the plank upon two vertical props at C and D. 𝐶𝐷 = 𝑏. 

The weight W of the plank acts at G, the midpoints of AB, 
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               𝐴𝐺 = 𝐺𝐵 = 𝑎  

              When the weight 𝑊1 is placed at A, the contact with D is just broken 

and the upward reaction at D then is zero. 

              There is upward reaction 𝑅1 at 

C. 

             Now, taking moments about C, 

we have 

              𝑊1 .𝐴𝐶 = 𝑊.𝐶𝐺  

              i.e.𝑊1 .  𝐴𝐺 − 𝐶𝐺 = 𝑊.𝐶𝐺 

or 𝑊1 .𝐴𝐺 = (𝑊 + 𝑊1).𝐶𝐺 

i.e. 𝑊1 .𝑎 = (𝑊 + 𝑊1).𝐶𝐺 

or 𝐶𝐺 =
𝑊1 .𝑎

𝑊+𝑊1
   ……(1) 

  When the weight 𝑊2 is attached at B, there is loose contact at C. The 

reaction at C becomes zero. There is upward reaction 𝑅2 about D. 

 Now taking moments about D, we get  

             Now, taking moments about C, we have 

              𝑊2 .𝐵𝐷 = 𝑊.𝐺𝐷  

              i.e.𝑊2 .  𝐺𝐵 − 𝐺𝐷 = 𝑊.𝐶𝐷 

or 𝐺𝐷(𝑊 + 𝑊2) = 𝑊2 .𝐺𝐵 = 𝑊2 . 𝑎 

or 𝐺𝐷 =
𝑊2 .𝑎

𝑊+𝑊2
   ……(2) 

 But 𝐶𝐺 + 𝐺𝐷 = 𝐶𝐷 = 𝑏 

 ∴
𝑊1 .𝑎

𝑊+𝑊1
 +

𝑊2 .𝑎

𝑊+𝑊2
= 𝑏 

Or 
𝑊1

𝑊+𝑊1
 +

𝑊2

𝑊+𝑊2
=

𝑏

𝑎
 

Example 6. The resultant of three forces P, Q, R acting along the sides BC, 

CA, AB of a triangle ABC passes through the orthocenter. Show that the 

triangle must be obtuse angled. If ∠𝐴 = 120°, and 𝐵 = 𝐶, show that 𝑄 + 𝑅 =

𝑃 3. 

Let AD, BE and CF be the altitudes of the triangle intersecting at O, the 

orthocenter. 

W2 

G 

W 

B 

W1 

R1 R2 

Fig. 12 
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As the resultant passes through O, moment of the resultant about 𝑂 = 0. 

∴ Sum of the moments about P, Q, R about O is also =0. 

Hence, taking moments about O, we have  

𝑃.𝑂𝐷 + 𝑄.𝑂𝐸 + 𝑅.𝑂𝐹 = 0.   …….(1) 

In rt. ∠𝑑∆𝐵𝑂𝐷,∠𝑂𝐵𝐷 = ∠𝐸𝐵𝐶 = 90° − 𝐶. 

∴ tan 90° − 𝐶 =
𝑂𝐷

𝐵𝐷
 

i.e. cot𝐶 =
𝑂𝐷

𝐵𝐷
 

or 𝑂𝐷 = 𝐵𝐷 cot𝐶  ……(2) 

from rt. ∠𝑑∆𝐴𝐵𝐷, 

cos𝐵 =
𝐵𝐷

𝐴𝐵
 

∴ 𝐵𝐷 = 𝐴𝐵. cos𝐵 = 𝑐. cos𝐵 

∴ From (2), 𝑂𝐷 = 𝑐. cos𝐵 . cot𝐶 

= 𝑐. cos𝐵 .
cos𝐶

sin 𝐶
 

=
𝑐

sin 𝐶
. cos𝐵 cos𝐶 

= 2𝑅′ cos𝐵 cos𝐶 (∵  
𝑐

sin 𝐶
= 2𝑅′ ,𝑅′  𝑏𝑒𝑖𝑛𝑔 𝑡𝑒 𝑐𝑖𝑟𝑐𝑢𝑚𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡𝑒 ∆) 

Similarly, 𝑂𝐸 = 2𝑅′ cos𝐶 cos𝐴 

And 𝑂𝐹 = 2𝑅′ cos𝐴 cos𝐵. 

Hence (1) becomes 

𝑃, 2𝑅′ cos𝐵 cos𝐶 + 𝑄. 2𝑅′ cos𝐶 cos𝐴 + 𝑅. 2𝑅′ cos𝐴 𝑐𝑜𝑠 𝐵 = 0. 

Dividing by 2𝑅′ cos𝐴 cos𝐵 cos𝐶, we get, 

𝑃

cos 𝐴
+

𝑄

cos 𝐵
+

𝑅

cos 𝐶
= 0  ….(3) 

Now, P, Q, R being magnitudes of the forces, are all positive of the terms must 

be negative. 

Hence one of the cosines must be negative. 
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i.e. the triangle must be obtuse angled. 

(Two of the cosines cannot be negative, as we cannot have two obtuse angles 

in the same triangle) 

If 𝐴 = 120° and the other angles equal, 

Then 𝐵 = 𝐶 = 30°. 

Hence (3) becomes  

𝑃

cos 120°
+

𝑄

cos 30°
+

𝑅

cos 30°
= 0 

i.e. 
𝑃

 −
1

2
 

+
𝑄+𝑅

 
 3

2
 

= 0 

i.e. 𝑃 3 = 𝑄 + 𝑅.  
 

Check your Process 

 

1. Define like and unlike forces. 

2. Define centre of parallel forces. 

3. State varigon‟s theorem. 

 

 

 

 

5.15 ANSWER TO CHECK YOUR PROGRESS QUESTIONS 
1. Two parallel forces are said to be like when they act in the same direction; 

they are said to be unlike when they act in opposite parallel directions. 

2. The centre of two parallel forces is a fixed point through which their resultant 

always passes whatever be the direction of parallelism.  

3. The algebraic sum of the moment of two forces about any point in their plane is 

equal to the moment of their resultant about that point. 

 

5.16  SUMMARY 
 Two parallel forces are said to be like when they act in the same direction; they 

are said to be unlike when they act in opposite parallel directions. 

 Thus the magnitude of the resultant of two like parallel forces is their sum.  

 The direction of the resultant is parallel to the components and in the same 

sense.  

 The effect of two equal and unlike parallel forces cannot be replaced by a 

single force. 

 The centre of two parallel forces is a fixed point through which their resultant 

always passes whatever be the direction of parallelism. 
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5.17  KEYWORDS 
 Like forces: Two parallel forces are said to be like when they act in the same 

direction. 

 Unlike forces: when two forces are acting in opposite parallel directions. 

 

5.18  SELF ASSESSMENT QUESTIONS AND EXERICES 
1. If the magnitudes of two unlike parallel forces P, Q, (P>Q) be increased by the 

same amount, show that the line of action of the resultant will move further off 

from P. 

2. Three equal like parallel forces act at the middle points of the sides of a 

triangle; show that their resultant passes through the point of intersection of the 

medians of the triangle. 

3. Four equal like parallel forces act at the corners of a square; show their 

resultant passes through the centre of the square.  

4. A uniform plank ABC of length 12𝑚 and weight 80𝑘𝑔𝑠. rests on two supports 

A and B, one at the end A and the other  at B, 4
1

2
𝑚, from the end C. A boy 

walks along the plank from A to C and just as he reaches C, the plank 

commences to tilt. Find the weight of the boy.  

5. Show that any three forces acting along the sides of triangle cannot be in 

equilibrium.  

5.19  FURTER READINGS 
1. Dr. M.K Venkataraman, Statics, Agasthiar Publications, 17

th
 Edition, 2014. 

2. Dr. M.K Venkataraman, Dyanamics, Agasthiar Publications, 13
th
 Edition, 

2009. 

3. P. Duraipandian, Laxmi Duraipandian & Muthamizh Jayapragasam, 

Mechanics,S.Chand&Co.Pvt.Ltd,2014. 
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UNIT-VI COUPLES 
STRUCTURE  

6.0 Introduction 

6.1 Objective 

6.2 Couples 

6.3 Equilibrium of Two Couples 

6.4 Equivalence of Two Couples 

6.5 Couples in Parallel Planes 

6.6 Representation of a Couple by a Vector 

6.7 Resultant of a Couple and a Plane 

6.8 Answer to Check Your Progress Questions 

6.9 Summary 

6.10 Keywords 

6.11 Self Assessment questions and exericises 

6.12 Further Reading 

6.0  INTRODUCTION 
In the last unit we have seen that the general method of finding the 

resultant of two equal and unlike parallel forces fails i.e. the effects of two 

equal and unlike parallel forces cannot be replaced by a single force. A 

pair of such forces is called a couple. 

6.1  OBJECTIVE 
After going through this unit, you will be able to: 

 Understand what is meant by Couple. 

 Discuss the theorems on Equilibrium of two couples. 

 Describe couples in parallel planes. 

 

6.2  COUPLES 
Definition. Two equal and 

unlike parallel forces not acting 

at the same point are said to 

constitute a couple.  

Examples of a couple 

are the forces used in winding a 

clock or turning a tap. Such 

forces acting upon a rigid body can have only a rotatory effect  on the body and 

they cannot produce a motion of translation.  

Let P, p be the magnitudes of the forces forming a couple and O any 

point in their plane.  

Draw OAB perpendicular to the forces to meet their lines of action in A 

and B. 

P 

O 

P 

A P B 

Fig. 1 
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The algebraic sum of the moments of the forces about O is  

 = 𝑃.𝑂𝐵 − 𝑃.𝑂𝐴  

 = 𝑃.  𝑂𝐵 − 𝑂𝐴 = 𝑃.𝐴𝐵  

And this value is independent of the position of O. 

Thus the algebraic sum of the moments of the two forces forming a 

couple about any point in their plane is constant and is equal to the product of 

either of the forces and the perpendicular distance between them. This 

algebraic sum measures the total turning effect of the couple upon the body and 

is called the moment of the couple.  

Thus, the moment of a couple is the product of either of the two forces 

of the couple and the perpendicular distance between them. 

The perpendicular distance 𝐴𝐵(= 𝑝) between the two equal forces P of 

a couple is called the arm of the couple. A couple each of whose forces is P and 

whose arm is 𝑝, as in fig. 1 is usually denoted by  𝑃,𝑝 . 

A couple is positive when its moment is positive i.e. if the forces of the 

couple tend to produce rotation in the anticlockwise direction and a couple is 

negative when the forces tend to produce rotation in the clockwise direction. 

6.3  EQUILIBRIUM OF TWO COUPLES 
Theorem.1. If two couples, whose moments are equal and opposite, act in the 

same plane upon a rigid body, they balance one another.  

 Let (𝑃, 𝑝) and (𝑄, 𝑞) be two given couples such that 𝑃𝑝 = 𝑄𝑞 in 

magnitude but opposite in sign. 

Case 1: Let the forces P and Q be parallel. 

Draw a straight line perpendicular to the lines of action of the forces, 

meeting them at A, B, C, D as in fig. 2.  

Since the moments of the couples are equal, we have 

 𝑃.𝐴𝐵 = 𝑄.𝐶𝐷   ….(1)  

The downward like parallel forces P at A and Q at D can be 

compounded into a single force 𝑃 + 𝑄 acting at L such that  

 𝑃.𝐴𝐿 = 𝑄.𝐷𝐿    ….(2)  

(1)-(2) gives  

 𝑃.  𝐴𝐵 − 𝐴𝐿 = 𝑄. (𝐶𝐷 − 𝐷𝐿)   

i.e. 𝑃.𝐵L=Q.CL    ….(3)  
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Result (3) shows that the resultant of the upward like parallel forces 

P at B and Q at C will also pass 

through L. The magnitude of this 

resultant is also (𝑃 + 𝑄) but it is 

opposite in direction to the 

previous resultant. Thus the two 

resultants balance each other. 

Hence the four forces forming the 

couples are in equilibrium.  

 

 

 

Case 2: Let the forces P and Q 

intersect. 

Let the two forces P of the 

couple  𝑃,𝑝  meet the two forces Q of 

the couples  𝑄,𝑞  at the points A, B, C, 

D. Clearly ABCD is a parallelogram. 

Let AB represented P on some 

scale. 

As the moments of the two 

couples are equal, we have  

𝑃. 𝑝 = 𝑄.𝑞  …..(1) 

Also 𝐴𝐵.𝑝 = 𝐴𝐷.𝑞 (each being equal to the area of the || gm. ABCD)……(2) 

 1 ÷ (2) gives 

 
𝑃

𝐴𝐵
=

𝑄

𝐴𝐷
  …..(3) 

(3) shows that the side AD will represent Q on the same scale in which the 

side AB represents P. 

The two forces P and Q meeting at A can be compounded by ||gm. 

Law so that  

 (𝑃 + 𝑄) at 𝐴 = 𝐴𝐵    + 𝐴𝐷 = 𝐴𝐶 

Similarly (𝑃 + 𝑄) at C = 𝐶𝐷 + 𝐶𝐵 = 𝐶𝐴.  

P 

O 

Q 

A 

C 

P+Q 

P 

B 

P+Q 

L 

Q 

D 

Fig. 2 

D P C 

Q 

P 

Q 

A B 

Fig. 3 
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The two resultants AC and CA being equal and opposite cancel each 

other. 

 Hence the four forces forming the couples are in equilibrium. 

 

 

   6.4 EQUIVALENCE OF TWO COUPLES 
Theorem  2. Two couples in the same plane whose moments are equal and of 

the same sign are equivalent to one another. 

Let (𝑃, 𝑝) and (𝑄, 𝑞) be two couples in one plane having the same 

equal moments in magnitude and direction. Let (𝑅, 𝑟) be a third couple, in the 

same plane, whose moment is equal to the moment of either (𝑃,𝑝) or (𝑄, 𝑞) 

only in magnitude but opposite in direction. By the previous theorem, the 

couple (𝑅, 𝑟) will balance the couple (𝑃,𝑝). It will also balance the couple 

(𝑄, 𝑞). Hence the effects of the couples (𝑃,𝑝) and (𝑄,𝑞) must be the same. In 

other words, they are equivalent. 

This is a fundamental theorem on coplanar couples. Form this, it 

follows that a couple in a plane can be replaced by any other couple in the same 

plane, provided that the moment of the latter replacing couple is equal in 

magnitude and direction to the moment of the first couple. The only important 

criterion is that the moment of the new couple must be equal to that of the first 

couple in magnitude and sense.  

Thus a couple (𝑃, 𝑝) may be replaced by a couple  𝐹,
𝑃𝑝

𝐹
  in the same 

plane with its constituent forces each equal to F and the arm length begin equal 

to 
𝑃𝑝

𝐹
. The moment of the couple is = 𝐹

𝑃𝑝

𝐹
= 𝑃𝑝  moment of the first couple. 

Also one force F may be taken to be acting in any line and direction, the other 

at the distance 
𝑃𝑝

𝐹
 begin on that side so as to make the sign of the moment same 

as that of (𝑃, 𝑝). 

 Similarly, the couple (𝑃, 𝑝) may be replaced by a couple  
𝑃𝑝

𝑥
, 𝑥  with a 

given arm x anywhere in the plane. 

6.5  COUPLES IN PARALLEL PLANES 
The effect of a couple upon a rigid body is not altered if it is transferred 

to a parallel plane provided its moment remains unchanged in magnitude and 

direction. 

Consider a couple of forces P at the ends of arm AB in given plane. Let 

AL and BM be the line of action of the forces. 

In any parallel plane, take a straight line CD equal and parallel toAB. 

Then ABCD will be a parallelogram. The diagonals AD and BC will 

bisect each other, say at O.  
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At O, introduce two equal and opposite forces of magnitude 2P along 

EF, parallel to the forces P at A and B. By this, the effect of the given couple is 

not altered. 

Now the unlike parallel 

forces P along AL and 2P along OE 

can be compounded into a single 

force P acting at D, since 
𝐴𝐷

𝑂𝐷
=

2

1
=

2𝑃

𝑃
. This resultant force P acts along 

DN in the second plane. Similarly, 

the unlike parallel forces P along 

BM and 2P along OF can be 

compounded into a single force P 

acting at C along CK. We are 

therefore left with a couple of 

forces P at the ends of the arm CD 

in a plane parallel to that of the 

original couple. 

Thus the given couple with 

the arm AB is equivalent to another 

couple of the same moment in a 

parallel plane, having its arm CD 

equal and parallel to AB. Now this 

couple with arm CD can be 

replaced in its own plane by 

another couple, provided the 

moment is unchanged in magnitude and direction as in 6.3. Hence we 

conclude that a couple in any plane can be replaced by another couple acting 

in a parallel plane, provided that the moments of the two couples are the same 

in magnitude and sign. 

6.6 REPRESENTATION OF A COUPLE BY A VECTOR 
 From  6.3 and 6.4, it is clear that a couple is not localized in any 

particular plane, for it may be replaced by another couple of the same 

moment in the same plane or in any parallel plane. Thus the effect of a 

couple remains unaltered so long as its moment remains the same in 

magnitude and sense, whatever be the magnitude of its constituent forces, 

the length of its arm and its position in any one of a set of parallel planes in 

which it may be supposed to act. 

 A couple is therefore completely specified if we know (i) the direction 

of the set of parallel plane (ii) the magnitude of its moment (iii) the sense 

in which it acts. These three aspects of a couple can be conveniently 

represented by a straight line drawn (i) perpendicular to the set of parallel 

planes to indicate the direction (ii) of a measured length, to indicate the 

P 

L 

A 
B 

P 

M 

F 

2P 

O 

2P 

E 

K 

P 

C 

D 

P 

N 

Fig. 4 
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moment of the couple and (iii) in a definite direction, to indicate the sense 

of the moment. 

6.7 RESULTANT OF A COUPLE AND A PLANE 
Theorem 3. The resultant of any number of couples in the same plane on a 

rigid body is a single couple whose moment is equal to the algebraic sum 

of the moment s of the several couples.  

Let  𝑃1, 𝑝1 ,  𝑃2,𝑝2 , (𝑃3,𝑝3) etc. be a number of couples acting in the 

same plane upon a body. Let AB represent the arm 𝑝1 of the first couple 

(𝑃1, 𝑝1) whose component forces 𝑃1 act along 𝐴𝐶 and BD. 

The moment of the second couple  𝑃2,𝑝2 = 𝑃2𝑝2 . This couple can be replaced 

by an equivalent couple, having its arm along AB and having its forces AC and 

BD. 

If F is the forces of such a replacing couple,  

We have 𝐹.𝑝1 = 𝑃2. 𝑝2. 

∴ 𝐹 =
𝑃2𝑝2

𝑝1
 

 

Thus the couple 𝑃2𝑝2 is replaced by another couple whose arm coincides with 

AB and whose component forces along AC and BD are magnitude 
𝑃2𝑝2

𝑝1
. 

P2 

P2 

P2 

P1 P1 

P1 P3 

P3 

P3 

𝑃3𝑃3

𝑃1
 

 

𝑃3𝑃3

𝑃1
 

 

𝑃2𝑃3

𝑃1
 

 

𝑃2𝑃3

𝑃1
 

 

Fig. 5 
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Similarly the couple (𝑃3, 𝑝3) is replaced by another couple  
𝑃3𝑝3

𝑝1
, p1  with the 

forces 
𝑃3𝑝3

𝑝1
 along AC and BD. This process is repeated for the other couples.  

Finally, we get a single couple with the arm AB, each of whose component 

forces 

= 𝑃1 +
𝑃2𝑝2

𝑝1
 + 

𝑃3𝑝3

𝑝1
 + …. 

The moment of this resultant couple  

=  𝑃1 +
𝑃2𝑝2

𝑝1
 +  

𝑃3𝑝3

𝑝1
 +  … .  × 𝑝1 

= 𝑃1𝑝1 + 𝑃2𝑝2 +𝑃3𝑝3  + …. 

= the algebraic sum of the moments of the several couples. 

Note. (i) If all the component couples have not the same sign, we have merely 

to give each its proper sign and the same proof will apply. 

(ii) If all the couples do not lie in the same plane but in different parallel 

planes, they can all be transferred into equivalent couples in one plane parallel 

to the given planes and then their resultant can be found. 

Theorem 4. A couple and a signal force acting on a body  cannot be in 

equilibrium but they are equivalent to the single force acting at some other 

point parallel to its original direction. 

Let the given couple be  𝑃, 𝑝  and the given force be F lying in the same 

plane. Let F act along AC.  

Replace the couple  𝑃, 𝑝  by another couple whose each force is equal to F. If 

x be the length of the arm of this new couple, its moment = 𝐹. 𝑥 = 𝑃𝑝. 

∴ 𝑥 =
𝑃𝑝

𝐹
 

Place this couple such that one of its component forces F acts at A along the 

line of action of the given force F but in the opposite direction i.e. it acts along 

AD. The original force F along AC and the force F along AD balance. We are 

left with a force F acting at B parallel to AC, as the statical equivalent of the 

system.  

Also 𝐴𝐵 = 𝑥 =
𝑃𝑝

𝐹
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Hence the couple (𝑃,𝑝) and the force F are equivalent to an equal force F, 

parallel to its original direction, at a distance 
𝑃𝑝

𝐹
 from its original line of action.  

Theorem. 5. A force acting at any point A of a body is equivalent to an equal 

and parallel force acting at  any other arbitrary point B of the body, together 

with a couple. 

 

 

 

 

 

Let P be a force acting at A along AC and B any arbitrary point. Let p be the 

distance of B from AC. 

At B, apply two equal and opposite forces each equal and parallel to P along BL 

and BM. These two new forces being equal and opposite, will have no effect on the 

body.  Of the three forces P along BM and P along AC from a couple and the 

remaining is the force P acting at B, parallel to the original force. Thus the statical 

equivalent of the original force P at A is an equal and parallel force P at B, together 

with a couple whose moment is 𝑃𝑝, where p is the perpendicular distance of B 

from AC. 

Note. The moment of the couple is equal to the moment of the original force at 

A about B. 

Theorem 6. If there forces acting on a rigid body be represented in magnitude, 

direction and line of action by the sides of a triangle taken in order, they are 

equivalent to a couple whose moment is twice the area of the triangle.  

Let P, Q, R be three forces acting on a rigid body and represented in 

magnitude, direction and line of action by the sides BC, CA, AB of the triangle 

ABC taken in order. Through A draw LAM parallel to BC. At A, along AL and 

F 

𝐹 

 

A B 

P 

P 
P 

Fig. 6 

𝑃 

 

𝑃 

 
B 

P 

P A C 

Fig. 7 
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AM introduce two equal and opposite forces, each equal to P. These two new 

forces, being equal and opposite, have no effect on the body. 

Now the three forces P along AM, Q along CA, and R along AB act at the 

point A and they are completely represented by the sides of the ∆𝐴𝐵𝐶 taken in 

order. Hence, by the triangle of forces, they are in equilibrium. We are left with 

a force P along AL and a force P along BC. These being two equal and 

opposite force form a couple whose moment 

= 𝑃.𝐴𝐷 = 𝐵𝐶.𝐴𝐷 = 2∆𝐴𝐵𝐶. 

Theorem 7. If any number of forces acting on a rigid body be represented 

in magnitude, direction and line of action by the sides of a polygon taken 

in order, they are equivalent to a couple whose moment is twice the area of 

the polygon. 

Let the forces be represented completely by the sides AB, BC, CD, DE, EF 

and FA of the closed polygon ABCDEF. Join AC, AD and AE.  

𝑃 

 
𝑃 

 

𝑃 

 

R 
Q 

B D C 

L M 

Fig. 8 
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Introduce along AC, AD a nd AE, 

pairs of equal and opposite forces represented completely by these lines. These 

new forces do not affect the resultant of the system. 

Applying the theorem 6, we have 

 𝐴𝐵    + 𝐵𝐶    + 𝐶𝐴    = a couple whose moment is equal to 2∆𝐴𝐵𝐶. 

𝐴𝐶    + 𝐶𝐷    + 𝐷𝐴    = a couple whose moment is equal to 2∆𝐴𝐶𝐷. 

𝐴𝐷    + 𝐷𝐸    + 𝐸𝐴    = a couple whose moment is equal to 2∆𝐴𝐷𝐸. 

𝐴𝐸    + 𝐸𝐹    + 𝐹𝐴    = a couple whose moment is equal to 2∆𝐴𝐸𝐹. 

Adding vectorically, 

𝐴𝐵    + 𝐵𝐶    + 𝐶𝐷    + 𝐷𝐸    + 𝐸𝐹    + 𝐹𝐴    = resultant of the four couples 

= a single couple whose moment is equal to 2(∆𝐴𝐵𝐶 + ∆𝐴𝐶𝐷 + ∆𝐴𝐷𝐸 +
∆𝐴𝐸𝐹)i.e. The resultant is a couple whose moment is equal to twice the area 

of the polygon ABCDEF. 

Example 8. ABC is an equilateral triangle of side a: D. E. F divide the sides BC, 

CA, AB respectively in the ratio 2:1. Three forces each equal to P act at D, E, F 

perpendicularly to the sides and outward from the triangle. Prove that they are 

equivalent to a couple of moment 
1

2
𝑃𝑎. 

F 

E 

A B 

C 

D 

Fig. 9 



 

81 

      

Low of Forces 

 

NOTES 

 

Couples 

 

Notes 
 

 

Self Instructional Material 

 

 

Let O be the circumcentre (also the orthocentre) of the equilateral ∆ and 

𝐴′ ,𝐵′ ,𝐶 ′  the middle points of the sides. 𝑂𝐴′  is ⊥ to BC. 

Applying theorem 5 , the force P acting at D  ⊥ to BC is equivalent to a parallel 

force P acting at O along 𝑂𝐴′  together with a couple whose moment  

= 𝑃.𝐴𝐷 = 𝑃. (𝐴′𝐶 − 𝐷𝐶) = 𝑃.  
𝑎

2
−
𝑎

3
 =

𝑃𝑎

6
 

Similarly, the force P acting at E ⊥ to CA is replace by a parallel force P acting 

at O along 𝑂𝐵′  together with a couple whose moment =
𝑃𝑎

6
. 

The force P acting at F ⊥ to AB is replaced by a parallel force P acting at O 

along 𝑂𝐶 ′  together with a couple whose moment =
𝑃𝑎

6
. 

The three equal forces P acting O ⊥ to the sides of the triangle are in 

equilibrium by the perpendicular by the perpendicular triangle of forces. 

The three couples having the same moment 
𝑃𝑎

6
 each in the same direction are 

equivalent to a single couple whose moment = 3 ×
𝑃𝑎

6
=

𝑃𝑎

2
. 

Example 9. Five equal forces ac along the sides AB, BC, CD, DE, EF of  a 

regular hexagon. Find the sum of the moments of these forces about a point Q 

of AF at a distance x from A. Interpret the result and explain why it is so. 

Let a be the length of each side of the regular hexagon. Each interior angle of 

the regular hexagon = 120°. 

We  know that 𝐴𝐵  𝐷𝐸,𝐵𝐷  𝐸𝐹 and 𝐷𝐶||𝐴𝐹,𝐹𝐵 ⊥ 𝐵𝐶,𝐴𝐸 and DB are ⊥ to 

AB. 

O 

A 

C’ B’ 

B A’ 

D 

P 

C 

Fig. 10 
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Let equal force P act along the sides AB, BC, CD, DF and EF. Q is point on AF 

such that 𝐴𝑄 = 𝑥. 

Form Q, draw 𝑄𝐿 ⊥ to EA and 𝑄𝑀 ⊥ to BF. 

Let AN be ⊥ to BF. 

𝐹𝐵 = 𝐹𝑁 + 𝑁𝐵 = 𝑎 cos 30° + 𝑎 cos 30° + 2𝑎 cos 30° 

𝐴𝐶 = 𝐴𝐸 = 𝐵𝐹 = 2𝑎 cos 30° 

Moment of P along AB about Q 

= 𝑃.𝐴𝐿 = 𝑃. 𝑥 cos 30° (from rt. ∠𝑑 ∆AQL) 

= 𝑃.𝑥
 3

2
  …..(1) 

Moment of P along BC about Q 

= 𝑃.𝑀𝐵 = 𝑃. (𝐹𝐵 − 𝐹𝑀)  

= 𝑃[2𝑎 cos 30° −  𝑎 − 𝑥 cos 30°]  

= 𝑃[2𝑎 − 𝑎 + 𝑥] cos 30°  

= 𝑃(𝑎 + 𝑥)
 3

2
    ….(2)  

Moment of P along CD about Q 

=P. AC (∵ AF||CD and AC is ⊥ to CD) 

= 𝑃. 2𝑎 cos 30° = 𝑃. 2𝑎
 3

2
= 𝑃𝑎 3    …..(3) 

Moment of P along DE about Q 

= 𝑃.𝐸𝐿 = 𝑃(𝐴𝐸 − 𝐴𝐿)  

= 𝑃(2𝑎 cos 30° − 𝑥 cos 30°)  

= 𝑃(2𝑎 − 𝑥)
 3

2
    …..(4) 

Moment of P along EF about Q= 𝑃.𝑀𝐹  

= 𝑃 𝑎 − 𝑥 cos 30°  

= 𝑃(𝑎 − 𝑥)
 3

2
    …..(5) 

Adding up, the sum of the moments of the five forces about Q 
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= 𝑃𝑥
 3

2
+ 𝑃 𝑎 + 𝑥 

 3

2
 + 𝑃𝑎 3 + 𝑃 2𝑎 − 𝑥 

 3

2
+ 𝑃(𝑎 − 𝑥)

 3

2
 

= 𝑃
 3

2
(𝑥 + 𝑎 + 𝑥 + 2𝑎 − 𝑥 + 𝑎 − 𝑥) 

= 𝑃
 3

2
 6a = 3𝑃𝑎 3 = a constant, independent of 𝑥. 

The sum of the moments of the five forces about any point on the sixth side AF is 

constant.  

Introduce two equal and opposite forces, each equal to P along the sixth side. 

These new forces do not affect the resultant of the system. We have now seven 

forces. The moment of the new force P introduced along AF about Q is =0. 

The other six forces act along the sides of the hexagon and are represented in 

magnitude, direction and line of action by the sides of the hexagon. 

Hence by theorem 6.6, they are equivalent to a couple whose moment is = 2 × 

area of the hexagon= 2 × 6 × 𝑎2  3

4
 

= 3𝑎2 3 = 3𝑎 3𝑃 (as P is represented in magnitude by a).  

 

Check your Process 

 

1. Define Couple. 

2. What is meant by moment of the couple. 

 

6.8 ANSWER TO CHECK YOUR PROGRESS QUESTIONS 
1. Two equal and unlike parallel forces not acting at the same point are said to 

constitute a couple.  

2. Thus, the moment of a couple is the product of either of the two forces of 

the couple and the perpendicular distance between them. 

 

6.9  SUMMARY 

 Two equal and unlike parallel forces not acting at the same point are said to 

constitute a couple.  

 Thus, the moment of a couple is the product of either of the two forces of the 

couple and the perpendicular distance between them. 

 The perpendicular distance 𝐴𝐵(= 𝑝) between the two equal forces P of a 

couple is called the arm of the couple.  

6.10  KEYWORDS 
 Couple: Two equal and unlike parallel forces not acting at the same point 

are said to constitute a couple.  
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 Unlike forces: Thus, the moment of a couple is the product of either of the 

two forces of the couple and the perpendicular distance between them 

 

. 

6.11  SELF ASSESSMENT QUESTIONS AND EXERICES 

1. Forces of magnitudes 1,2,3,4,2 2 act respectively along the sides AB, 

BC, CD, DA and the diagonal AC of the square ABCD. Show that their 

resultant is a couple and find its moment. 

2. Forces of 3,4,5,6 and 2 2 act respectively along the sides AB, BC, CD 

and DA and along the diagonal AC of the square ABCD. Find the 

resultant. 

 

 6.12 FURTER READINGS 

1. Dr. M.K Venkataraman, Statics, Agasthiar Publications, 17
th

 Edition, 

2014. 

2. Dr. M.K Venkataraman, Dyanamics, Agasthiar Publications, 13
th

 Edition, 

2009. 

3. P. Duraipandian, Laxmi Duraipandian & Muthamizh Jayapragasam, 

Mechanics,S.Chand&Co.Pvt.Ltd,2014.
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 UNIT-VII  EQUILIBRIUM  OF THREE  

FORCES ACTING ON A RIGID BODY 
STRUCTURE  

 7.0 Introduction 

7.1 Objective 

7.2 Three Forces Acting on As Rigid Body  

7.3 Three Coplanar Forces 

7.4 Conditions of Equilibrium  

7.5 Two Trigonometrical Theorem and Simple Problems 

7.6 Answer to Check Your Progress Questions  

7.7 Summary 

7.8 Keywords 

7.9 Self Assessment questions and exericises 

7.10 Further Reading 

7.0  INTRODUCTION 
There is a large class of problems in which a body is in equilibrium 

under the action of three forces. We shall first prove that, if three forces acting 

on a rigid body are in equilibrium, they must be coplanar. 

7.1  OBJECTIVE 
After going through this unit, you will be able to: 

 Understand what is meant by parallel force. 

 Discuss the theorems on forces acting on a rigid body. 

 Describe moments. 

7.2 THREE FORCES ACTING ON AS RIGID BODY 
Let P, Q, R be the three 

forces in equilibrium. Take any 

point A on the line of action of P 

and any point B on the line of 

action of Q, such that AB is not 

parallel to R. Then, the three 

forces being in equilibrium, the 

sum of their moments about the 

line AB is zero. But P and Q 

intersect AB and therefore their 

moments about AB are each zero. 

Hence the moment of R about AB 

is zero. 

 ∴ 𝑅 is either parallel to AB or R intersects AB. 

But we have chosen the points A and B such that R is not parallel 

to AB. 

P 

A 

B 

D 

Q 

R 

C 

E 

Fig. 1 
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 ∴ 𝑅 must intersect  AB at a point, say C. 

Similarly, if D is some other point on Q such that AD is not || to R, 

we can prove that R must intersect AD also at a point, say E. 

Since the line BC and DE intersect at A, BD and CE must lie in one 

plane and A is on this plane. 

i.e. A is a point on the plane formed by Q and R. 

But A is any point on the line of action of P. 

 ∴Every point on P is a point on the plane formed by Q and R. 

i.e. P, Q, R are in one plane. 

7.3 THREE COPLANAR FORCES, CONDITIONS OF   

EQUILIBRIUM 
If three coplanar forces acting on a rigid body keep it in 

equilibrium, they must either be concurrent or be all parallel. 

Let P, Q, R be three coplanar forces acting on a body and keep it in 

equilibrium. 

Then R must be equal and opposite to the resultant of P and Q. 

Now, P and Q being coplanar must either be parallel or intersect. 

Case 1: If P and Q are parallel (like or unlike), their resultant is also a 

parallel force. As R balances the above resultant, it must act in the same 

line but in opposite direction. So R also is in the same direction as that of P 

and Q. 

i.e. P, Q, R are all parallel to one another. 

 Case 2: Let P and Q meet at a point O. Then, by parallelogram law, their 

resultant is a force through O. As this is balanced by the third force R, the 

line of action of R must also pass through O. 

i.e. the three forces are concurrent. 

Important Note. In the above discussion, P and Q can never form a 

couple, since we know that a couple and a force can never be in 

equilibrium. 
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7.4  CONDITIONS OF EQUILIBRIUM 
When the number of forces acting on a rigid body in equilibrium is 

three and when the forces are not parallel, we can use the methods which apply 

to forces acting on a particle. Thus we can use Lami‟s theorem, or the triangle 

of forces or we can resolve the forces in two directions at right angles to each 

other. 

When the three forces in equilibrium are parallel, we use the condition 

that each is proportional to the distance between the other two. 

In all cases, it is important to draw a figure with the three forces clearly 

shown, either all parallel or meeting in a point. 

7.5 PROCEDURE TO BE FOLLOWED IN SOLVING  

ANY STATICAL PROBLEM 
In solving any statical problem the student should proceed in the following 

manner: 

1) First draw the figure according to the conditions given. 

2) Mark all the forces acting on the body or bodies, bearing in mind the 

following fundamental points: 

i) The weight of a body acts vertically downwards through its centre of gravity. 

ii) When a body is leaning against a smooth surface, the reaction on the body is 

normal to the surface. 

iii) When a rod is resting on a smooth peg, the reaction of the peg on the rod is 

perpendicular to the rod. 

iv) The tension in a light string is the same throughout its length and this tension 

is unaffected by the string passing over smooth pegs or pulleys. If the pulley 

is rough, the tension is different on the two sides of the pulley. 

v) The resultant of two equal forces bisects the angle between them. 

3) In addition to the above considerations, we can use the fact there are only 

three non-parallel forces, they must meet in a point. Thus, if three forces are 

in equilibrium and two of them meet at a point O, the third also must pass 

through O. This consideration will enable us to draw an accurate figure 

showing the position of the body. 

7.6  TWO TRIGONOMETRICAL THEOREM  

AND SIMPLE PROBLEMS 
The following two important trigonometrical theorems will be found to be 

highly useful in the solution of many statical problems: 

If D is any point on the base BC of triangle ABC such that 
𝐵𝐷

𝐷𝐶
=

𝑚

𝑛
 and 

∠𝐴𝐷𝐶 = 𝜃,∠𝐵𝐴𝐷 = 𝛼 and ∠𝐷𝐴𝐶 = 𝛽 then  

 𝑚 + 𝑛 𝑐𝑜𝑡 𝜃 = 𝑚𝑐𝑜𝑡 𝛼 − 𝑛 𝑐𝑜𝑡 𝛽    ….(1) 
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and   𝑚 + 𝑛 𝑐𝑜𝑡 𝜃 = 𝑛 𝑐𝑜𝑡 𝐵 −𝑚 𝑐𝑜𝑡 𝐶    ….(2) 

 

 

Proof.  

(1) 
𝑚

𝑛
=

𝐵𝐷

𝐷𝐶
=

𝐵𝐷

𝐷𝐴
.
𝐷𝐴

𝐷𝐶
 

 =
sin ∠𝐵𝐴𝐷

sin ∠𝐴𝐵𝐷
.

sin ∠𝐴𝐶𝐷

sin ∠𝐷𝐴𝐶
  

 =
sin 𝛼

sin (𝜃−𝛼)
.

sin (𝜃+𝛽 )

sin 𝛽
  

[∵ ∠𝐴𝐶𝐷 = 180° − (𝜃 + 𝛽)]  

 

=
sin 𝛼(sin 𝜃 cos 𝛽+cos 𝜃sin 𝛽)

sin 𝛽(sin 𝜃 cos 𝛼+cos 𝜃sin 𝛼)
   

 =
cot 𝛽+cot 𝜃

cot 𝛼−cot 𝜃
   

     (dividing the numerator and 

denominator by sin𝛼 sin 𝛽 sin 𝜃) 

 𝑛 cot𝛽 + cot𝜃 = 𝑚 cot𝛼 − cot𝜃   

Or  𝑚 + 𝑛 cot𝜃 = 𝑚 cot𝛼 − 𝑛 cot𝛽 

(2) Again,  
𝑚

𝑛
=

sin ∠𝐵𝐴𝐷

sin ∠𝐴𝐵𝐷
.

sin ∠𝐴𝐶𝐷

sin ∠𝐷𝐴𝐶
   

 =
sin  𝜃−𝐵 .sin 𝐶

sin 𝐵.sin (𝐶+𝜃)
  [∵ ∠𝐷𝐴𝐶 = 180° − 𝜃 + 𝐶       ] 

 =
sin 𝐶(sin 𝜃 cos 𝐵−cos 𝜃sin 𝐵)

sin 𝐵(sin 𝐶 cos 𝜃+cos 𝐶sin 𝜃)
   

 =
cot 𝐵+cot 𝜃

cot 𝜃−cot 𝐶
  (dividing the numerator and denominator by 

sin𝐵 sin 𝐶 sin 𝜃) 

i.e. 𝑚 cot𝜃 + cot𝐶 = 𝑛 cot𝐵 − cot𝜃   

Or  𝑚 + 𝑛 cot𝜃 = 𝑛 cot𝐵 −𝑚 cot𝐶. 

 

7.7 SOME ARTIFICES 
In some problems on equilibrium of a body acted on by three forces, we 

may require a relation between the geometrical quantities which define the 

A 

𝛼 
𝛽 

B D m n C 
Fig. 2 
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equilibrium. In such cases, we may use one or more of the following 

methods: 

i. Use one of the well-known trigonometrical theorems of 7.4 . 

ii. Take moments of the forces about a suitable point. 

iii. Draw, from a suitable point, a perpendicular on the vertical through the point 

of intersection of the forces and then calculate the length of this perpendicular 

in two or more ways. 

In problem requiring the magnitudes of the forces acting, we can use 

Lami‟s theorem. 

The procedure is illustrated in the following worked examples. 

Example 1. A uniform rod, of length a, hangs against a smooth vertical wall 

being supported by means of a string, of length 𝑙, tied to one end of the rod, the 

other end of the string being attached to a  point in the wall: show that the rod 

can rest inclined to the wall at an angle 𝜃 given by  

𝑐𝑜𝑠2 𝜃 =
𝑙2 − 𝑎2

3𝑎2
. 

What are the limits of the ratio of  a: 𝑙 in order that equilibrium may be 

possible? 

AB is the rod of length a, with G its centre of gravity and BC is the string of 

length 𝑙. 
The forces acting on the rod are: 

i. Its weight W acting vertically downwards through G. 

ii. The reaction 𝑅𝐴 at A which is normal to the wall and therefore horizontal. 

iii. The tension T of the string along BC. 

These three forces in equilibrium not being all parallel, must meet in a point L, as 

shown in the figure. 

Let the string make an angle 𝛼 with the vertical. 

∴ ∠𝐴𝐶𝐵 = 𝛼 = ∠𝐺𝐿𝐵 

Also ∠𝐿𝐺𝐵 = 180° − 𝜃 and ∠𝐴𝐿𝐺 = 90° 

Using the first trignonometrical theorem of sec.5 to ∆𝐴𝐿𝐵 and noting that 

𝐴𝐺:𝐺𝐵 = 1: 1, we have  
 1 + 1 cot(180° − 𝜃) =

1. cot 90° − 1. cot𝛼    

i.e. −2 cot𝜃 = − cot𝛼 

or cot𝜃 = cot𝛼  ……….(1) 

Draw 𝐵𝐷 ⊥ to 𝐶𝐴. 
Form rt. ∠𝑑 ∆𝐶𝐷𝐵,𝐵𝐷 =
𝐵𝐶. sin 𝛼 = 𝑙. sin𝛼 and from rt. 

∠𝑑 ∆𝐴𝐵𝐷,𝐵𝐷 = 𝐴𝐵. sin𝜃  𝑎. sin 𝜃. 

∴ 𝑙. sin𝛼 = 𝑎. sin 𝜃 ............(2) 

Eliminate 𝛼 between (1) and (2). 

C 

A 

D 

L 

𝛼   

𝛼   

RA 90° 
𝜃 

G 

W l 

 𝜃 

Fig. 3 
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We know that 𝐶𝑜𝑠𝑒𝑐2𝛼 = 1 + cot2 𝛼 ………….(3) 

Form (2), sin 𝛼 =
𝑎 sin 𝜃

𝑙
 

∴ cosec 𝛼 =
𝑙

𝑎 sin 𝜃
 ……………….(4) 

Substituting (4) and (1) in (3), we have 
𝑙2

𝑎2 sin 2 𝜃
= 1 + 4 cot2 𝜃  

i.e.  
𝑙2

𝑎2 = sin2 𝜃 + 4 cos2 𝜃=1 + 3 cos2 𝜃 

∴ 3 cos2 𝜃 =
𝑙2

𝑎2 − 1 =
𝑙2−𝑎2

𝑎2    

∴ cos2 𝜃 =
𝑙2−𝑎2

3𝑎2   ………….(5) 

For the above equilibrium position to be possible,  𝑐𝑜𝑠2𝜃 must be positive and 

less than 1 

∴ 𝑙2 − 𝑎2 > 0  i.e. 𝑙2 > 𝑎2 . 

Also 
𝑙2−𝑎2

3𝑎2 < 1 i.e. 𝑙2 − 𝑎2 < 3𝑎2 or 𝑙2 < 4𝑎2 i.e. 𝑎2 >
𝑙2

4
 

∴ 𝑎2 lies between 
𝑙2

4
 and 𝑙2. 

∴
𝑎2

𝑙2   lies between 
1

4
 and 1. 

Or must lie between 
1

2
 and 1.  

 

Check your Process 

 

1. Define equilibrium . 

2. What will happen when three coplanar forces acting in a rigid body. 

3. State two trigonometrical theorem. 

 

7.8 ANSWER TO CHECK YOUR PROGRESS QUESTIONS 
1. If three forces acting on a rigid body are in equilibrium, they must be 

coplanar. 

2. If three coplanar forces acting on a rigid body keep it in equilibrium, they 

must either be concurrent or be all parallel. 

3. If D is any point on the base BC of triangle ABC such that 
BD

DC
=

m

n
 and 

∠ADC = θ,∠BAD = α and ∠DAC = β then   m + n cotθ =
m cotα − n cotβ and   m + n cotθ = n cot B − m cot C .  

7.9 SUMMARY 
 If three forces acting on a rigid body are in equilibrium, they must be 

coplanar. 

 If three coplanar forces acting on a rigid body keep it in equilibrium, they 

must either be concurrent or be all parallel.  
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7.10  KEYWORDS 
 Equilibrium: if three forces acting on a rigid body are in equilibrium, 

they must be coplanar. 

 Three coplanar forces: If three coplanar forces acting on a rigid body 

keep it in equilibrium, they must either be concurrent or be all parallel. 

7.11  SELF ASSESSMENT QUESTIONS AND EXERICES 
1. A uniform rod has its lower end fixed to a hinge and its other end attached 

to a string which is tied to a point vertically above the hinge. Show that the 

direction of the action at the hinge bisects the string. 

2. A uniform rod can turn freely about one of its ends and is pulled aside 

from the vertical by a horizontal force acting at the other end of the rod, 

equal to half its weight. Prove that the rod will rest at an inclination of 45° to 

the vertical. 

3. A heavy uniform rod of length 2a lies over a smooth peg with one end 

resting on a smooth vertical wall. If c is the distance of the peg from the wall 

and 𝜃 the inclination of the rod to the wall, show that 𝑐 = asin3 𝜃. 
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UNIT-VIII FRICTION 

STRUCTURE 

 8.0 Introduction 

 8.1 Objective 

8.2 Experimental Results 

8.3 Statical, Dynamical and Limiting Friction 

8.4 Laws of Friction 

8.5 Friction 

8.5 Coefficient of Friction 

8.6 Angle of Friction 

8.7 Cone of Friction 

8.8 Problems 

8.9 Answer to Check Your Progress Questions  

8.10 Summary 

8.11 Keywords 

8.12 Self Assessment questions and exercises 

8.13 Further Reading 

8.0  INTRODUCTION 
Till now, we have been studying the problems involving equilibrium 

of smooth bodies. When two smooth bodies are in contact with each other, 

the mutual action between them is entirely along the common normal at the 

point of contact. There is no force in the tangential direction. Hence there is 

no force tending to prevent one smooth body from sliding over the other. 

But practically, there are no bodies which are perfectly smooth. All 

bodies are rough to some extent. Thus if we attempt to drag a heavy body 

along the ground by means of  a horizontal force, a resistance is felt to the 

motion of the body. This resistance is due to the roughness of the ground and 

is called the normal friction. Thus, in the case of rough bodies in contact, 

besides the normal reaction, a tangential reaction i.e. a force acting in a 

direction perpendicular to the normal reaction is called into play. This 

tangential force between two bodies in contact prevents the one from sliding 

over the other. Such a force is called the force of friction.  

 

8.1  OBJECTIVE 
After going through this unit, you will be able to: 

 Understand what is meant by friction. 

 Discuss about the different types of friction. 

 Describe laws of friction. 

Definition. If two bodies are in contact with one another, the property of 

the two bodies, by means of which a force is exerted between them at their 
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point of contact to prevent one body from sliding on the other, is called 

friction; the force exerted is called the force is friction. 

8.2  EXPERIMENTAL RESULTS 
Suppose a heavy body is placed on a table and is pulled in a horizontal 

direction by a force P. It is found that, up to a certain value of P, the body does 

not move. The normal reaction R of the table and the weight W of the body are 

acting in the vertical direction and so, they have no effect in the horizontal 

direction. They are not responsible for stopping the motion of the body. Since 

the body is at rest, there must be some force in the horizontal direction to 

oppose the force P. This force F is the force of friction between the body and 

the table. 

As P is gradually increased, the force F also increases so as to balance P 

at each instant. This state will continue till P attains a certain value when the 

body is just on the point of motion. At the stage, the force of friction has 

attained its maximum value and equilibrium is about to be broken. When P is 

further increased, F cannot increase further, since it has already reached its 

maximum. The equilibrium is actually broken and the body begins to move. 

Thus we find that so long as the body remains at rest, the force of 

friction depends on P and is just sufficient to resist P. In this case, friction is 

called statical friction. Thus statical friction is a self-adjusting force and is just 

sufficient to maintain equilibrium. If P ceases to exist, F also vanishes, as 

otherwise, the body will move in the opposite direction. Also the amount of 

statical friction varies from zero up to a maximum value. 

 

8.3 STATICAL, DYANAMIC AND LIMITING 

 FRICTION 
When one body in contact with another is in equilibrium, the friction 

exerted is just sufficient to maintain equilibrium and is called statical friction.  

When one body is just on the point of sliding on another, the friction 

attains its maximum value and is called limiting friction; the equilibrium in this 

case is said to be limiting.  

When motion ensures by one body sliding over another, the friction 

exerted is called dynamical friction. 

8.4 LAWS OF FRICTION 
Friction is not a mathematical concept; it is a physical reality. The 

results of physical observation and experiment are formulated as the Law of 

Friction. 

Law 1. When two bodies are is contact, the direction of friction on one of them 

at the point of contact is opposite to the direction in which the point of contact 

would commence to move. 
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Law 2. When there is equilibrium, the magnitude of friction is just sufficient to 

prevent the body from moving. 

Law 3. The magnitude of the limiting friction always bears a constant ratio to 

the normal reaction and this ratio depends only on the substances of which the 

bodies are composed. 

Law 4. The limiting friction is independent of the extent and shape of the 

surfaces in contact, so long as the normal reaction is unaltered. 

Law 5. (Law of dynamical friction) 

When motion ensures by one body sliding over the other, the direction 

of friction is opposite to that of motion; the magnitude of the friction is 

independent of the velocity of the point of contact but the ratio of the friction to 

the normal reaction is slightly less when the body moves, than when it is in 

limiting equilibrium. 

Note: These laws are experimental, and cannot be accepted as rigorously 

accurate but they express fairly accurately the results of a large number of 

experiments.  

 8.5  FRICTION 
A passive force: It should be noted that friction is only a resisting force and 

appears only when necessary to prevent or oppose the motion of the point of 

contact. It cannot by itself produce motion of a body but it maintains relative 

equilibrium. It is a self-adjusting force. It assumes such magnitude and 

direction as to balance other forces acting on the body. Such a type of force is 

called a passive force. Friction is thus a purely passive force: 

The force of friction, through considered to be dissipative is really beneficent, 

for, without it, most forms of motion would be impossible. If there were no 

friction of the ground, walking would have been impossible. Screws or nails 

would not stick to wood. Wheels and carriages would not roll. Thus friction is 

indirectly the agent for producing motion, though often it is recognized as a 

waste of energy and a source of loss. 

 8.6  COEFFICIENT OF FRICTION 
In 8.4, by law 3, we know that limiting friction between two bodies 

bears a constant ratio to the normal reaction between them. The ratio of the 

limiting friction to the normal reaction is called the coefficient of friction. It is 

usually denoted by the letter 𝜇. 

Let F be the friction and R the normal reaction between two bodies 

when equilibrium is limiting. 

Then 
𝐹

𝑅
= 𝜇, 𝑖. 𝑒.𝐹 = 𝜇𝑅. 
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The constant 𝜇 depends on the nature of the materials in contact. It is 

different for different pairs of substance and is ordinarily less than unity. 

Since friction is maximum when it is limiting, 𝜇𝑅 is the maximum value of 

friction. When equilibrium is non limiting, F is less than 𝜇 𝑅 and 
𝐹

𝑅
< 𝜇. 

Note. 1. In limiting equilibrium, F and R may both vary with the masses of the 

bodies even for the same pair of substances but the ratio 
𝐹

𝑅
 is constant being 

equal to 𝜇. 

3. We must not assume that friction is always equal to 𝜇𝑅. It has this value 

only when motion is about to take place. Otherwise, it may have any value 

from zero upto 𝜇𝑅. 

8.7  ANGLE OF FRICTION 

 

Suppose one body is kept in equilibrium by friction on another. At the 

point of contract Q, two forces act on the first body, namely the normal 

reaction and the force of friction. These two act in perpendicular directions and 

they can be compounded into a single force. This single force is called the 

resultant reaction or the total reaction. 

In fig. 1, let 𝑂𝐴    = 𝐹, the force of friction and 𝑂𝐵    = 𝑅 the normal 

reaction. Let 𝑂𝐶     be the resultant of F and R. 

It ∠𝐵𝑂𝐶 = 𝜃, tan 𝜃 =
𝐵𝐶

𝑂𝐵
=

𝑂𝐴

𝑂𝐵
=

𝐹

𝑅
    ………(1) 

As F increases from 0, the value of 𝜃 increases until the friction F 

reaches its maximum value. In that case, the equilibrium is limiting and the 

B 
C 

R 

𝜃 

O 
F A 

B 

R 

𝜆 

O 
𝜇𝑅 

 

A 

C 

Fig. 1 
Fig. 2 
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angle made by the resultant reaction with the normal is called the angle of 

friction and it is denoted by 𝜆.  

Hence the greatest value of 𝜃 is 𝜆. 

When one body is in limiting equilibrium over another, the angle which 

the resultant reaction makes with the normal at the point of contact is called the 

angle of friction and it is called the angle of friction and it is denoted by 𝜆. 

In fig. 2, 𝑂𝐴     represents the limiting friction which =  𝜇𝑅, 𝜇 begin the 

coefficient of friction.   

 𝑂𝐶     is the resultant of 𝑂𝐴     and 𝑂𝐵    . 

 ∠𝐵𝑂𝐶 = 𝜆 =the angle of friction. 

 tan 𝜆 =
𝐵𝐶

𝑂𝐵
=

𝑂𝐴

𝑂𝐵
=

𝜇𝑅

𝑅
= 𝜇.  

i.e. The coefficient of friction is equal to the tangent of the angle of 

friction. 

8.8  CONE OF FRICTION 
From 8.7 we see that the greatest angle which the direction of the 

resultant reaction can make with the normal is 𝜆 i.e. 𝑡𝑎𝑛−1(𝜇). 

Now the motion of one body at O, its point of contact with another, can 

take place in any direction perpendicular to the 

normal. Hence when two bodies are in contact, 

we can consider a cone drawn with the point of 

contact as the vertex, the common normal as 

the axis and its semi-vertical angle being equal 

to 𝜆,the angle to friction. It is clear that the 

resultant reaction will have a direction which 

entirely lies within the surface or on the surface 

of that cone. It cannot fall outside the cone such 

a cone is called the cone of friction. 

 

 

8.9 EQUILIBRIUM OF A PARTICLE ON A ROUGH 

 INCLINED PLANE 
Let a particle of weight W be placed at A on a rough inclined plane, 

whose inclination to the horizontal is  . The forces acting on it are:  

(i) its weight W acting vertically downwards  

𝜆 

 

𝜆 

 

R 

𝜇𝑅 

 

𝜇𝑅 

 Fig. 3 
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(ii) the frictional force F acting along the inclined plane upwards. (If there had 

been no friction, the body would have 

tendency to move downwards. 

Hence friction will act upwards).  

(iii) the normal reaction R, 

perpendicular to the plane. 

Resolving 

along and perpendicular to the 

plane, we get  

 𝐹 = 𝑊 sin𝜃 

 ………….(1) 

And 𝑅 = 𝑊 cos𝜃 ………….(2) 

 ∴
𝐹

𝑅
= tan 𝜃   …………..(3) 

We know that 
𝐹

𝑅
 is always < 𝜇. 

Hence for equilibrium, tan 𝜃 < 𝜇. 

i.e. tan𝜃 < tan 𝜆 ,𝜆 being the angle of friction or 𝜃 < 𝜆. 

Suppose 𝜃, the inclination of the plane, is gradually increased. When 

𝜃 = 𝜆, then 
𝐹

𝑅
= tan 𝜆 = 𝜇. 

In this case, the equilibrium becomes limiting and the particle is just on 

the point of sliding down. 

Hence we have the following theorem: 

If a body be placed on a rough inclined plane and be on the point of 

sliding down the plane under the plane under the action of its weight and the 

reaction of the plane only, the angle of inclination of the plane of the horizon is 

equal to the angle of friction. 

The inclination (𝜆 = 𝑡𝑎𝑛−1𝜇) of the inclined plane when the body just 

begins to slips is called the angle of repose. Hence the above theorem is stated 

as: 

The angle of repose of a rough inclined plane is equal to the angle of 

friction. 

R P 

W 

A 

 𝜃 

 

𝜃 

 

Fig. 4 
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Important note: It should be noted that the angle of repose of a rough inclined 

plane is equal to the angle of friction, only when there are no external force 

acting on the body.  

Equilibrium of a body on a rough inclined plane under a force parallel to 

the plane: 

Theorem1 .  A body is at rest on a rough plane inclined to the horizon at an 

angle greater than the angle of friction and is acted upon by a force, parallel to 

the plane and along the line of greatest slope; to find the limits between which 

the force must lie.  

 

Let 𝛼 be the inclination of the plane to the horizon, W the weight of the body 

and R the normal reaction.  

Case 1. Refer fig. 5. Let the body be on the point of moving down the plane. 

Then limiting friction acts up the plane and = 𝜇𝑅. Let P be the force required 

to keep the body  at rest. 

Resolving along and perpendicular to the plane, we have 

𝑃 + 𝜇𝑅 = 𝑊 sin𝛼 …………………..(1) 

And 𝑅 = 𝑊 cos𝛼 ………………….(2) 

Substituting for 𝑅 from (2) in (1), we get 

𝑃 = 𝑊 sin 𝛼 − 𝜇𝑊 cos𝛼  
If 𝜆 is the angle of friction, we know that 𝜇 = tan 𝜆. 

∴ 𝑃 = 𝑊(sin𝛼 − tan 𝜆 cos𝛼) 

= 𝑊
(sin𝛼 cos𝜆  − sin 𝜆 cos𝛼)

cos𝜆
 

= 𝑊
sin(𝛼−𝜆)

cos 𝜆
Let this value of P be 𝑃1, 

𝑃1 = 𝑊
sin(𝛼−𝜆)

cos 𝜆
   ……….(3) 

Since 𝛼 > 𝜆, 𝑃1 is positive. 

R P 

W 

A 

 𝛼 

𝛼 
𝜇𝑅 

 

Fig.6 
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Case2.  As in fig. 6, let the body be on the point of moving up the plane. Then 

limiting friction 𝜇𝑅 acts downwards. Let P be the force required to keep the 

body at rest. 

Resolving as before, we get, 

𝑃 − 𝜇𝑅 = 𝑊 sin𝛼 …………….(4) 

and 𝑅 = 𝑊 cos𝛼 ………………(5) 

 

Hence  

𝑃 = 𝜇𝑊 cos𝛼 + 𝑊 sin 𝛼   
= 𝑊(tan 𝜆 cos𝛼 +  sin𝛼)  

= 𝑊
(sin 𝜆 cos 𝛼  −sin 𝛼 cos 𝜆)

cos 𝜆
  

= 𝑊
sin(𝛼+𝜆)

cos 𝜆
  

𝑊
sin(𝛼+𝜆)

cos 𝜆
 =𝑃2 (Say)  

∴ 𝑃2 = 𝑊
sin(𝛼+𝜆)

cos 𝜆
   ……….(6) 

 

Now if P is > 𝑃2, the body will move up the plane. 

∴ 𝑃2 is the limiting value of P, which is necessary to keep the body in 

equilibrium, without moving upwards. 

If P is > 𝑃1, the body will move down the plane. 

∴ 𝑃1 is the limiting value of P, which is necessary to keep the body in 

equilibrium, without moving downwards. 

Hence, if P lies between 𝑃1 and 𝑃2, the body will remain in equilibrium and is 

not in the point of motion in either direction.  

Hence, for equilibrium, the force P must lie between the values 𝑊
sin(𝛼−𝜆)

cos 𝜆
 and 

𝑊
sin(𝛼+𝜆)

cos 𝜆
. 

 

Note. The value of 𝑃2 may be obtained from that of 𝑃1, by changing the sign 

of 𝜇. 
 

Equilibrium of a body on a rough inclined plane under any force. 

 

Theorem2. A body is at rest on a rough inclined plane of inclination 𝛼 to the 

horizon, being acted on by a force making an angle 𝜃 with the plane; to find the 

limits between which the force must lie and also to find the magnitude and 

direction of the least force required to drag to the body up the inclined plane. 
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Let W be the weight of the body, P the forec acting at an angle 𝜃 with 

the plane and R the normal reaction. 

 

Caes I. In fig. 7, the body in just on the point of moving down the plane. Then 

limiting friction 𝜇𝑅 acts upwards. Resolving the forces along and 

perpendicular to the plane, we get  

𝑃 cos𝜃 + 𝜇𝑅 = 𝑊 sin 𝛼 ………..(1) 

And 𝑃 sin 𝜃 + 𝑅 = 𝑊 cos𝛼 ………..(2) 

Substituting the value of R from (2) in (1), we get 

𝑃 cos𝜃 + 𝜇 𝑊 cos𝛼 − 𝑃 sin𝜃 = 𝑊 sin𝛼 

i.e.  

𝑃(cos𝜃 − 𝜇 sin 𝜃) = 𝑊 

∴ 𝑃 = 𝑊
(sin 𝛼 − 𝜇 cos𝛼)

cos𝜃 − 𝜇 sin𝜃
 

If 𝜆 is the angle of friction, we know that 𝜇 = tan 𝜆. 

∴ 𝑃 = 𝑊
(sin 𝛼 − tan 𝜆 cos𝛼)

cos𝜃 − tan 𝜆 sin 𝜃
 

= 𝑊
sin(𝛼 − 𝜆)

cos(𝜃 + 𝜆)
 

Let this value of P be 𝑃1, 

∴ 𝑃1 = 𝑊
sin(𝛼−𝜆)

cos (𝜃+𝜆)
   ……….(3) 

 

Case2.  As in fig. 8, the body just in the point of moving up the plane. Then 

limiting friction 𝜇𝑅 acts downwards, resolving the forces as before, Resolving 

as before,  

 

𝑃𝑐𝑜𝑠 𝜃 − 𝜇𝑅 = 𝑊 sin𝛼 …………….(4) 

and 𝑃 sin𝜃 = 𝑊 cos𝛼 ………………(5) 

 

Substituting the value of R from (5) in (4), we get 

𝑃 cos𝜃 − 𝜇 𝑊 cos𝛼 − 𝑃 sin𝜃 = 𝑊 sin𝛼.  
i.e. 𝑃(cos𝜃 + 𝜇 sin 𝜃) = 𝑊( sin𝛼 + 𝜇 cos𝛼)  

R 

P 

W 

A 

 𝛼 

𝛼 

𝜇𝑅 

 

𝜃 

 

Fig. 8 
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∴ 𝑃 = 𝑊
(sin 𝛼+𝜇 cos 𝜆)

cos 𝜃+𝜇 sin 𝜃
  

= 𝑊
(sin 𝛼 + tan 𝜆 cos𝜆)

cos𝜃 + tan 𝜆 sin 𝜃
 

= 𝑊
sin(𝛼+𝜆)

cos (𝜃−𝜆)
  

Let this value of P be 𝑃2, 

∴ 𝑃2 = 𝑊
sin(𝛼+𝜆)

cos (𝜃−𝜆)
   ……….(6) 

 

𝑃1 and 𝑃2, are the limiting values of the forces P, necessary to keep the 

body in equilibrium. 

Hence if P lies between 𝑃1 and 𝑃2, the body will remain in equilibrium.  

Corollary. We can find the direction and magnitude of the least force 

required to drag the body up the inclined plane. 

From case II, 𝑃 = 𝑊
sin(𝛼+𝜆)

cos (𝜃−𝜆)
   

Since 𝛼, W and 𝜆 are constants, 

P is least, if cos(𝜃 − 𝜆) is greatest. 

i.e. if cos(𝜃 − 𝜆) = 1. 
This happens when 𝜃 − 𝜆 = 0. i.e. when 𝜃 = 𝜆. 
In that case, value of 𝑃 = 𝑊 sin(𝛼 + 𝜆) 

Hence the force required to move the body up the plane will be least when 

it is applied in a direction making with the inclined plane an angle equal to 

the angle of friction.  

This result is something stated as: 

“The best angle of traction up a rough inclined plane is the angle of 

friction.” 

 

8.10  PROBLEMS 
Example 1. A particle of weight 30kgs. Resting on a rough horizontal 

plane is just on the point of motion when acted on by horizontal forces of 6 

kg.wt. and 8kg. wt. at right angles to each other. Find the coefficient of 

friction between the particle and the plane and the direction in which the 

friction acts.  

Let AB (=8) and AC(=6) 

represent the directions of 

the forces, A begin the 

particle. 

The resultant force 

=  82 + 62 = 10𝑘𝑔𝑠. wt. 

and this acts along AD, 

making an angle 𝑐𝑜𝑠−1  
4

5
 . 

The particle tends to move 

in the direction AD of the 

resultant force and hence 

10 

C D 

A 8 B 
F 

Fig. 9 
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friction acts in the opposite direction DA. 

Let F be the frictional force. As motion just begins, magnitude of F is 

equal to that of that of the resultant force. 

∴ 𝐹 = 10…….(1) 

If R is the normal reaction on the particle, 

𝑅 = 30…….(2) 

If 𝜇 is the coefficient of friction as the equilibrium is limiting, 𝐹 = 𝜇𝑅. 
i.e. 10 = 𝜇. 30. 

or 𝜇 =
10

30
=

1

3
. 

  

 

Check your Process 

 

1. Define friction . 

2. Explain Statical and dynamical friction. 

3. Define law of dynamical friction. 

 

 

8.11  ANSWER TO CHECK YOUR PROGRESS 

 QUESTIONS 

1. If two bodies are in contact with one another, the property of the two bodies, 

by means of which a force is exerted between them at their point of contact to 

prevent one body from sliding on the other, is called friction; the force exerted 

is called the force is friction. 

2. When one body in contact with another is in equilibrium, the friction exerted 

is just sufficient to maintain equilibrium and is called statical friction. When 

motion ensures by one body sliding over another, the friction exerted is called 

dynamical friction. 
3. When motion ensures by one body sliding over the other, the direction of 

friction is opposite to that of motion; the magnitude of the friction is 

independent of the velocity of the point of contact but the ratio of the friction 

to the normal reaction is slightly less when the body moves, than when it is in 

limiting equilibrium. 

 8.12  SUMMARY 
 If two bodies are in contact with one another, the property of the two bodies, 

by means of which a force is exerted between them at their point of contact to 

prevent one body from sliding on the other, is called friction; the force exerted 

is called the force is friction. 

 When one body in contact with another is in equilibrium, the friction exerted 

is just sufficient to maintain equilibrium and is called statical friction.  

 When one body is just on the point of sliding on another, the friction attains its 

maximum value and is called limiting friction. 

 The equilibrium in this case is said to be limiting.  
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 When motion ensures by one body sliding over another, the friction exerted is 

called dynamical friction. 

 When motion ensures by one body sliding over the other, the direction of 

friction is opposite to that of motion; the magnitude of the friction is 

independent of the velocity of the point of contact but the ratio of the friction 

to the normal reaction is slightly less when the body moves, than when it is in 

limiting equilibrium. 

 

 

8.13  KEYWORDS 
 Friction: If two bodies are in contact with one another, the property of the 

two bodies, by means of which a force is exerted between them at their 

point of contact to prevent one body from sliding on the other, is called 

friction; the force exerted is called the force is friction. 

 Statical friction: When one body in contact with another is in equilibrium, 

the friction exerted is just sufficient to maintain equilibrium and is called 

statical friction.  

 Limiting friction: When one body is just on the point of sliding on 

another, the friction attains its maximum value and is called limiting 

friction. 

 Limiting: The equilibrium in this case is said to be limiting.  

 Dynamical friction: When motion ensures by one body sliding over 

another, the friction exerted is called dynamical friction. 

 8.14  SELF ASSESSMENT QUESTIONS AND EXERICES 
1. State the law of statical friction. 

2. State the law of dynamical friction. 

3. Comment on the statement that the “friction obstructs motion; friction 

helps motion”. 

4. Comment on the statement that the “friction is passive resistance”. 

5. A body of weight 4kgs, rests in limiting equilibrium on a rough plane 

whose slope is 30°. Find the coefficient of friction and the normal reaction. 
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BLOCK III 

CATENARY, PROJECTILES AND 

IMPULSIVE FORCES 

 

UNIT-IX     CATENARY 

STRUCTURE 

9.0 Introduction  

9.1 Objectives  

9.2 Uniform String Under The Action Of Gravity  

9.3 Equation Of The Common Catenary 

9.4 Definitions 

9.5 Tension at any point 

9.6 Important formulae 

9.7 Geometrical properties of the common catenary 

9.8 Worked examples 

9.9 Answers to Check Your Progress Questions 

9.10 Summary 

9.11 Keywords 

9.12 Self Assessment Questions and Exercises 

9.13 Further Readings 

9.0 INTRODUCTION 
In this chapter, we shall consider the equilibrium of perfectly flexible 

chains or strings of very small cross-section. A perfectly flexible string offers 

no resistance to beginning at any point. In such case, the action across any 

section of the string is a single force whose line of action is along the tangent 

to the curve formed by the string. A chain whose links are short and perfectly 

smooth, behaves like a flexible string. 

9.1 OBJECTIVES 
After going through this unit, you will be able to: 

 Understand what is meant by catenary 
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 Discuss the action of gravity on a uniform string 

 Discuss the geometrical properties of a catenary 

 

9.2 UNIFORM STRING UNDER THE ACTION OF 

GRAVITY 
When a uniform string or chain hangs freely between two points not in 

the same vertical line, the curve in which it hangs under the action of gravity is 

called a catenary . If the weight per unit length of the chain or string is 

constant, the catenary is called the uniform or common catenary.  

9.3 EQUATION OF THE COMMON CATENARY 
 A uniform heavy inextensible string hangs freely under the action of 

gravity; to find the equation of the curve which it forms.   

 Let 𝐴𝐶𝐵 be a uniform heavy flexible cord attached to two points 𝐴 

and 𝐵 at the same level, 𝐶 being the lowest of the cord. Draw 𝐶𝑂 vertical, 𝑂𝑋 

horizontal and take 𝑂𝑋 as 𝑋 axis and 𝑂𝐶 as 𝑦 axis. Let 𝑃 be any point of the 

string so that the length of the arc 𝐶𝑃 = 𝑠. 

 

 

 

 

 

 

 

 

 

the portion 𝐶𝑃 of the chain.  Consider the equilibrium of 

The force acting on it are: 

 Tension 𝑇0 acting along the tangent at 𝐶 and which is therefore horizontal. 

 Tension 𝑇 acting at 𝑃along the tangent at 𝑃 making an angle 𝜓 with 𝑂𝑋. 

 Its weight 𝑤𝑠 acting vertically downwards through the C. G. of the arc 

𝐶𝑃. 

For equilibrium, these three forces must be concurrent. 
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Hence the line of action of the weight 𝑤𝑠 must pass through the point of 

intersection of 𝑇 and 𝑇0. 

Resolving horizontally and vertically, we have 

   𝑇 cos𝜓 = 𝑇0.                                     

…………… (1) 

And    𝑇 sin𝜓 = 𝑤𝑠           …………… (2) 

Dividing (2) by (1), tan𝜓 =
𝑤𝑠

𝑇0
. 

 Now it will be convenient to write the values of 𝑇0 the tension at the 

lowest point, as 𝑇0 = 𝑤𝑐   …………… (3) where 𝑐 is a constant. This means that 

we assume 𝑇0, to be equal to the weight of an unknown length 𝑐 of the cable. 

Then tan𝜓 =
𝑤𝑠

𝑤𝑐
=

𝑠

𝑐
. 

∴ 𝑠 = 𝑐 tan𝜓                                                                       …………… (4) 

Equation (4) is called the intrinsic equation of the catenary. 

 It gives the relation between the length of the arc of the curve from the 

lowest point to any other point on the curve and the inclination of the tangent at 

the latter point. 

 To obtain the Cartesian equation of the catenary, 

We use the equation (4) and the relations 

𝑑𝑦

𝑑𝑠
= sin𝜓 and 

𝑑𝑦

𝑑𝑥
= tan𝜓 Which are true for any curve. 

Now, 
𝑑𝑦

𝑑𝜓
=

𝑑𝑦

𝑑𝑠
.
𝑑𝑠

𝑑𝜓
 

= sin𝜓
𝑑

𝑑𝜓
𝑐 tan𝜓 

= sin𝜓  𝑐 sec2 𝜓 = 𝑐 sec𝜓 tan𝜓 

∴ 𝑦 =  𝑐 sec𝜓 tan𝜓𝑑𝜓 + 𝐴 

= 𝑐 sec𝜓 + 𝐴  

𝑦 = 𝑐 when 𝜓 = 0, then 𝑐 = 𝑐 sec 0. 

∴ 𝐴 = 0 

Hence 𝑦 = 𝑐 sec𝜓                                                                …………… (5) 

∴ 𝑦2 = 𝑐2 sec2 𝜓 = 𝑐2(1 + tan2 𝜓) 
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                                                             𝑦2 = 𝑐2 + 𝑠2               …………… (6) 

𝑑𝑦

𝑑𝑥
= tan𝜓 =

𝑠

𝑐
=
 𝑦2 − 𝑐2

𝑐
 

𝑑𝑦

 𝑦2 − 𝑐2
=
𝑑𝑥

𝑐
 

Integrating, cos−1  
𝑦

𝑐
 =

𝑥

𝑐
+ 𝐵. 

When 𝑥 = 0, 𝑦 = 𝑐. 

𝑖. 𝑒. cos −1 1 = 0 + 𝐵 𝑜𝑟 𝐵 = 0 

∴ cos −1  
𝑦

𝑐
 =

𝑥

𝑐
. 

i.e. 𝑦 = 𝑐 cos(
𝑥

𝑐
)                                                   …………… (7) 

(7) is the Cartesian equation to the catenary. 

We can also find the relation connecting 𝑠 and 𝑥. 

Differentiating (7). 

𝑑𝑦

𝑑𝑥
= 𝑐 sinh 

𝑥

𝑐
.
1

𝑐
= sinh

𝑥

𝑐
 

From (4), 𝑠 = 𝑐 tan𝜓 = 𝑐.
𝑑𝑦

𝑑𝑥
= 𝑐 sinh

𝑥

𝑐
          …………… (8) 

 

9.4  DEFINITIONS 

The Cartesian equation to the catenary is 𝑦 = 𝑐 cosh
𝑥

𝑐
. cosh

𝑥

𝑐
 is an 

even function of 𝑥. Hence the curve is symmetrical with respect to the 𝑦-

axis i.e. to the vertical through the lowest point. This line of symmetry is 

called the axis of the catenary. 

Since 𝑐 is the only constant in the equation, it is called the 

parameter of the catenary and it determines the size of the curve.  

The lowest point 𝐶 is called the verted of the catenary. The 

horizontal line at a depth 𝑐 below the vertex (which is taken by us the x-

axis) is called the directrix of the catenary. 

If the two points 𝐴 and 𝐵 from where the string is suspended are in 

a horizontal line, then the distance 𝐴𝐵 is called the span and the distance 

𝐶𝐷 (i.e. the depth of the lowest point 𝐶 below 𝐴𝐵) is called the sag. 
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9.5  TENSION AT ANY POINT 
We have derived the equations   

   𝑇 cos𝜓 =  𝑇𝑜                                   …. … … (1) 

and 𝑇 sin𝜓 = 𝑤𝑠                          …. … ….. (2) 

we have also put 𝑇𝑜 = 𝑤𝑐          … … …. (3) 

Equation (3) shows that the tension at the lowest point is a constant 

and is equal to the weight of a portion of the string whose length is equal to 

the parameter of the catenary. From equation (1), we find that the horizontal 

component of the tension at any point on the curve is equal to the tension at 

the lowest point and hence is a constant. 

 From equation (2), we deduce that the vertical component of the 

tension at any point is equal to 𝑤𝑠 i.e. equal to the weight of the portion of the 

string lying between the vertex and the point. (∵ 𝑠 = 𝑎𝑟𝑐 𝐶𝑃)  

         Squaring (1) and (2) and then adding, 

𝑇2 = 𝑇𝑜
2 + 𝑤2𝑠2 

                                                              =  𝑤2𝑐2 +  𝑤2𝑠2 

                                                              = 𝑤2(𝑐2 +  𝑠2)  

                                                              =  𝑤2𝑦2  using equation (6) of 9.3 

                                                      ∴ 𝑇 = 𝑤𝑦          … … …. (4) 

Thus the tension at any point is proportional to the height of the point above the 

origin. . It is equal to the  weight of a portion of the string whose  length is equal 

is equal to the height of the point above the directrix. 

Important corollary:  

Suppose a long chain is thrown over two smooth pegs A and B and is in 

equilibrium with the portions AN and BN‟ hanging vertically. The potion BCA of 

the chain will from a catenary. 

         The tension of the chain is unaltered by passing over the smooth peg A. The 

C 

h 

B A 

N 𝑁′ 
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tension at A can be calculated by two methods.   

  

         On one side (i.e. from the catenary portion) tension at A = 𝑤.𝑦 where is the 

height of A above the directrix.  

         On the other side, tension at A=weight of the free part AN hanging down   

and so it     = 𝑤.𝐴𝑁 

∴ 𝑦 = 𝐴𝑁 

In other words, N is on the directrix of the catenary. 

Similarly N‟ is on the directrix. 

    Hence if a long chain is thrown over two smooth pegs and is in equilibrium, 

the free ends must reach the directrix of the catenary formed by it 

 

9.6 IMPORTANT FORMULAE 
The Cartesian coordinates of a point 𝑃 on the catenary are (𝑥, 𝑦) and its 

intrinsic coordinates are (𝑠,𝜓). Hence there are four variable quantities and we 

can have a relation connecting any two of them. There will be 4𝐶2 = 6 such 

relations, most of them having been already derived. We shall derive the 

remaining. It is worthwhile to collect these results for ready reference. 

(i) The relation connecting 𝑥 and 𝑦 is  

𝑦 = 𝑐 cosh
𝑥

𝑐
                   ………. (1) 

and this is the Cartesian equation to the catenary. 

(ii) The relation connecting 𝑠 and 𝜓 is 𝑠 = 𝑐 tan𝜓  ……… (2) 

(iii)  The relation connecting 𝑦 and 𝜓 is 𝑦 = 𝑐 sec𝜓  ……… (3) 

(iv)  The relation connecting 𝑦 and 𝑠 is 𝑦2 = 𝑐2 + 𝑠2  …… (4) 

(v)  The relation connecting 𝑠 and 𝑥 is 𝑠 = 𝑐 sinh
𝑥

𝑐
    …… (5) 

The relations (1) and (5) have all been derived in 9.3. 

(vi) We have to get the relation between 𝑥 and 𝜓. 

Since 𝑦 = 𝑐 cosh
𝑥

𝑐
  and 𝑦 = 𝑐 sec𝜓,  

     we have sec 𝜓   =  cosh
𝑥

𝑐
    

∴
𝑥

𝑐
=  cosh−1(sec𝜓)  
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                                                 = log sec 𝜓 +  sec2 𝜓 − 1  

=  log sec𝜓 + tan𝜓  

                                        ∴ 𝑥 = 𝑐 log(sec𝜓 + tan𝜓)  ….. (6) 

This relation can also be obtained thus: 

𝑑𝑥

𝑑𝜓
=  

𝑑𝑥

𝑑𝑠
.
𝑑𝑠

𝑑𝜓
 

                                         =  𝑐𝑜𝑠 𝜓 .
𝑑

𝑑𝜓
(𝑐 𝑡𝑎𝑛 𝜓)  since 

𝑑𝑥

𝑑𝑠
= 𝑐𝑜𝑠 𝜓 for any curve                           

 = 𝑐𝑜𝑠 𝜓  . 𝑐 𝑠𝑒𝑐2𝜓 = 𝑐 sec𝜓  

Integrating, 𝑥 =   𝑐 sec 𝜓  𝑑𝜓 + 𝐷 

                           = 𝑐 log sec𝜓 + tan𝜓 +  𝐷 

 At the lowest point, 𝜓 = 0 and 𝑥 = 0 

       ∴ 0 =  𝑐 log sec 0 + tan 0 +  𝐷 

  i.e. 0 = 𝐷 

  ∴     𝑥 = 𝑐 log sec𝜓 + tan𝜓  

(vii)  The tension at any point = 𝑤𝑦        …. … … .. (7) 

where 𝑦 is the distance of the point from the directrix. 

(viii ) The tension at the lowest point = 𝑤𝑐   … … … (8) 

       By using the formulae (1) to (8), given in this section, we can solve 

most problems on the catenary. 

We recall the following logarithmic expansions of the inverse hyperbolic 

functions, which will be frequently used in this chapter.  

sinh−1 𝑥 = log(𝑥 +   𝑥2 + 1) 

cosh−1 𝑥 = log(𝑥 +   𝑥2 − 1) 

9.7 GEOMETRICAL PROPERTIES OF THE COMMON 

CATENARY 

 Let 𝑃 be any point on the catenary  𝑦 = 𝑐 cosh
𝑥

𝑐
. 

PT is the tangent meeting the directrix (i.e. the x-axis) at T. 

∠𝑃𝑇𝑋 = 𝜓  
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PM (=y) is the ordinate of P and PG is the normal at P. 

 

Draw 𝑀𝑁 ⊥ 𝑡𝑜 𝑃𝑇. 

From  △𝑃𝑀𝑁,𝑀𝑁 = 𝑃𝑀 cos𝜓 

                                     = 𝑦 cos𝜓 

                                      = 𝑐 sec 𝜓 cos𝜓 

                                   = 𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

i.e.   The length of the perpendicular from the foot of the ordinate on the 

ordinate on the tangent at any point of the catenary is constant.  

Again tan𝜓 =
𝑃𝑁

𝑀𝑁
=  

𝑃𝑁

𝑐
 

∴   𝑃𝑁 = 𝑐 tan𝜓 = 𝑠 = 𝑎𝑟𝑐 𝐶𝑃 

𝑃𝑀2 = 𝑁𝑀2 + 𝑃𝑁2 

∴  𝑦2 =  𝑐2 + 𝑠2,  a relation already obtained.  

If 𝜌 is the radius of curvature of the catenary at P,  

𝜌 =
𝑑𝑠

𝑑𝜓
=

𝑑

𝑑𝜓
 𝑐 tan𝜓  = 𝑐 sec2 𝜓 

Let the normal at P cut the x-axis at G. 

Then 𝑃𝐺. cos𝜓 = 𝑃𝑀 = 𝑦 

∴   𝑃𝐺 =  
𝑦

cos𝜓
= 𝑐 sec𝜓 . sec𝜓 = 𝑐 sec2 𝜓  

𝜓 

𝜓 𝜓 

Y 

C 
P 

N 

X G M T O 
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∴ 𝜌 = 𝑃𝐺 

Hence the radius of curvature at any point on the catenary is numerically equal to 

the length of the normal intercepted between the curve and the directrix, but they 

are drawn in opposite directions.  

9.8 WORKED EXAMPLES 

Example 1.  A uniform chain of length 𝑙  is to be suspented from two points in the 

same horizontal line so that either terminal tension is 𝑛 times that at the lowest 

point. Show that the span must be 
1

 𝑛2−1
log(𝑛 +  𝑛2 − 1 )  

Refer to figure. Let 𝑦𝐴  and 𝑦𝐶  be the y-coordinates of the highest point A and the 

lowest point C. Let 𝑤 be the weight per 

unit length of the chain and c the 

parameter of the catenary. 

   Tension at A= 𝑤𝑦𝐴  

and tension at C  = 𝑤. 𝑦𝐶    since  

𝑇 = 𝑤𝑦  at any point 

Now 𝑤𝑦𝐴 = 𝑛.𝑤.𝑦𝐶  

∴ 𝑦𝐴 = 𝑛. 𝑦𝐶 = 𝑛𝑐   

But  𝑦𝐴 = 𝑐 cosh
𝑥𝐴

𝑐
= 𝑛𝑐 

∴  cosh
𝑥𝐴
𝑐

= 𝑛  

or   
𝑥𝐴

𝑐
=  𝑐 cosh−1 𝑛 = log(𝑛 +  𝑛2 − 1) 

  ∴  𝑥𝐴 = c log(𝑛 +  𝑛2 − 1)  … …. … (1) 

We have to find c. 

𝑦𝐴
2 =  𝑐2 + 𝑠𝐴

2, 𝑠𝐴 denoting the length of CA.  

=  𝑐2 +  
𝑙2

4
 (as total length =l) 

i.e. 𝑛2𝑐2 = 𝑐2 +
𝑙2

4
 

or  𝑐2 =  
𝑙2

4(𝑛2−1)
.  

∴   𝑐 =  
𝑙

2  𝑛2−1
     …. ….  … (2) 
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Substituting (2) in (1),  

  𝑥𝐴 =
𝑙

2  𝑛2 − 1
 log(𝑛 +  𝑛2 − 1) 

∴ span 𝐴𝐵 = 2  𝑥𝐴 =
𝑙

  𝑛2−1
 log(𝑛 +  𝑛2 − 1) 

Example 2.  

A box kite is flying at a height  with a length 𝑙 of wire paid out, and with the 

vertex of the catenary on the ground. Show that at the kite, the inclination of the 

wire to the ground is 2 tan−1 

𝑙
 and that its tensions there and at the ground are 

𝑤(𝑙2+2)

2
 and 

𝑤(𝑙2−2)

2
 where w is the weight of the wire per unit of length . 

C is the vertex of the catenary CA, A being the kite. The origin O is taken at  

a depth c below C.  

Then 𝑦𝐴 = 𝑐 +  and 𝑠𝐴 = 𝑎𝑟𝑐 𝐶𝐴 = 𝑙 

Since 𝑦2 =  𝑐2 + 𝑠2 , we have  

(𝑐 + )2 = 𝑐2 + 𝑙2  

i.e.     2 + 2𝑐 =  𝑙2 

or  𝑐 =
𝑙2−2

2
   … …. …  (1) 

 

We know that 𝑠 = 𝑐 tan𝜓 … …. …. …. (2) 

Applying (2) at the point A, we have  

𝑐 

C 

O X M 

L 

 

A 

𝑙 

Y 
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𝑙 = 𝑐. tan𝜓𝐴    

∴ tan𝜓𝐴 = −  
2𝑙

𝑙2−2 substituting  for c from (1) 

=  
2 



𝑙
 

1−  


𝑙
 

2        ….. …… ….(3) 

But tan𝜓 =  
2 tan

𝜓

2

1−tan 2𝜓

2
 
   …..   …  ….. (4) 

Comparing (3) and (4), we find that  

tan
𝜓

2
 𝑎𝑡 𝐴 =



𝑙
 

∴
𝜓

2
=  tan−1



𝑙
   

Or𝜓  𝑎𝑡 𝐴 = 2 tan−1 

𝑙
   

 The tension at A= 𝑤. 𝑦𝐴  

                          = 𝑤. (𝑐 + ) 

                          = 𝑤  
𝑙2−2

2
+   

                         = 𝑤
 𝑙2+2 

2
   

                   Check Your Progress 

1. Define catenary. 

2. Define common catenary. 

3. Write down the equation of the common catenary. 

4. Write down the geometrical properties of the common  catenary 

 

5. Define directrix. 

 

9.9  Answers to Check Your Progress Questions 
1. When a uniform string or chain hangs freely between two points not in the 

same vertical line, the curve in which it hangs under the action of gravity is 

called a catenary .  

2. If the weight per unit length of the chain or string is constant, the catenary is 

called the uniform or common catenary.  

3. The equation of the common catenary is 𝒚 = 𝒄 𝐜𝐨𝐬𝒉(
𝒙

𝒄
). 

4. The geometrical properties of the common catenary are  

 The length of the perpendicular from the foot of the ordinate on the ordinate on 

the tangent at any point of the catenary is constant. 
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 The radius of curvature at any point on the catenary is numerically equal to the 

length of the normal intercepted between the curve and the directrix, but they 

are drawn in opposite directions.  

5. The horizontal line at a depth 𝑐 below the vertex (which is taken by us the x-

axis) is called the directrix of the catenary. 

9.10   SUMMARY 
 When a uniform string or chain hangs freely between two points not in the 

same vertical line, the curve in which it hangs under the action of gravity is 

called a catenary . If the weight per unit length of the chain or string is 

constant, the catenary is called the uniform or common catenary. 

 The Cartesian equation to the catenary is 𝑦 = 𝑐 cosh
𝑥

𝑐
. cosh

𝑥

𝑐
 is an even 

function of 𝑥. Hence the curve is symmetrical with respect to the 𝑦-axis i.e. to 

the vertical through the lowest point. This line of symmetry is called the axis of 

the catenary. 

 Since 𝑐 is the only constant in the equation, it is called the parameter of the 

catenary and it determines the size of the curve.  

 The lowest point 𝐶 is called the verted of the catenary. The horizontal line at a 

depth 𝑐 below the vertex (which is taken by us the x-axis) is called the directrix 

of the catenary. 

 If the two points 𝐴 and 𝐵 from where the string is suspended are in a horizontal 

line, then the distance 𝐴𝐵 is called the span and the distance 𝐶𝐷 (i.e. the depth 

of the lowest point 𝐶 below 𝐴𝐵) is called the sag. 

9.11  KEYWORDS 
Catenary: When a uniform string or chain hangs freely between two points not 

in the same vertical line, the curve in which it hangs under the action of gravity 

is called a catenary . 

9.12 SELF ASSESSMENT QUESTIONS AND EXERCISES 
1. If 𝑇 be the tension at any point 𝑃 of the string and 𝑇0, that the lowest point 𝐶, 

prove that 𝑇2 − 𝑇0
2 = 𝑊, 𝑊 being the weight of the arc 𝐶𝑃 of the string. 

2. Prove that, if a uniform inextensible chain hangs freely under gravity, the 

difference of the tensions at two points varies as the difference of their weights. 

3. A uniform chain of length 𝑙 is to has its extremities fixed at two points in the 

same horizontal line. Shoe that the span must be 
1

 8
log(3 +  8) in order that 

the tension at each support shall be tree times that at the lowest point. 

4. A uniform chain of length 𝑙 is suspended from two points 𝐴,𝐵 in the same 

horizontal line. If the tension at 𝐴 is twice that at the lowest point, shw that the 

span 𝐴𝐵 is 
1

 3
log(2 +  3). 

5. A  chain of length 2𝑙 hangs between two points 𝐴 and 𝐵 on the same level. The 

tension both at 𝐴 and 𝐵 is 5 times the tension at the lowest point. Prove that the 

horizontal distance between 𝐴 and 𝐵 is 
1

 6
log(5 + 2 3).  
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UNIT X PROJECTILE 
STRUCTURE 

10.0 Introduction 

10.1 Objectives 

10.2 Definition 

10.3 Fundamental Principles 

10.4 Path of the Projectile 

10.5 Characteristics of the motion of a projectile 

10.6 Range on an Inclined Plane 

10.7 Greatest Distance Maximum Range 

10.8 Answers to Check Your Progress Questions 

10.9 Summary 

10.10 Keywords 

10.11 Self Assessment Questions and Exercises 

10.12 Further Readings 

10.0 INTRODUCTION 
In this chapter we shall consider, motion of a particle projected into the air 

in any direction and with any velocity. Such a particle is called a projectile. The 

two forces that act on the projectile are its weight and the resistance of air. For 

simplicity, we suppose the motion to take place within such a moderate distance 

from the surface of the earth that we can neglect the variations in the acceleration 

due to gravity. This means that 𝑔 may be considered to be constant in magnitude 

throughout the motion of the projectile. Secondly, we shall neglect the resistance 

of the air and consider the motion to take place in vacuum. 

10.1 OBJECTIVES 
After going through this unit, you will be able to: 

 Understand what is meant by projectile 

 Discuss the properties of a projectile 

 Discuss the properties of inclined plane. 

10.2 DEFINITIONS 
The following terms are used in connection with projectiles: 

The angle of projection is the angle that the direction in which the particle 

is initially projected makes with the horizontal plane through the point of 

projection. 

The velocity of projection is the velocity with which the particle is 

projected. 

The trajectory is the path which the particle describes. 

The range on a plane through the point of projection is the distance 

between the point of projection and the point where the trajectory meets that 

plane. 
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The time of flight is the interval of time that elapses from the instant of 

projection till the instant when the particle again meets the horizontal plane 

through the point of projection. 

10.3  FUNDAMENTAL PRINCIPLES 
  To discuss the motion of a projectile, we consider the horizontal and 

vertical components of the motion separately. The only force acting on the 

projectile is gravity and this acts vertically downwards. Hence by the Physical 

Independence of forces, it has no effect on the horizontal motion of the particle. 

So the horizontal velocity remains constant throughout the motion, as there is no 

force to cause any acceleration in that direction. On the other hand, the weight of 

the particle acting vertically downwards, will have its full effect on the vertical 

motion of the particle. The weight mg acting vertically downwards on a particle of 

mass m will produce an acceleration g vertically downwards. Hence the vertical 

component of the velocity will be subject to a retardation g. These two main 

principles will help us to study the motion of a particle. 

10.4 PATH OF THE PROJECTILE 
Let a particle from 𝑂, with a velocity 𝑢 at an angle 𝛼 to                              

the horizon. Take 𝑂 as the origin, the horizontal and the upward vertical through 

𝑂 as axes of 𝑥 and 𝑦 respectively.  The initial velocity 𝑢 can be split into two 

components, which are 𝑢 cos𝛼 in the horizontal direction and 𝑢 𝑠𝑖𝑛 𝛼 in the 

vertical direction. The horizontal component 𝑢 cos𝛼 is constant throughout the 

motion as there is no horizontal acceleration The vertical component 𝑢 sin 𝛼 is 

subject to an acceleration 𝑔 downwards. 

Let 𝑃(𝑥, 𝑦) be the position of the particle at time 𝑡 secs. after projection. Then  

𝑥 = horizontal distance described in 𝑡 secs. =  𝑢 cos𝛼 . 𝑡           (1) 

𝑦 = vertical distance described in 𝑡 secs. =  𝑢 sin𝛼 . 𝑡                 (2) 

u 
P 

𝛼 

𝑦 

X C B 

y 

𝑥 M o 

A 
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      (1) and (2) can be taken as the parametric equations of the trajectory. The 

equation to the path is got by eliminating 𝑡 between them. 

From (1), 𝑡 =
𝑥

𝑢  cos 𝛼
  and putting this in (2) we get 

𝑦 = 𝑢 sin 𝛼 .
𝑥

𝑢 cos𝛼
 −

1

2
𝑔 .  

𝑥

𝑢 cos𝛼
 

2

 

i.e.                                 𝑦 =  𝑥 tan 𝛼 −  
𝑔𝑥2  

2𝑢2 cos 2 𝛼
                                 (3)    

Multiplying (3) by   2𝑢2 cos2 𝛼, 

2𝑢2 cos2 𝛼 . 𝑦 =  2𝑢2 cos2 𝛼 . 𝑥 
sin 𝛼

cos 𝛼
− 𝑔𝑥2  

i.e.     𝑥2 −
2𝑢2 sin 𝛼 cos 𝛼  

𝑔
 𝑥 = −  

2𝑢2 cos 2 𝛼

𝑔
𝑦 

(or)      𝑥 −
𝑢2 sin 𝛼 cos 𝛼  

𝑔
 

2

=  
𝑢4 sin 2 𝛼 cos 2 𝛼  

𝑔2 −  
2𝑢2 cos 2 𝛼

𝑔
𝑦     

                                                 =  −  
2𝑢2 cos 2 𝛼

𝑔
   𝑦 −

𝑢2 sin 2 𝛼

2𝑔
  

Transfer the origin to the point 

 
𝑢2 sin 𝛼 cos 𝛼  

𝑔
,
𝑢2 sin 2 𝛼

2𝑔
 . 

The above equation then becomes 

𝑋2 = −  
2𝑢2 cos2 𝛼

𝑔
.𝑌 

                (4) is clearly the equation to a parabola of latus rectum  
2𝑢2 cos 2 𝛼

𝑔
,  

whose axis is vertical and   downwards   and  whose  vertex is the point 

 
𝑢2 sin 𝛼 cos 𝛼  

𝑔
,
𝑢2 sin 2 𝛼

2𝑔
 . 

Note. The latus rectum of the above parabola is  

u 
P 

𝛼 

𝑦 

X C B 

y 

𝑥 M o 
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=
2𝑢2 cos2 𝛼

𝑔
=  

2

𝑔
.  𝑢 cos𝛼 2 

                                     =
2

𝑔
 × 𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑡𝑒 𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦  

       So the latus rectum (i.e. the  size of the parabola ) is independent  

of the initial vertical velocity and depends only on the horizontal velocity. 

10.5 CHARACTERISTICS OF THE MOTION  

OF A PROJECTILE 
 Let a particle be projected from 𝑂with velocity 𝑢 at an angle 𝛼 to the horizontal 

𝑂𝑋. Let 𝐴 be the highest point of the path and 𝐶 the point where it again meets the 

horizontal plane through𝑂. Using the two fundamental principles, we can derive 

the following results relating to the motion of a projectile. 

  (1) Greatest height attained by a projectile. 

At 𝐴, the highest point, the particle will be moving only horizontally, having lost 

all its vertical velocity. Let 𝐴𝐵 =  =the greatest height reached. Considering 

vertical motion separately, initial upward vertical velocity = 𝑢 sin 𝛼 and the 

acceleration in this direction  is –𝑔. The final vertical velocity at 𝐴 is = 0. 

Hence 0 =  𝑢 sin 𝛼 2 − 2𝑔.    i.e.  =  
𝑢2 sin 2 𝛼

2𝑔
 

i.e. the vertex of the parabola is the highest point of the path. 

(2)  Time taken to reach the greatest height. 

Let 𝑇 be the time from 𝑂 to 𝐴. Then, in time 𝑇, the initial vertical velocity 𝑢 sin 𝛼 

is reduced to zero, acted on by an acceleration –𝑔. Hence 0 =  𝑢 sin𝛼 − gT.  

∴    𝑇 =  
𝑢  sin 𝛼

𝑔
. 

(3)Time of  flight i.e. the time taken to return to the same horizontal level as O. 

           When the particle arrives at O, the effective vertical distance it has 

described is zero. Hence if 𝑡 is the time of flight, considering vertical motion, we 

have   0 =  𝑢 sin 𝛼 . 𝑡 −
1

2
𝑔𝑡2. 

i.e. 𝑡 = 0   (or)         𝑡 =  
2𝑢  sin 𝛼

𝑔
 

          𝑡 = 0   is the instant of projection when also the vertical distance travelled 

is zero. 



 

121 

      

Low of Forces 

 

NOTES 

 

Projectile 

 

Notes 
 

 

Self Instructional Material 

 

∴     𝑇𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑓𝑙𝑖𝑔𝑡 =
2𝑢 sin 𝛼

𝑔
  

        We find the time of flight is twice the time taken to reach the highest point, 

as we should expect from symmetry. 

 (4)The range on the horizontal plane through the point of projection .  

The time of flight is 𝑡 =
2𝑢  sin 𝛼

𝑔
. During this time, the horizontal velocity remains 

constant and is equal to 𝑢 cos𝛼. 

Hence 𝑂𝐶 = horizontal distance described in time t 

                    =  𝑢 cos𝛼 . 𝑡 = 𝑢 cos𝛼 .
2𝑢  sin 𝛼

𝑔
=

2𝑢2  sin 𝛼 cos 𝛼

𝑔
  

Hence the horizontal range 𝑅 =  
2𝑢2  sin 𝛼 cos 𝛼

𝑔
=  

𝑢2  sin 2𝛼

𝑔
  

     Note. (1)  The horizontal range can also be found thus: The equation to the path 

is       𝑦 = 𝑥 tan𝛼 −  
𝑔𝑥2

2𝑢2  cos 2 𝛼
                  ………  (1) 

The equation to the x axis is 𝑦 = 0. 

Putting 𝑦 = 0 in (1), we have 𝑥 tan 𝛼 −  
𝑔𝑥2

2𝑢2  cos 2 𝛼
= 0 

i.e. 𝑥 = 0 (or)  𝑥 =
2𝑢2  cos 2 𝛼 tan 𝛼

𝑔
 =

2𝑢2  sin 𝛼 cos 𝛼

𝑔
 

  𝑥 = 0 corresponds to the point of projection and so the other value 
2𝑢2  sin 𝛼 cos 𝛼

𝑔
 

gives the horizontal range. 

(1)   horizontal range=  
2𝑢2  sin 𝛼 cos 𝛼

𝑔
=  

2(𝑢  cos 𝛼 ).(u sin 𝛼)

𝑔
 

                                           = 2 
𝑈𝑉

𝑔
 where 𝑈 and 𝑉 are the initial horizontal and 

vertical velocities. 

Example  1. A body is projected with a velocity of 98 metres per sec. in a direction 

making an angle tan−1 3 with the horizon; show that it rises to a vertical height of 

441 metres and that its time of flight is about 19 secs. Find also horizontal range 

through the point of projection(g=9.8 metres/𝑠𝑒𝑐2). 

       Here 𝑢 = 98; n 𝛼 =  tan−1 3  i.e.  tan 𝛼 = 3. 

∴    sin 𝛼 =  
sin 𝛼

cos𝛼
. cos𝛼 =  

tan𝛼

sec 𝛼
=  

tan𝛼

 1 +  tan2 𝛼
=  

3

 10
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cos𝛼 =  
sin 𝛼

tan 𝛼
=  

1

 10
 

Greatest height reached =  
𝑢2  sin 2 𝛼

2𝑔
=  

98×98×9

10×2×9.8
 

                                                                     = 441 𝑚𝑒𝑡𝑟𝑒𝑠.                              

 Time of flight =   
2𝑢 sin 𝛼  

𝑔
=  

2×98×3

 10×9.8
= 6 10 

                            = 6 × 3.162 = 18.972 =   19 𝑠𝑒𝑐𝑠. nearly 

Horizontal range =
2𝑢2  sin 𝛼 cos 𝛼

𝑔
   

                                  =
2×98×98

9.8
 ×  

3

 10
×

1

 10
= 588 𝑚𝑒𝑡𝑟𝑒𝑠. 

Example 2.  If the greatest height attained by the particle is a quarter of its range 

on the horizontal plane through the point of projection, find the angle of 

projection. 

    Let 𝑢 be the initial  velocity and 𝛼 the angle of projection. 

Then, the greatest height  =
𝑢2  sin 2 𝛼

2𝑔
 

      and  horizontal range    =
2𝑢2  sin 𝛼 cos 𝛼

𝑔
       

It is given that 
𝑢2  sin 2 𝛼

2𝑔
=

1

4
×

2𝑢2  sin 𝛼 cos 𝛼

𝑔
 

   i.e.   
𝑢2  sin 2 𝛼

2𝑔
=

𝑢2  sin 𝛼 cos 𝛼

2𝑔
 

i.e.      sin 𝛼 = cos𝛼  (or)   tan𝛼 = 1              ∴   𝛼 = 45° 

Example 3. Show that the greatest height which a particle with initial velocity v 

can reach on a vertical wall at a distance „a‟ from the point of projection is 
𝑣2

2𝑔
−

𝑔  𝑎2

2𝑣2  . Prove also that the greatest height above the point of projection attained 

by the particle in its flight is 𝑣6 2𝑔(𝑣4 +  𝑔2 𝑎2) . 

       In the  usual notation, the  equation to the path is  

                     𝑦 = 𝑥 tan𝛼 −
𝑔  𝑥2

2𝑣2 cos 2 𝛼  
                                      ……  (1) 

Putting 𝑥 = 𝑎 in (1), we get the value of 𝑦, which is the height reached on the 

vertical wall at a distance „a‟ from the point of projection. 
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∴ 𝑦 = 𝑎 tan 𝛼 −
𝑔 𝑎2

2𝑣2 cos2 𝛼 
 

     = 𝑎𝑡 −
𝑔  𝑎2

2𝑣2 (1 + 𝑡2)  where 𝑡 =  tan 𝛼……(2) 

Now a and v are given and so y is a function of t. 

∴ 𝑦 is maximum when 
𝑑𝑦

𝑑𝑡
= 0 and 

𝑑2𝑦

𝑑2𝑡
 is negative. 

Differentiating (2) with respect to t,  

𝑑𝑦

𝑑𝑡
= 𝑎 −

𝑔 𝑎2

2𝑣2
. 2𝑡 = 𝑎 −

𝑔 𝑎2𝑡

𝑣2
 

𝑑2𝑦

𝑑2𝑡
= −

𝑔  𝑎2

𝑣2 =  negative clearly. 

So y is maximum when 𝑎 −
𝑔  𝑎2𝑡

𝑣2 = 0 (or)  𝑡 =  
𝑣2

𝑔𝑎
                   …….(3) 

Putting this value of t in (2),  

max. value of 𝑦 = 𝑎.
𝑣2

𝑔𝑎
−

𝑔  𝑎2

𝑣2 (1 +
𝑣4

𝑔2 𝑎2)   

                          =
𝑣2

𝑔
 −

𝑔  𝑎2

2𝑣2 −
𝑣2

2𝑔
=    

𝑣2

2𝑔
−

𝑔  𝑎2

2𝑣2 . 

This is the greatest height reached on the wall. 

Greatest height attained during the flight  

                      =  
𝑣2 sin 2 𝛼

2𝑔
=  

𝑣2

2𝑔
 .

1

cosec 2 𝛼
=  

𝑣2

2𝑔(1+cot 2 𝛼)
 

                      =  
𝑣2

2𝑔  (1+
𝑔2 𝑎2

𝑣4  )
  putting the value of tan 𝛼 from (3) 

                      =  
𝑣6

2𝑔(𝑣4+ 𝑔2 𝑎2)
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10.6  RANGE ON AN INCLINED PLANE 
  From  a point on a plane, which is inclined at an angle 𝛽 to the 

horizon, a particle is projected with  a velocity 𝑢 at an angle 𝛼 with the 

horizontal, in a plane passing through the normal to the inclined plane and the 

line of greatest slope. To find the range on the inclined plane.Let 𝑃 be the 

point of projection and the particle strike the inclined plane at 𝑂. Then 𝑃𝑄 is 

the range on the inclined plane. Let 𝑃𝑄 = 𝑟. Taking 𝑃 as the origin and 

horizontal and the vertical through 𝑃 as the axe of 𝑥and 𝑣 respectively the 

equation to the path is,  

𝑦 = 𝑥 tan 𝛼 −  
𝑔𝑥2 

2𝑢2 cos 2 𝛼
                                                   ……….. (1)  

Draw 𝑄𝑁 ⊥ to the horizontal plane through 𝑃. The co-ordinates of 𝑄 are  

(𝑟 cos𝛽, 𝑟 sin 𝛽 ). Substituting these in (1 ), 

𝑟 sin 𝛽 = 𝑟 cos𝛽 . tan𝛼 −  
𝑔𝑟2 cos2 𝛽

2𝑢2 cos2 𝛼
 

     Multiplying by  2𝑢2 cos2 𝛼 and canceling 𝑟 throughout, we have  

2𝑢2 cos2 𝛼 sin𝛽 =  2𝑢2 cos𝛽  sin𝛼 cos𝛼 −  𝑔𝑟 cos2 𝛽  

               ∴ 𝑟 =  
2𝑢2 cos 𝛽  sin 𝛼 cos 𝛼− 2𝑢2  cos 2 𝛼  sin 𝛽  

𝑔  cos 2 𝛽
  

                       =  
2𝑢2 cos 𝛼( sin 𝛼  cos 𝛽−  cos 𝛼  sin 𝛽) 

𝑔  cos 2 𝛽
 

            i.e.   𝑟 =
2𝑢2 cos 𝛼  sin (𝛼−𝛽)  

𝑔  cos 2 𝛽
 

  Aliter:  We can study separately the motion of the particle along the inclined 

plane and the motion perpendicular to the plane. The initial velocity  u can be 

resolved into two components (i) 𝑢  cos (𝛼 − 𝛽)   along 𝑃𝑄, the inclined plane 

and (ii) 𝑢  sin(𝛼 − 𝛽) , perpendicular to the inclined plane. The acceleration 𝑔 can 

𝛼 

𝛽 

𝑔 sin𝛽 

𝑟 

𝑔 

𝑔 cos𝛽 

P X N 

Q 
Y T 

𝑢 
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be resolved into two components (i) 𝑔 cos𝛽 perpendicular to the inclined plane in 

the downwards direction and (ii) 𝑔 sin𝛽  along the inclined plane towards P. This 

resolution is shown in the figure . Let  𝑇 be the time which the particle takes to go 

from P to Q. After time T, the particle is again on the inclined plane and so, 

during time T, the distance travelled perpendicular to the inclined plane is = 0. 

∴   0 =  𝑢  sin(𝛼 − 𝛽) . T −
1

2
 g cosβ  .𝑇2 

                      i.e.   𝑇 =  
2𝑢   sin (𝛼−𝛽 )  

𝑔 cos 𝛽  
 

  This is the time of flight on the inclined plane. During this time, the 

horizontal velocity remains constant and = 𝑢 cos𝛼. So horizontal distance 

described in time 𝑇 = 𝑃𝑁 = 𝑢 cos𝛼  𝑇. But 𝑃𝑁 = 𝑃𝑄 cos𝛽. 

∴ 𝑃𝑄 . cos𝛽 = 𝑢 cos𝛼  𝑇 

    i.e. 𝑃𝑄 =  
𝑢 cos 𝛼

cos 𝛽
.𝑇 =   

𝑢 cos 𝛼

cos 𝛽
  

2𝑢   sin (𝛼−𝛽)  

𝑔 cos 𝛽  
   

                  =
2 𝑢2  sin (𝛼−𝛽) cos α  

𝑏  cos 2 𝛽  
  

10.7 GREATEST DISTANCE MAXIMUM RANGE 
To find the greatest distance of the projectile from the inclined plane and 

show that is attained in half the total time of flight: 

Let us consider the motion perpendicular to the inclined plane. As explained in the 

above section, the initial velocity in this direction is 𝑢 sin(𝛼 − 𝛽)  and this is 

subject to an acceleration 𝑔 cos𝛽 in the same direction but acting downwards. Let 

𝑦 be the distance travelled by the particle in this direction in time t. Then  

𝑦 = 𝑢 sin(𝛼 − 𝛽) . 𝑡 −
1

2
 𝑔 cos𝛽 . 𝑡2                                  …………..(1) 

Differentiating with respect to 𝑡,  

𝑑𝑦

𝑑𝑡
=   𝑢 sin 𝛼 − 𝛽 − 𝑔 cos𝛽 . 𝑡                                          ………… (2) 

 and 
𝑑2𝑦

𝑑2𝑡
=  −𝑔 cos𝛽 =negative. 

So 𝑦 is maximum when 
𝑑𝑦

𝑑𝑡
= 0 

i.e. when 𝑢 sin 𝛼 − 𝛽 − 𝑔 cos𝛽 . 𝑡 = 0 

  i.e. 𝑡 =  
𝑢 sin  𝛼−𝛽 

𝑔 cos 𝛽  
                                                                   ………. (3) 

   Substituting (3) in (1), maximum value of 𝑦 



 

126 
 

 

Projectile 

 

Notes 
 

Self Instructional Material 

 

=  𝑢 sin 𝛼 − 𝛽  .
𝑢 sin 𝛼 − 𝛽 

𝑔 cos𝛽 
−

1

2
 𝑔 cos𝛽 .

𝑢2 sin2 𝛼 − 𝛽 

𝑔2 cos2 𝛽 
 

             =  
𝑢2 sin 2 𝛼−𝛽 

𝑔 cos 𝛽  
−  

𝑢2 sin 2 𝛼−𝛽 

2𝑔 cos 𝛽  
=  

𝑢2 sin 2 𝛼−𝛽 

2𝑔 cos 𝛽  
         …………(4) 

(1) is the greatest distance of the projectile from the inclined plane. 

Also, from (3), time to this greatest distance =
𝑢 sin  𝛼−𝛽 

𝑔 cos 𝛽  
  and this is clearly half of 

the time of flight. 

   Aliter: When the particle is at the greatest distance from the inclined plane, it 

will have all its velocity only parallel to the inclined plane . Hence the component 

velocity perpendicular to the inclined plane is zero. So, if s is the greatest distance, 

we have  

0 = [𝑢 sin 𝛼 − 𝛽 ]2 − 2𝑔 cos𝛽 . 𝑠  

                    i.e. 𝑠 =
𝑢2 sin 2 𝛼−𝛽 

2𝑔 cos 𝛽  
   

  Also, if t is the corresponding time, 

0 = 𝑢 sin 𝛼 − 𝛽 − 𝑔 cos𝛽 𝑡  (or)   𝑡 =
𝑢 sin  𝛼−𝛽 

𝑔 cos 𝛽  
  

To determine when the range on the inclined plane is maximum, given the 

magnitude u of the velocity of projection. 

The range 𝑅 on an inclined plane is given by  

𝑅 =  
2𝑢2 cos 𝛼 sin   𝛼−𝛽 

𝑔 cos 2 𝛽  
=  

𝑢2

𝑔 cos 2 𝛽  
[sin  2𝛼 − 𝛽 − sin 𝛽]           ……. (1) 

𝛼 

𝛽 

𝑔 sin𝛽 

𝑟 

𝑔 

𝑔 cos𝛽 

P X N 

Q 
Y T 

𝑢 
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     Now, u and 𝛽 are given. The quantity  outside the bracket, 
𝑢2

𝑔 cos 2 𝛽  
 is constant. 

So R is maximum, when the value of the expression inside the bracket is a 

maximum. 

                     i.e. when sin  2𝛼 − 𝛽  is greatest. 

                    i.e. when  2𝛼 − 𝛽 =  
𝜋

2
. 

i.e.     𝛼 =  
𝜋

4
+

𝛽

2
    for maximum range. 

When 𝛼 takes this value,  

𝛼 − 𝛽 =  2𝛼 − 𝛽 − 𝛼 = 90° − 𝛼                                     …….. (2) 

Referring to figure,  

𝛼 − 𝛽 = ∠𝑇𝑃𝑁 −  ∠𝑄𝑃𝑁 =  ∠𝑇𝑃𝑄 and  90° − 𝛼 =  ∠𝑌𝑃𝑇 

Hence from (2), ∠𝑇𝑃𝑄 = ∠𝑌𝑃𝑇. 

i.e. PT, the direction of  projection for maximum range bisects the angle between 

the vertical and the inclined plane.  

  From (1), the value of maximum range 

=   
𝑢2

𝑔 cos2 𝛽
 1 − sin𝛽  =  

𝑢2

𝑔 (1 + 𝑠𝑖𝑛 𝛽)
 

To show that, for a given initial velocity of projection, there are, in general, 

two possible directions of projection so as to obtain a given range on an 

inclined plane: 

Let u be the velocity of projection of a particle and 𝛼 the necessary angle of 

projection so as to get a given k on an inclined plane of inclination 𝛽 to the 

horizontal. 

Then 

𝑘 =   
2𝑢2 cos 𝛼 sin   𝛼−𝛽 

𝑔 cos 2 𝛽  
=  

𝑢2

𝑔 cos 2 𝛽  
[sin  2𝛼 − 𝛽 − sin𝛽     ………(1) 

From (1),  sin  2𝛼 − 𝛽 =  
𝑔𝑘 cos 2 𝛽  

𝑢2 + sin 𝛽                       ………. (2)      

  Since 𝑘, 𝑢,𝛽 are given, the R.H.S. of  (2) is a known positive quantity. So 

we can determine an acute angle 𝜃 whose sine is exactly to   
𝑔𝑘 cos 2 𝛽  

𝑢2 + sin 𝛽              

Then (2) becomes,      sin  2𝛼 − 𝛽 = sin 𝜃               …….. (3)     
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i.e.             2𝛼 − 𝛽 = 𝜃   (or)   𝛼 =
𝜃

2
+

𝛽

2
                       …….. (4) 

Since sin(180° − 𝜃) = sin 𝜃, (3) can also be written as sin 2𝛼 − 𝛽 =
sin(180°−𝜃). Then  2𝛼−𝛽=180°−𝜃 

  i.e.   𝛼 = 90° −
𝜃

2
+

𝛽

2
                                             …….. (5)        

From (4 ) and (5), we find that there are two value of 𝛼 and so two directions of 

projection, each giving the same range 𝑘. 

Let 𝛼1 and  𝛼2 these two values of  𝛼.    

Then 𝛼1 =  
𝜃

2
+

𝛽

2
  and 𝛼2 = 90° −

𝜃

2
+

𝛽

2
    

Now  45° +
𝛽

2
  − 𝛼1 =  45° +

𝛽

2
−

𝜃

2
−

𝛽

2
= 45° −

𝜃

2
  

and  𝛼2 −  45° +
𝛽

2
  =  90° −

𝜃

2
+

𝛽

2
− 45° −

𝛽

2
= 45° −

𝜃

2
 

    ∴      45° +
𝛽

2
  − 𝛼1 =  𝛼2 −  45° +

𝛽

2
                             …..… (6) 

  But 45° +
𝛽

2
 is the angle of projection for maximum range on the inclined 

plane. So, (6) shows that the two directions 𝛼1 and 𝛼2 are equally inclined to the 

direction of maximum range. 

Example 1. Show that, for a given velocity of projection the maximum range 

down an inclined plane of inclination 𝛼 bears to the maximum range up the 

inclined plane the ratio 
1+sin 𝛼

1−sin 𝛼
. 

Let u be the given velocity of projection and 𝜃 the inclination of the direction of 

projection with the plane. The velocity u can be resolved into two components 

𝑢 cos 𝜃 along the upward inclined plane and 𝑢 sin 𝜃 perpendicular to the inclined 

plane. The acceleration 𝑔 can be resolved into two components, 𝑔 cos𝛼  
perpendicular to the inclined plane and downwards. 

Consider the motion perpendicular to the inclined plane. Let T be the time flight. 

𝑔 sin𝛼 

𝑢 cos 𝜃 

𝜃 

𝑔 cos𝛼 

g 

𝛼 

B 

u 

𝑢 sin𝜃 

u 

𝜃 

𝛼 

O 
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Distance travelled perpendicular to the inclined plane in time T is = 0. 

∴     0 = 𝑢 sin 𝜃 .𝑇 −
1

2
 𝑔 cos𝛼 .𝑇2 

                                                   i.e.  𝑇 =  
2𝑢 sin 𝜃

𝑔 cos 𝛼
.    

    During this time, the distance travelled along the plane  

= 𝑢 cos 𝜃 .𝑇 −
1

2
 𝑔 sin𝛼 .𝑇2 

= 𝑢 cos𝜃 .
2𝑢 sin 𝜃

𝑔 cos𝛼
−

1

2
 𝑔 sin 𝛼 .

4𝑢2 sin2 𝜃

𝑔2 cos2 𝛼
 

                                   =   
2𝑢2 cos 𝜃 sin 𝜃

𝑔 cos 𝛼
−   

2𝑢2 sin 𝛼 sin 2 𝜃

𝑔 cos 2 𝛼
 

                                  =  
2𝑢2 sin 𝜃  

𝑔 cos 2 𝛼
(cos𝛼 cos𝜃 − sin 𝛼 sin𝜃). 

 

                                 =
2𝑢2 sin 𝜃  

𝑔 cos 2 𝛼
cos 𝜃 + 𝛼 =

𝑢2  

𝑔 cos 2 𝛼
. 2 cos 𝜃 + 𝛼 sin 𝜃  

=
𝑢2 

𝑔 cos2 𝛼
[sin 2𝜃 + 𝛼 − sin 𝛼]  

This is the range 𝑅1 up the inclined plane. 

𝑅1 is maximum, when  sin 2𝜃 + 𝛼 = 1 

∴  Maximum range up the plane  

=
𝑢2 

𝑔 cos2 𝛼
  1 − sin𝛼 =

𝑢2  

𝑔(1 + sin 𝛼)
  

      when the particle is projected down the plane from B at the same angle to the 

plane, the time of flight has the same value 
2𝑢 sin 𝜃

𝑔 cos 𝛼
. But the component of the 

initial velocity along the inclined plane is 𝑢 cos 𝜃 downwards and the component 

acceleration 𝑔 sin𝛼 is also downwards. 

Hence the range down the plane  

                           𝑅2 =distance travelled along the plane in time T 

                                  = 𝑢 cos𝜃 .𝑇 +
1

2
 𝑔 sin 𝛼 .𝑇2 
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=  
2𝑢2 sin𝜃 

𝑔 cos2 𝛼
(cos𝛼 cos 𝜃 + sin 𝛼 sin 𝜃) 

=
2𝑢2 sin 𝜃 

𝑔 cos2 𝛼
cos 𝜃 − 𝛼 =

𝑢2  

𝑔 cos2 𝛼
[sin 2𝜃 − 𝛼 − sin 𝛼]  

𝑅2 is maximum, when sin 2𝜃 − 𝛼 = 1. 

So maximum range down the plane 

             =
𝑢2 

𝑔 cos 2 𝛼
 1 + sin𝛼 =  

𝑢2  

𝑔(1−sin 𝛼)
 

∴  
𝑀𝑎𝑥. 𝑟𝑎𝑛𝑔𝑒 𝑑𝑜𝑤𝑛 𝑡𝑒 𝑝𝑙𝑎𝑛𝑒

𝑀𝑎𝑥. 𝑟𝑎𝑛𝑔𝑒 𝑢𝑝 𝑡𝑒 𝑝𝑙𝑎𝑛𝑒
 

=  
𝑢2  

𝑔(1 − sin𝛼)
.
𝑔(1 + sin𝛼)

𝑢2
=  

(1 + sin𝛼)

(1 − sin𝛼)
 

    Note. The range 𝑅2 down the plane can be got from the range 𝑅1 up the plane, 

by changing 𝛼 into –𝛼.  

Example 2.  A particle is projected at an angle 𝛼 with a velocity u and it strikes up 

an inclined plane of inclination 𝛽 at right angles to the plane. Prove that   

                                                𝑖 cot𝛽 = 2 tan(𝛼 − 𝛽) 

 𝑖𝑖 cot𝛽 = tan𝛼 − 2 tan 𝛽 

If the plane is struck horizontally, show that tan 𝛼 = 2 tan 𝛽. 

 

Refer  to the above figure.  The initial velocity  𝑇 =  
2𝑢 sin (𝛼−𝛽)

𝑔 cos 𝛽
…… (1)      

𝛼 

𝛽 

𝑔 sin𝛽 

𝑟 

𝑔 

𝑔 cos𝛽 

P X N 

Q 
Y T 

𝑢 



 

131 

      

Low of Forces 

 

NOTES 

 

Projectile 

 

Notes 
 

 

Self Instructional Material 

 

       Since the particle strikes the inclined plane normally, its velocity parallel to the 

inclined plane at the end of time T is = 0. 

  0 = 𝑢 cos(𝛼 − 𝛽) − 𝑔 sin 𝛽 .𝑇 

(or)    𝑇 =  
𝑢 cos (𝛼−𝛽)

𝑔 sin 𝛽
                                         ……. (2) 

Equating (1) and (2), we have 

2𝑢 sin(𝛼 − 𝛽)

𝑔 cos𝛽
=
𝑢 cos(𝛼 − 𝛽)

𝑔 sin𝛽
  

         i.e.  cot𝛽 = 2 tan(𝛼 − 𝛽)                                   …… (i) 

i.e. cot𝛽   =   
2 (tan 𝛼−tan 𝛽 )

1+tan 𝛼 tan 𝛽
  

Cross multiplying,  

                        cot𝛽 + tan 𝛼 = 2 tan 𝛼 − 2 tan 𝛽        (or) 

                       cot𝛽 = tan𝛼 − 2 tan 𝛽                                  …..(ii) 

If the plane is struck horizontally, the vertical velocity of the projectile at the end 

of time T is = 0. Initial vertical velocity  = 𝑢 sin 𝛼, and acceleration in this 

direction = 𝑔 downwards.  

Vertical velocity in time 𝑇 = 𝑢 sin 𝛼 − 𝑔𝑇 

∴  𝑢 sin𝛼 − 𝑔𝑇 = 0  or    𝑇 = 𝑢 sin𝛼 /𝑔                                        ….. (3) 

Equating (1) and (3), we have  

2𝑢 sin(𝛼 − 𝛽)

𝑔 cos𝛽
=
𝑢 sin 𝛼

𝑔
 

or   2 sin(𝛼 − 𝛽) =  sin 𝛼 cos𝛽 

i.e.  2  sin𝛼 cos𝛽 − cos𝛼 sin 𝛽 = sin 𝛼 cos𝛽. 

i.e.   sin𝛼 cos𝛽 = 2 cos𝛼 sin𝛽  (or )   tan𝛼 = 2 tan𝛽. 

Check Your Progress 

1. Define angle of projection 

2. Define velocity of projection 

3. Describe trajectory and range 

4. What is meant by the time of flight of a projectile 
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10.8 ANSWERS TO CHECK YOUR PROGRESS 

QUESTIONS 
1. The angle of projection is the angle that the direction in which the particle is 

initially projected makes with the horizontal plane through the point of 

projection. 

2. The velocity of projection is the velocity with which the particle is projected. 

3. The trajectory is the path which the particle describes. 

4. The range on a plane through the point of projection is the distance between 

the point of projection and the point where the trajectory meets that plane. 

5. The time of flight is the interval of time that elapses from the instant of 

projection till the instant when the particle again meets the horizontal plane 

through the point of projection. 

10.9 SUMMARY 
1) The terms are classified as follows: 

 The angle of projection is the angle that the direction in which the particle 

is initially projected makes with the horizontal plane through the point of 

projection. 

 The velocity of projection is the velocity with which the particle is 

projected. 

 The trajectory is the path which the particle describes. 

 The range on a plane through the point of projection is the distance between 

the point of projection and the point where the trajectory meets that plane. 

 The time of flight is the interval of time that elapses from the instant of 

projection till the instant when the particle again meets the horizontal plane 

through the point of projection. 

2) The Greatest height attained by a projectile is  =  
𝑢2 sin 2 𝛼

2𝑔
. 

3) The time taken to reach the greatest height is 𝑇 =  
𝑢  sin 𝛼

𝑔
. 

 

10.10  KEYWORDS 
Projectile: A projectile is an object upon which the only force acting is gravity. 

Examples of a Projectile: 

 An object dropped from rest is a projectile (provided that the influence of air 

resistance is negligible).  

 An object that is thrown vertically upward is also a projectile (provided that the 

influence of air resistance is negligible).  

 An object which is thrown upward at an angle to the horizontal is also a 

projectile (provided that the influence of air resistance is negligible).  
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10.11  SELF ASSESSMENT QUESTIONS AND EXERCISES 
1) If the  time of flight of a shot is 𝑇 seconds over a range of 𝑥 meters, show that 

the elevation is tan−1  
𝑔𝑇2

2𝑥
   and determine the maximum height and the 

velocity of projection. 

2) Show that the greatest height reached by a projectile whose initial velocity is 𝑉 

and angle of projection is 𝛼 is unaltered if 𝑉 is increased to 𝑘𝑉 and 𝛼 is 

decreased by 𝜆 where 𝑐𝑜𝑠𝑒𝑐 𝜆 = 𝑘(cot 𝜆 − cot𝛼). 

3) A particle is projected from a point 𝑃 with a velocity of 32m. per second at an 

angle of 30∘ with the horizontal. If PQ be its horizontal range and if the angles 

of elevation from P and Q at any instant of its flight be 𝛼 and 𝛽 respectively, 

show  that tan 𝛼 + tan 𝛽 =  
1

 3
. 

4) A particle is projected from the top of a plane inclined at 60∘ to the horizontal. 

If the direction of projection is  𝑖  30∘ above the horizontal and  
 𝑖𝑖  30∘ below the horizontal , show that the range down the plane in the first 

case is double that in the second. 

5) A particle is projected with speed 𝑢 so as to strike at right angles a plane 

through the point of projection inclined at 30∘ to the horizon. Show that the 

range on this inclined plane is  
4𝑢2

7𝑔
. 

6) If 𝑈 and 𝑉 be the oblique components of the initial velocity in the vertical 

direction and in the direction of the line of greatest slope, show that the range 

on the inclined plane is 2 
𝑈𝑉

𝑔
. 

 

10.12 FURTHER READINGS 
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th 
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Edition, 
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UNIT XI IMPULSIVE FORCES 
STRUCTURE 

11.0 Introduction 

11.1 Objectives 

11.2 Impulsive Force 

11.3 Impact of two bodies 

11.4 Loss of Kinetic energy in impact 

11.5 Impact of water 

11.6 Worked examples 

11.7 Collision of elastic bodies 

11.8 Definition 

11.9 Fundamental laws of impact 

11.10 Newton‟s experimental law 

11.11 Motion of two smooth bodies perpendicular 

to the line of impact 

            11.12 Principle of conversation of momentum 

            11.13 Impact of a smooth sphere on a fixed smooth plane 

            11.14 Worked examples 

11.15 Answers to Check Your Progress Questions 

11.16 Summary 

11.17 Keywords 

11.18 Self Assessment Questions and Exercises 

11.19 Further Readings 

11.0 INTRODUCTION 
 

The term impulse of force is defined as follows: 

1) The impulse of a constant force 𝐹 during a time interval 𝑇 is defined to be the 

product 𝐹𝑇. 

Let 𝑓 be the constant acceleration produced on a particle of mass 𝑚 on 

which 𝐹 acts and 𝑢,𝑣 be respectively the velocity at the beginning and end of 

the period 𝑇. Then 𝑣 − 𝑢 = 𝑓.𝑇 and 𝐹 = 𝑚𝑓. 

Hence the impulse 𝐼 = 𝐹𝑇 = 𝑚𝑓𝑇 = 𝑚(𝑣 − 𝑢) 

               =Change of momentum produced.      

2) The impulse of a variable force 𝐹 during a time interval 𝑇 is define to be the 

time  

of the force for that interval i.e. impulse 𝐼 =  𝐹𝑑𝑡.
𝑇

0
 This is got as follows. 

During a short interval of time Δ𝑡, the force 𝐹 can be taken to be constant and 

hence elementary impulse in this interval = 𝐹Δ𝑡. Hence the impulse during the 

whole time 𝑇 for which the force 𝐹 acts is the sum of such impulse and  
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= lim
Δ𝑡→0

 𝐹.Δ𝑡

𝑇

𝑡=0

=  𝐹𝑑𝑡.

𝑇

0

 

Since 𝐹 is variable, 𝐹 = 𝑚.
𝑑𝑣

𝑑𝑡
. 

So impulse =  𝑚
𝑑𝑣

𝑑𝑡

𝑇

0
𝑑𝑡 = [𝑚𝑣]𝑡=0

𝑇 = 𝑚𝑣 −𝑚𝑢 

Where 𝑢 and 𝑣 are the velocities at the beginning and end of the 

interval and hence this is also equal to the change of momentum produced. 

Thus whether a force is a variable or constant, its impulse=change of 

momentum produced. 

11.1  OBJECTIVES 
After going through this unit, you will be able to: 

 Understand what is meant by impulsive forces 

 Discuss the Collision of elastic bodies 

 Understand the Newton‟s experimental law 

11.0  IMPULSIVE FORCE 

Definition: The change of momentum produced by a variable force 𝑃 acting on 

a body of mass 𝑚from time 𝑡 = 𝑡1 to 𝑡 = 𝑡2 is  𝑃
𝑡2

𝑡1
𝑑𝑡. Suppose 𝑃 is very large 

but the time interval 𝑡2 − 𝑡1 during which it acts is very small.  

It is quite possible that the above definition integral tends to a finite limit. Such 

a force is called an 𝑖𝑚𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑓𝑜𝑟𝑐𝑒. Thus an impulsive force is one of large 

magnitude which acts for a very short period of time and yet produces a finite 

change of momentum. 

Theoretically an impulsive force should be infinitely great and the time during 

which it acts must be very small. This, of course, is never realised in practice, but 

approximate examples are (1) the force produced by a hammer-blow (2) the 

impact of a bullet on a target. In such cases the measurement of the magnitude of 

the actual force is impracticable but the change in momentum produced may be 

easily measured. Thus an impulsive force is measured by its impulse i.e. the 

change of momentum it produces.  

Since an impulsive force acts only for a short time on a particle, during this 

time the distance travelled by a particle having a finite velocity is negligible. Also 

suppose a body is acted upon by impulsive and finite forces simultaneously. Since 

the time of action of the impulsive forces is very short, during this time, the effect 

of the ordinary finite forces can be neglected. 

11.2     IMPACT OF TWO BODIES 
If two bodies 𝐴 and 𝐵 impinge on each other, then we know by Newton's 

third law that the action of 𝐴 on 𝐵 is equal and opposite to that of 𝐵 on 𝐴, during 
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the period in which they are in contact, and further these forces of action and 

reaction act along the common normal to the surfaces which are in contact. Hence 

the impulse of the force exerted by 𝐴 on 𝐵 is equal and opposite to that of the 

force exerted by 𝐵 on 𝐴. It follows that the change in momentum of 𝐴 is equal and 

opposite to the change in momentum of 𝐵, the momenta being measured along the 

common normal. Hence taken together, the total change of momenta of 𝐴 and 𝐵 is 

zero. In other words, the sum of the momenta of the bodies, measured along the 

common normal, is not altered by impact. This is called the 

𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 which is used in dealing 

with problems in which impacts or impulsive forces occur. 

11.3   LOSS OF KINETIC ENERGY IN IMPACT 
Let a mass 𝑚, moving with velocity 𝑣, strike a mass 𝑀, which is free to move in 

he direction of 𝑚′𝑠 motion. After impact, let the two move together as a single 

body with velocity 𝑉. As there is no loss of momentum due to the impact,  

    𝑚 + 𝑀 𝑉 = 𝑚𝑣                                     ………………… (1) 

The kinetic energy before impact =
1

2
𝑚𝑣2. 

The K. E. after impact     =
1

2
(𝑚 + 𝑀)𝑉2. 

=
1

2
 𝑚 + 𝑀 .

𝑚2𝑣2

(𝑚 + 𝑀)2
=

1

2
𝑚 

𝑚

𝑚 + 𝑀
 𝑣2 . 

 Since,  
𝑚

𝑚+𝑀
  is <1, the K. E. after impact is clearly less than 

1

2
𝑚𝑣2 which 

is K. E. before impact. Hence there is a loss of kinetic energy due to impact and 

hence the principle of energy must never be used in problems where impulsive 

forces occur. 

11.4  MOTION OF A SHOT AND GUN 
When a gun is fired, powder is immediately converted into a gas at a very 

high pressure and this gas in trying to expand, forces the shot forwards. An equal 

and opposite reaction is exerted on the gun. The forward momentum generated in 

the shot at the instant when it leaves the barrel is equal to the backward 

momentum generated in the gun. Thus, if m and M be the masses of the shot and 

the gun, 𝑣 being the muzzle velocity with which the shot emerges from the gun, 

the gun will recoil with a velocity 𝑉 given by 𝑀𝑉 =  𝑚𝑣. 
When the barrel of the gun is elevated, we cannot say that the momenta of 

the shot and the gun are equal and opposite. In this case, the horizontal 

momentum of the gun are equal and opposite to the horizontal momentum of the 

shot. The vertical momentum imparted to the gun will be at once destroyed by the 

impulsive pressure of the plane on which it stands. 
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11.5  IMPACT OF THE WATER ON A SURFACE 
In the case of a jet of water impinging against a fixed surface or a continuous fall 

of rain on the ground, we are dealing with a series of successive impacts or 

impulsive forces. We can calculate the amount of momentum destroyed per 

second and this will give us the average force on the surface. 

11.6  WORKED EXAMPLES 
Example 1. A 100 gm. Cricket ball moving horizontally at 24m/sec was hit 

straight back with a speed of 15 m/sec. If the contact lasted 
1

20
 second, find the 

average force exerted by the bat. 

 Let 𝐹 dynes be the average force exerted by the bat on the ball and 𝐼 be its 

impulse. 

𝐼 = Change of momentum produced. 

= 100[24−  −15 = 3900] units 

We know that 𝐼 = 𝐹𝑡 

                                                   ∴ 𝐹 =
𝐼

𝑡
=

3900
1

20

=78000 dynes 

 

Example 2. A jet of water leaves a nozzle of 3cm. diameter at a speed of 2m/sec. 

and impinges normally on a plane inelastic wall so that the velocity of the water is 

destroyed on reaching the wall. Calculate in gm. Weight the thrust on the wall. 

 Area of cross section of the nozzle=𝜋  
3

2
 

2

= 7.07 𝑐𝑚2. 

As water issues forthwith a velocity of 200 𝑐𝑚/𝑠𝑒𝑐, a column of length 200 𝑐𝑚. 
is discharged every second. 

∴ Volume of water discharged per second = 7.07 × 200 = 1414𝑐𝑚3 . 
 Since density of water = 1 𝑔𝑚/𝑐𝑚3, mass of water discharged per 

sec.= 1414𝑔𝑚𝑠. and its velocity is 200 𝑐𝑚/𝑠𝑒𝑐 which is reduced to zero after 

striking the wall. 

∴ The momentum destroyed per sec. 

= 1414 × 200 = 282800 𝑢𝑛𝑖𝑡𝑠 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒) 

∴ Thrust on the wall = 282800 𝑑𝑦𝑛𝑒𝑠 

=
282800

981
𝑜𝑟 288.2 𝑔𝑚𝑠 𝑤𝑡. 

 

Example 3. 8 centimeters of rain fall in a certain district in 24 hours. Assuming 

that the drops fall freely from a height of 109 meters, find the pressure on the 

ground per square kilometer of the district. 

 The velocity of rain on striking the ground 

=  2𝑔 × 109 =  2 × 981 × 109 

=  2 × 9 × 109 × 109                     

= 327 2 𝑐𝑚. 𝑠𝑒𝑐.                              
Volume of rain that falls on a sq. cm in 24 hours 

= 12 × 8 = 8𝑐𝑐                                 
∴ Mass of rain that falls on a sq. cm. in one sec. 
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8 × 1 ×
1

24 × 60 × 60
=

1

10800
𝑔𝑚𝑠. 

∴ Momentum destroyed per sec. due to reaction of the ground on the rain drops 

=
1

10800
327 2 𝑢𝑛𝑖𝑡𝑠. 

 The impulsive pressure on the ground is equal to the number of units of 

momentum destroyed per sec. 

∴ Pressure on the ground per sq. cm. 
327 2

10800
 dynes. 

Pressure per sq. km 
327 2

10800
× 1010  dynes. 

Pressure per sq. km=
327 2×1010

10800 ×981
=

 2×108

324
 𝑔𝑚𝑠.𝑤𝑡. 

 

Example 4. A shot of mass 𝑚 penetrates a thickness 𝑡 of a fixed plate of mass 𝑀. 

If 𝑀 were free to move and the resistance supposed to be uniform, show that the 

thickness penetrated is 
𝑀𝑡

𝑀+𝑚
. 

Let 𝑢 denote the initial velocity of the shot and 𝐹 the force of resistance of 

the plate to the shot which is equal and opposite to that on the plate by the shot. 

Let 𝑓 be the retardation due to the resistance. In the first case, when the plate is 

fixed, the velocity 𝑢 of the shot is reduced to 𝑂 by retardation fin a distance 𝑡. 

∴ 0 = 𝑢2 − 2𝑓𝑡 or 𝑓 =
𝑢2

2𝑡
 

∴ 𝐹 = 𝑚𝑓 =
𝑚𝑢2

2𝑡
                                     …………………….(1) 

In the second case when the plate is free to move, as the shot penetrates 

the plate, the velocity of the shot diminishes due to the resisting force 𝐹 and the 

velocity of the plate increases from zero due to the equal and opposite reaction 

action on it. The penetration will last as long as the velocity of the shot gun is 

greater than the velocity of the plate and it will stop when both the plate and the 

shot acquire a common velocity 𝑣 (say). Let 𝑥 be the distance moved by the plate 

up to this instant and 𝑦 the thickness penetrated by the shot into the plate. Then 

𝑥 + 𝑦  is the distance traversed by the shot in space. 

By the principle of conservation of momentum for the shot and plate 

considered as a compound as a compound body, we have 

    𝑀 + 𝑚 𝑣 = 𝑚𝑢                           …………………… (2) 

The acceleration due to 𝐹 on the plate of mass 𝑀 =
𝐹

𝑀
=

𝑚𝑢2

2𝑡𝑀
 using (1). 

Due to this acceleration, the velocity of the plate increases from 0 to 𝑣 in a 

distance 𝑥. 

 

 
y 

u 
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∴ 𝑣2 =
2𝑚𝑢2

2𝑡𝑀
𝑥 =

𝑚𝑢2

𝑡𝑀
 𝑥 or 𝑥 =

𝑣2𝑡𝑀

𝑚𝑢2   …………… .… . . (3)  

Considering the motion of the shot in space, its velocity decreases from 𝑢 

to 𝑣 in a distance 𝑥 + 𝑦 due to the retardation 𝑓.∴ 𝑣2 = 𝑢2 − 2𝑓.  𝑥 + 𝑦 𝑜𝑟 𝑥 +

𝑦 =
𝑢2−𝑣2

2𝑓
=

𝑢2−𝑣2

2 
𝑢2

2𝑡
 

=

                                                                          
𝑡(𝑢2−𝑣2)

𝑢2    ………………… 4  

(4)-(3) gives 𝑦 =
𝑡(𝑢2−𝑣2)

𝑢2 −
𝑣2𝑡𝑀

𝑚𝑢2  

= 𝑡 −
𝑣2𝑡

𝑢2
−
𝑣2𝑡𝑀

𝑢2𝑚
= 𝑡 −

𝑣2𝑡

𝑚𝑢4
(𝑚 + 𝑀) 

                                = 𝑡 −
𝑡

𝑚𝑢2 (𝑚 + 𝑀)  
𝑚𝑢

𝑚+𝑀
 

2

 substituting for 𝑣 from 

(2) 

                                = 𝑡 −
𝑡𝑚

𝑚+𝑀
=

𝑀𝑡

𝑚+𝑀
 and this is the thickness penetrated. 

 

Example 5. A gun of mass 𝑀 fires a shell of mass 𝑚, the elevation of the gun 

being 𝛼. If the gun can recoil freely in the horizontal direction, show that the 

angle 𝜃 which the path of the shell initially makes with the horizontal is given by 

the equation 𝑡𝑎𝑛 𝜃 =  1 +
𝑚

𝑀
 𝑡𝑎𝑛𝛼. 

 Further assuming that the whole energy of the explosion is transferred to 

the shell and the gun, show that the muzzle energy of the shell is less than what it 

would be if the gun were fixed, in the ratio 𝑀:𝑀 + 𝑚𝑐𝑜𝑠2 𝜃. 

 Let 𝐴𝐵 represents the barrel of the gun. As the shot leaves the barrel, the 

gun is moving backwards. Let 𝑢 be this backward velocity of the gun. Let 𝑣 be the 

velocity of the shot relative to the gun. This velocity will be in the direction of the 

barrel 𝐴𝐵.  

Let 𝑉 be the actual velocity of the shot at an angle 𝜃 to the horizontal as 

shown in the figure. We know that 𝑉 is the resultant of 𝑣 and 𝑢. 

 
 

Resolving 𝑉 horizontally and vertically we have 

                                    

𝑉 cos 𝜃 = 𝑣 cos𝛼 − 𝑢         ……………… (1)𝑎𝑛𝑑    𝑉 sin 𝜃 =
𝑣 sin 𝛼                ……………… (2) 

𝜃 𝛼 

A 

u 

B 

V 

v 
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Dividing (2) by (1), tan𝜃 =
𝑣 sin 𝛼

𝑣 cos 𝛼−𝑢
.      ……………… (3) 

 Also the horizontal forward momentum of the shot is = the horizontal 

backward momentum of the gun 𝑖. 𝑒.   𝑚𝑉 cos 𝜃 = 𝑀𝑢           ……………… (4) 

𝑖. 𝑒.𝑚 𝑣 cos𝛼 − 𝑢 = 𝑀𝑢 using (1) 

𝑚𝑣 cos𝛼 = (𝑚 + 𝑀)𝑢 or 𝑣 =
(𝑚+𝑀)𝑢

𝑚 cos 𝛼
               ……………… (5) 

Putting this value of 𝑣 from (5) in (3), we have 

 

tan 𝜃 =

(𝑚 + 𝑀)𝑢
𝑚 cos𝛼 sin𝛼

(𝑚 + 𝑀)𝑢
𝑚 cos𝛼 cos𝛼 − 𝑢

=
 𝑚 + 𝑀 sin𝛼

 𝑚 + 𝑀 cos𝛼 − 𝑚 cos𝛼
 

 

=  
 𝑚 + 𝑀 sin𝛼

𝑀 cos𝛼
=  

𝑚 + 𝑀

𝑀
 tan𝛼 =  

𝑚

𝑀
+ 1 tan 𝛼. 

Energy of explosion = energy of shot + energy of gun 

=
1

2
𝑚𝑉2 +

1

2
𝑀𝑢2 . 

If the gun had been fixed, all the energy of explosion would have been transferred 

to the shot. 

∴ Muzzle energy of the shot when the gun is fixed =
1

2
𝑚𝑉2. 

Required ratio =
1

2
𝑚𝑉2

1

2
𝑚𝑉2+

1

2
𝑚𝑢2

=
𝑚𝑉2

𝑚𝑉2+𝑀𝑢2. 

 

=  
𝑚.  

𝑀2𝑢2

𝑚2 cos2 𝜃
 

𝑚.  
𝑀2𝑢2

𝑚2 cos2 𝜃
 + 𝑀𝑢2

 𝑠𝑢𝑏𝑠𝑡𝑢𝑡𝑖𝑛𝑔 𝑓𝑜𝑟 𝑉 𝑓𝑟𝑜𝑚 (4) 

 

=  
𝑚𝑀2𝑢2

𝑚𝑀2𝑢2 + 𝑀𝑚2𝑢2 cos2 𝜃
=

𝑀

𝑀 + 𝑚 cos2 𝜃
. 

 

Example 6. A mass 𝑚 after falling freely through a distance ′𝑎′ begins to raise a 

mass 𝑀 greater than itself and connected with it by means of an inextensible 

string passing over a fixed pulley. Show that 𝑀 will have returned to its original 

position at the end of time 
2𝑚

𝑀−𝑚
 

2𝑎

𝑔
. Find also what fraction of the kinetic energy 

of 𝑚 is destroyed at the instant when 𝑀 is jerked into motion. 

 Velocity of 𝑚 when it has fallen through a distance „a‟ =   2𝑔𝑎 = 𝑢  𝑠𝑎𝑦 . 

Now the string becomes tight and there is a jerk in the string. This jerk is in the 

nature of an impulsive force, being a very great force acting for a short time. As a 

result of this impulsive action, the system acquires a common velocity 𝑣 and then 

finite motion begins. 𝑀 rises upwards with this velocity. 
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By the principle of conservation of momentum, 

                                 𝑀 + 𝑚 𝑣 = 𝑚𝑢 = 𝑚 2𝑔𝑎                                                 

……………… (1) 

Let 𝑓 be the common acceleration of the system. 

We know that 𝑓 =
(𝑀−𝑚)𝑔

𝑀+𝑚
. 

This acceleration will be action on 𝑀 downwards. 𝑀 has a velocity 𝑣 upwards. 

 So it will rise to a certain height from its first position for a time 𝑡 given by 

0 = 𝑣 − 𝑓𝑡. 

𝑖. 𝑒. 𝑡 =
𝑣

𝑓
=
𝑣(𝑀 + 𝑚)

(𝑀 −𝑚)𝑔
=

𝑚 2𝑎𝑔

(𝑀 −𝑚)𝑔
 𝑢𝑠𝑖𝑛𝑔 (1) 

Subsequently 𝑀 will trace its path and reach its previous position after a further 

interval of time 𝑡. 
∴ Total time taken by 𝑀 to reach its original position 

= 2𝑡 =
2𝑚 2𝑎𝑔

(𝑀−𝑚)𝑔
=

2𝑚

𝑀 −𝑚
 

2𝑎

𝑔
. 

K. E. of the System before the jerk =
1

2
𝑚𝑢2 = 𝑚𝑎𝑔. 

K. E. of the system after the jerk  

=
1

2
 𝑀 + 𝑚 𝑣2 =

1

2
 𝑀 + 𝑚 .

𝑚2𝑢2

(𝑀 + 𝑚)2
=

𝑚2𝑎𝑔

𝑀 + 𝑚
. 

Hence loss of K. E. = 𝑚𝑎𝑔 −
𝑚2𝑎𝑔

𝑀+𝑚
=

𝑚𝑀𝑎𝑔

𝑀+𝑚
. 

∴ Fraction of the K. E. destroyed 
𝑚𝑀𝑎𝑔

𝑚 + 𝑀
÷ 𝑚𝑎𝑔 =

𝑀

𝑚 + 𝑀
. 

11.7   COLLISION OF ELASTIC BODIES 
        A solid body has a definite shape. When a force is applied at any point of it 

tending to change its shape, in general, all solids which we meet with in nature 

yields slightly and get more or less deformed near the point. Immediately, internal 

forces come into play tending to restore the body to its original form and as soon as 

the disturbing force is removed, the body regains its original shape. The internal 

force which acts, when a body tends to recover its original shape after a 

f 

v 

M 

f 

v 

m 
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 deformation or compression is called the force of restitution. Also, the property 

which causes a solid body to recover its shape is called elasticity. If a body does 

not tend to recover its shape, it will cause no force of restitution and such a body is 

said to be inelastic. 

 Suppose a ball is dropped from any height  upon a hard floor. It strikes 

the floor with a velocity 𝑢 =  2𝑔 and makes an impact. Soon it rebounds and 

moves vertically upwards with a velocity 𝑣. The height 1 to which it rebounds is 

given by 1 =
𝑣2

2𝑔
 i.e. 𝑣 =  2𝑔1. Generally we find that 1 < . So 𝑣 < 𝑢 As 

soon as the ball strikes the floor, the impulsive action of the floor rapidly stops the 

downward velocity of the ball and at the same time causes a temporary 

compression near the point of contact. Due to the elastic property of the solid, the 

ball tends to regain its original form quickly. It presses the floor and receives an 

equal and opposite impulsive reaction from it and with a new upward velocity, it 

rebounds. 

 Now, bodies made of various materials are elastic in different degrees. If balls if different materials (like iron, glass, lead etc) are dropped from the same height  upon a floor or if the same ball is dropped upon floor of different constitution 

(like wooden floor, marble floor etc), it will be found that the heights to which 

they rebound after striking the floor will be different. In all these cases, the 

velocity of the ball on reaching the floor is the same, as it is dropped from the 

same height. But the velocity of the ball after impact is not the same in each case, 

as the height to which it rebounds is different. Thus due to the elastic property of 

solid bodies, a change in velocity takes place when the strike each other. 

 If 𝑣 = 𝑢, the velocity with which the ball leaves the floor is the same as 

that with which it strikes it. In this case, the ball is said to be perfectly elastic. If 

𝑣 = 0, the ball does not rebound at all. It is said to be inelastic. More generally, 

when a body completely regains its shape after a collision, it is said to be 

𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑙𝑦 𝑒𝑙𝑎𝑠𝑡𝑖𝑐. If it does not come to its original shape, it is said to be 

perfectly inelastic. These two case of bodies are only ideal. 

 In this chapter, we shall study some simple cases of the impact of elastic 

bodies. We shall consider the cases of particles in collision with particles, or 

planes and of spheres in collision with planes or spheres. In all cases, we consider 

the impinging bodies to be smooth, so that the only mutual action they can have 

on each other will be along the common normal at the point where they touch. 

11.8  DEFINITIONS 

Two bodies are said to impinge directly when the direction of motion of 

each before impact is along the common normal at the point where they touch.   

  

They are said to impinge obliquely, if the direction of motion of either 

body or both is not along the common normal at the point where they touch.  

 

The common normal at the point of contact is called the line of impact. 

Thus, in the case of two spheres, the line of impact is the line joining their centers. 
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11.9  FUNDAMENTAL LAWS OF IMPACT 
The following three general principles hold good when two smooth 

moving bodies make an impact. 

11.10 NEWTON’S EXPERIMENTAL LAW 
Newton studied the rebound of elastic bodies experimentally the result of 

his experiments is embodied in the following law. 

  

When two bodies impinge directly, their relative velocity after impact 

bears a constant ratio to their relative velocity before impact and is in the 

opposite direction. If two bodies impinge obliquely, their relative velocity resolved 

along their common normal after impact bears a constant ratio to their relative 

velocity before impact, resolved in the same direction, and is of opposite sign. 

 

The constant ratio depends on the material of which the bodies are made 

and is independent of their masses. It is generally denoted by 𝑒, and is called the 

coefficient (or modulus) of elasticity (or restitution or resilience). 

 

This law can be put symbolically as follows: If u1, u2 are the components 

of the velocities of two impinging bodies along their common normal before 

impact and v1 , v2 their component velocities along the same line after impact, all 

components being measured in the same direction and e is the coefficient of 

restitution, then 
𝑣2 − 𝑣1

𝑢2 − 𝑢1
= −𝑒. 

The quantity 𝑒, which is a positive number, is never greater than unity. It lies 

between 0 and 1. Its value differs widely for different bodies; for two glass balls it 

is about 0.9; for ivory 0.8; while for lead it is 0.2. For two balls, one of lead and 

the other of iron, its value is about 0.13. Thus, when one or both the bodies are 

altered, e becomes different but so long as both the bodies remain the same, e is 

constant. Bodies for which e = 0 are said to be inelastic while for perfectly elastic 

bodies, e = 1. Probably, there are no bodies in nature coming strictly under either 

of these headings. Newton's law is purely empirical and is true only approximately, 

like many experimental laws.  

11.11  MOTION OF TWO SMOOTH BODIES PERPENDICULAR 

  TO THE LINE OF IMPACT 

When two smooth bodies impinge, the only force het them at the time of impact is 

the mutual reaction which acts the common normal. There is no force acting along 

the common tangent and hence there is no change of velocity in that direction. 

Hence the velocity of either body resolved in a direction perpendicular to the line 

of impact is not altered by impact. 

11.12  PRINCIPLE OF CONSERVATION OF MOMENTUM 
We can apply the law of conservation of momentum in the case of two impinging 

bodies. The algebraic sum of the momenta of the impinging bodies after impact is 

equal to the algebraic sum their momenta before impact, all momenta being 

measured along the common normal. 
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 The above three principles are sufficient to study the changes in the motion of two 

impinging elastic bodies. 

 We shall now proceed to discuss particular cases. 

 

11.13  IMPACT OF A SMOOTH SPHERE ON A FIXED  
SMOOTH PLANE 

 
A smooth sphere, or particle whose mass is 𝑚 and whose coefficient of restitution 

is 𝑒, impinges obliquely on a smooth fixed plane; to find its velocity and direction 

of motion after impact. 

 Let 𝐴𝐵 be the plane and 𝑃 the point at which the sphere strikes it. The common 

normal at 𝑃 is the vertical line at 𝑃 passing through the center of the sphere. Let it 

be PC. This is the line of impact. Let the velocity of the sphere before impact be 𝑢 

at an angle 𝛼 with 𝐶𝑃 and 𝑣 its velocity after impact at an angle 𝜃 with 𝐶𝑁 as 

shown in the figure. 

 

Since the plane and the sphere are smooth, the only force acting during impact is 

the impulsive reaction and this is along the common normal. There is no force 

parallel to the plane during impact. Hence the velocity of the sphere, resolved in a 

direction parallel to the plane is unaltered by the impact. 

  

Hence 𝑣 sin 𝜃 = 𝑢 sin 𝛼                           ……………… (1) 

By Newton‟s experimental law, the relative velocity of the sphere along the 

common normal after impact is (−𝑒) time its relative velocity along the common 

normal before impact. Hence 

𝑣 cos𝜃 − 0 = −𝑒(−𝑢 cos𝛼 − 0) 

𝑖. 𝑒. 𝑣 cos𝜃 = 𝑒 𝑢 cos𝛼                                 ……………… (2) 

 

P 

𝜃 𝛼 

W 

u 
D 

𝜀 

𝑣 
 

𝑢 sin 𝛼 
 

C 

B A 

𝑒𝑢 cos𝛼 
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Squaring (1) and (2), and adding, we have 

𝑣2 = 𝑢2 sin2 𝛼 + 𝑒2 cos2 𝛼    𝑖. 𝑒.𝑣 = 𝑢 sin2 𝛼 + 𝑒2 cos2 𝛼……………… (3) 

Dividing (2) by (1), we have cot𝜃 = 𝑒 cot𝛼  ……………… (4) 

Hence (3) and (4) give the velocity and direction of motion after impact. 

 

Corollary 1. If 𝑒 = 1, we find that from (3) 𝑣 = 𝑢 and from (4) 𝜃 = 𝛼 Hence is a 

perfectly elastic sphere impinges on a fixed smooth plane, its velocity is not 

altered by impact and the angle of reflection is equal to the angle of incidence. 

 

Corollary 2. If 𝑒 = 0, then from (2), 𝑣 cos 𝜃 = 0 and from (3), 𝑣 = 𝑢 sin 𝛼. 

Hence cos 𝜃 = 0 i.e. 𝜃 = 90𝑜 . Hence the inelastic sphere slides along the plane 

with velocity 𝑢 sin 𝛼. 

 

Corollary 3. If the impact is direct we have 𝛼 = 0. Then 𝜃 = 0 and from (3) 

𝑣 = 𝑒𝑢. Hence if an elastic sphere strikes a plane normally with velocity 𝑢, it will 

rebound in the same direction with velocity 𝑒𝑢. 

 

Corollary 4. The impulse of the pressure on the plane is equal and opposite to the 

impulse of the pressure on the sphere. The impulse 𝐼 on the sphere is measured by 

the change in momentum of the sphere along the common normal. 

𝐼 = 𝑚𝑣 cos 𝜃 −  −𝑚𝑢 cos𝛼 = 𝑚(𝑣 cos𝜃 + 𝑢 cos𝛼) 

= 𝑚 𝑒𝑢 cos𝛼 + 𝑢 cos𝛼 = 𝑚𝑢 cos𝛼 (1 + 𝑒) 

 

Corollary 5. Loss of kinetic energy due to the impact 

=
1

2
𝑚𝑢2 −

1

2
𝑚𝑣2 =

1

2
𝑚𝑢2 −

1

2
𝑚𝑢2(sin2 𝛼 + 𝑒2 cos2 𝛼) 

           =
1

2
𝑚𝑢2 1 − sin2 𝛼 − 𝑒2 cos2 𝛼 =

1

2
𝑚𝑢2(cos2 𝛼 − 𝑒2 cos2 𝛼) 

=
1

2
 1 − 𝑒2 𝑚𝑢2 cos2 𝛼 

If the sphere is perfectly elastic 𝑒 = 1 and the loss of kinetic energy is zero. 

11.14 WORKED EXAMPLES 
Example 1. Smooth circular table is surrounded by a smooth rim whose 

interior surface is vertical. Show that a ball projected along the table from a point 

𝐴 on the rim in a direction making an angle 𝛼 with the radius through 𝐴 will 

return to the point of projection after two impacts if 𝑡𝑎𝑛 𝛼 =
𝑒

(
3
2

)

 1+𝑒+𝑒2
.  Prove also 

that when the ball returns to the points of projection, its velocity is to its original 

velocity as   3 2  : 1. 

 

 Let the ball starting from 𝐴 return to it after two reflection at 𝐵 and 𝐶. At 

𝐵, the point of the first impact, the common normal is the radius 𝑂𝐵 and at 𝐶, the 

point of the second impact,  the common normal is 𝑂𝐶. 

Let ∠𝑂𝐵𝐶 = 𝛽 and ∠𝑂𝐶𝐴 = 𝛾. Then  ∠𝑂𝐶𝐵 = 𝛽 and ∠𝑂𝐴𝐶 = 𝛾. 
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 Considering the impact at 𝐵, and applying equation (4) of  previous 

section, we have cot𝛽 = 𝑒 cot𝛼. i.e. tan 𝛽 =
1

𝑒
……………… (1) 

Similarly, considering the impact at 𝐶, cot 𝛾 = 𝑒 cot𝛽. 

tan 𝛾 =
1

𝑒
tan 𝛽 =

1

𝑒2 tan 𝛼.                               ……………… (2) 

Now, in Δ𝐴𝐵𝐶, ∠𝐴 + ∠𝐵 + ∠𝐶 = 2𝛼 + 2𝛽 + 2𝛾 = 180𝑜 . 
∴ 𝛼 + 𝛽 + 𝛾 = 90𝑜  or 𝛼 = 90𝑜 − (𝛽 + 𝛾). 

 

∴ tan𝛼 = tan 90𝑜 − (𝛽 + 𝛾       ) = cot(𝛽 + 𝛾) 

=
1

tan(𝛽 + 𝛾)
=

1 − tan𝛽 tan 𝛾

tan 𝛽 + tan 𝛾
. 

i.e. tan𝛼  tan 𝛽 + tan 𝛾 = 1 − tan 𝛽 tan 𝛾. 

i.e. tan2 𝛼  
1

𝑒
+

1

𝑒2 = 1 −
𝑡𝑎𝑛 2𝛼

𝑒3 . 

tan2 𝛼  
1

𝑒
+

1

𝑒2 +
1

𝑒3 = 1 or tan2 𝛼  
1+𝑒2+𝑒

𝑒3  = 1. 

𝑖. 𝑒.   tan2 𝛼 =
𝑒3

1+𝑒2+𝑒…
         ……………… (3) 

 

Or           tan𝛼 =
𝑒

(
3
2

)

 1+𝑒2+𝑒
. 

Let 𝑢 be the velocity of projection from 𝐴, 𝑣 be the velocity of the ball after 

the first impact at 𝐵 and 𝑤 be the velocity after the second impact at 𝐶. 

Applying equation (3) of section 11.13, we have 

𝑣2 = 𝑢2(sin2 𝛼 + 𝑒2 cos2 𝛼) and 𝑤2 = 𝑣2(sin2 𝛽 + 𝑒2 cos2 𝛽)  

𝑤2 = 𝑢2(sin2 𝛼 + 𝑒2 cos2 𝛼)(sin2 𝛽 + 𝑒2 cos2 𝛽) 

= 𝑢2 cos2 𝛼  tan2 𝛼 + 𝑒2 . cos2 𝛽 (tan2 𝛽 + 𝑒2) 

=
𝑢2 tan2 𝛼 + 𝑒2  tan2 𝛽 + 𝑒2 

 tan2 𝛼 + 1  tan2 𝛽 + 1 
. 

=
𝑢2 tan2 𝛼 + 𝑒2  

1
𝑒2 tan2 𝛼 + 𝑒2 

 tan2 𝛼 + 1  
1
𝑒2 tan2 𝛼 + 1 

.              𝑢𝑠𝑖𝑛𝑔(1) 

=
𝑢2 tan2 𝛼 + 𝑒2  tan2 𝛼 + 𝑒4 

 tan2 𝛼 + 1  tan2 𝛼 + 𝑒2 
=
𝑢2 tan2 𝛼 + 𝑒4 

 tan2 𝛼 + 1 
 

                           =
𝑢2  

𝑒4

1 + 𝑒 + 𝑒2 + 𝑒4 

 1 +
𝑒4

1 + 𝑒 + 𝑒2 
   𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 (3) 

=
𝑢2 𝑒3 + 𝑒4 + 𝑒5 + 𝑒6 

(1 + 𝑒 + 𝑒2 + 𝑒3)
= 𝑢2𝑒3 

∴ 𝑤 = 𝑢. 𝑒(
3

2
)
 or 𝑤: 𝑢 = 𝑒(

3

2
): 1. 

 

Example 2. A particle falls from a height  upon a fixed horizontal plane: if 𝑒 be 

the coefficient of restitution, show that the whole distance described before the 
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particle has finished rebounding is   
1+𝑒2

1−𝑒2 . Show also that the whole time taken is 

1+𝑒

1−𝑒
 

2

𝑔
. 

 

Let 𝑢 the velocity of the particle  on first hitting the plane. Then 𝑢2 = 2𝑔. After 

the first impact, the particle rebounds with a velocity 𝑒𝑢 and ascends a certain 

height, retraces its path and makes a second impact with the plane with velocity 

𝑒2𝑢 and the process is repeated a number of times. The velocities after the third, 

fourth etc. impacts are 𝑒3𝑢, 𝑒4𝑢  etc. 

 The height ascended after the first impact with velocity 𝑒𝑢=
(𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 )2

2𝑔
=

𝑒2𝑢2

2𝑔
.  

The height ascended after the second impact with velocity 𝑒2𝑢 = 𝑒4𝑢2/2𝑔 and so 

on. 

∴ Total distance travelled before the particle stops rebounding 

 + 2 
𝑒2𝑢2

2𝑔
+
𝑒2𝑢2

2𝑔
+
𝑒2𝑢2

2𝑔
+ ⋯  

                                 =  +
2. 𝑒2𝑢2

2𝑔
 1 + 𝑒2 + 𝑒4 + ⋯𝑡𝑜 ∞  

                   =  +
𝑒2𝑢2

𝑔
.

1

1 − 𝑒2
=  +

𝑒22𝑔


.

1

1 − 𝑒2
 

=  +  
2𝑒2

1 − 𝑒2
 = .  

1 + 𝑒2

1 − 𝑒2
  

Consider the motion before the first impact, we have the initial velocity= 0, 

acceleration= 𝑔, final velocity = 𝑢 and so if 𝑡 is the time taken, 𝑢 = 0 + 𝑔𝑡. 

∴ 𝑡 =
𝑢

𝑔
=
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝑔
. 

Time interval between the first and second impact is  

= 2 × time taken for gravity to reduce the velocity 𝑒𝑢 to 0. 

= 2. velocity /𝑔 = 2𝑒𝑢/𝑔. 
Similarly time interval between the second and third impacts= 2𝑒2𝑢/𝑔 and so on. 

So total time taken =
𝑢

𝑔
+ 2  

𝑒𝑢

𝑔
+

𝑒2𝑢

𝑔
+ ⋯∞  

=  
𝑢

𝑔
+

2𝑒𝑢

𝑔
 𝑒 + 𝑒2 + ⋯∞  

             =
𝑢

𝑔
+

2𝑒𝑢

𝑔
.

1

1 − 𝑒
=
𝑢

𝑔
 1 +

2𝑒

1 − 𝑒
 . 

=
𝑢

𝑔
 

1 + 𝑒

1 − 𝑒
 =

 2𝑔

𝑔
 

1 + 𝑒

1 − 𝑒
 =  

1 + 𝑒

1 − 𝑒
  

2

𝑔
. 

Example 3. A ball is thrown from a point on a smooth horizontal ground with a 

speed 𝑉 at an angle 𝛼 to the horizon. If 𝑒 be the coefficient of restitution, show that 

the total time for which the ball rebounds on the ground is 
2𝑉 sin 𝛼

𝑔(1−𝑒)
 and the 

horizontal distance travelled by it is 
𝑉2 sin 2𝛼

𝑔(1−𝑒)
. 



 

148 
 

 

Impulsive Forces 

 

Notes 
 

Self Instructional Material 

 

 The initial horizontal and vertical components of the velocity are 𝑉 cos𝛼 and 

𝑉 sin 𝛼. The particle describes a parabola and strikes the horizontal velocity is not 

affected while the vertical component is reversed as 𝑒𝑉 sin𝛼. Similarly the vertical 

components of the velocity after the second, third etc., impacts are 

𝑒2𝑉 sin𝛼 , 𝑒3𝑉 sin𝛼 etc. 

Let 𝑡1 , 𝑡2 , 𝑡3 etc be the times for the successive trajectories. 

𝑡1 =
2𝑉 sin 𝛼

𝑔
, 𝑡2 =

2𝑒𝑉 sin 𝛼

𝑔
, 𝑡3 =

2𝑒2𝑉 sin 𝛼

𝑔
 and so on.  

So total time that elapses before the particle stops rebounding  

=
2𝑉 sin 𝛼

𝑔
+

2𝑒𝑉 sin𝛼

𝑔
+

2𝑒2𝑉 sin 𝛼

𝑔
+ ⋯ 

                   =
2𝑉 sin𝛼

𝑔
 1 + 𝑒 + 𝑒2 + ⋯𝑡𝑜 ∞ =

2𝑉 sin 𝛼

𝑔
.

1

1 − 𝑒
 

 =
2𝑉 sin 𝛼

𝑔(1−𝑒)
. 

 

Examples 4. An elastic sphere is projected from a given point 𝑂 with given 

velocity 𝑉 at an inclination 𝛼 to the horizontal and after hitting a smooth vertical 

wall at a distance 𝑑 from 𝑂 returns to 𝑂. Prove that 𝑑 =
𝑣2 𝑠𝑖𝑛 2𝛼

𝑔

𝑒

1+𝑒
 where 𝑒 is 

the coefficients of restitution. 

Let the particle strike the wall at 𝐴. From 𝑂 to 𝐴, the particle describes a 

parabola under gravity with constant horizontal velocity 𝑣 cos𝛼. Let 𝑡1 be the 

time for this, 

∴  𝑣 cos𝛼 . 𝑡1 = 𝑑                                    ………… (1) 

At the impact at 𝐴, there is no force parallel to the wall. The component 𝑣 cos𝛼 

being perpendicular to the wall is reversed as 𝑒𝑣 cos𝛼. The particle will describe 

another parabola with constant horizontal velocity 𝑒𝑣 cos𝛼 and return to 𝑂. Let 𝑡2 

be the time for this return journey. Then 𝑒𝑣 cos𝛼 . 𝑡2 = 𝑑              ………… (2) 

𝑒𝑣 cos𝛼 

A 

𝑣 cos𝛼 

B d O 

𝛼 

𝑣 

𝑣 cos𝛼 
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But the vertical motion is not affected by impact and throughout the 

interval 𝑡1 + 𝑡2, it is subject to retardation by 𝑔 only. As the particle returns to 

𝑂, vertical distance described in time 𝑡1 + 𝑡2 = 0. 

∴ 0 = 𝑣 sin𝛼  𝑡1 + 𝑡2 −
1

2
𝑔(𝑡1 + 𝑡2)2   or 

𝑡1 + 𝑡2 =
2𝑣 sin 𝛼

𝑔
 

Substituting for 𝑡1𝑡2 from (1) and (2) in (3), we have  
𝑑

𝑣 cos 𝛼
+

𝑑

𝑒𝑣 cos 𝛼
=

2𝑣 sin 𝛼

𝑔
 i.e., 

𝑑(𝑒+1)

𝑒𝑣 cos 𝛼
=

2𝑣 sin 𝛼

𝑔
 

Or 

𝑑 =
2𝑒𝑣2 sin 𝛼 cos𝛼

𝑔(1 + 𝑒)
=
𝑣2 sin 2𝛼

𝑔
.

𝑒

1 + 𝑒
 

 

Check your Progress 

1. Define impulse of force. 

2. Describe the impact of water on a surface 

3. Define the force of restitution 

4. What is meant by elasticity and inelasticity 

 

 11.15 ANSWERS TO CHECK YOUR PROGRESS QUESTIONS 
1. The change of momentum produced by a variable force 𝑃 acting on a body of 

mass 𝑚from time 𝑡 = 𝑡1 to 𝑡 = 𝑡2 is  𝑃
𝑡2

𝑡1
𝑑𝑡. Suppose 𝑃 is very large but the 

time interval 𝑡2 − 𝑡1 during which it acts is very small. It is quite possible that 

the above definition integral tends to a finite limit. Such a force is called an 

𝒊𝒎𝒑𝒖𝒍𝒔𝒊𝒗𝒆 𝒇𝒐𝒓𝒄𝒆. 

2. In the case of a jet of water impinging against a fixed surface or a continuous 

fall of rain on the ground, we are dealing with a series of successive impacts or 

impulsive forces. We can calculate the amount of momentum destroyed per 

second and this will give us the average force on the surface. 

3. The internal force which acts, when a body tends to recover its original shape 

after a deformation or compression is called the force of restitution.   

4. The property which causes a solid body to recover its shape is called elasticity. 

If a body does not tend to recover its shape, it will cause no force of restitution 

and such a body is said to be inelastic. 

11.16 SUMMARY 

 Impulsive force: The change of momentum produced by a variable force 𝑃 

acting on a body of mass 𝑚from time 𝑡 = 𝑡1 to 𝑡 = 𝑡2 is  𝑃
𝑡2

𝑡1
𝑑𝑡. Suppose 𝑃 is 

very large but the time interval 𝑡2 − 𝑡1 during which it acts is very small. It is 

quite possible that the above definition integral tends to a finite limit. Such a 

force is called an 𝑖𝑚𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑓𝑜𝑟𝑐𝑒. 
 Principle of conservation of linear momentum: The sum of the momenta of 

the bodies, measured along the common normal, is not altered by impact. This is 
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called the 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 which is used 

in dealing with problems in which impacts or impulsive forces occur. 

 Force of restitution: The internal force which acts, when a body tends to 

recover its original shape after a deformation or compression is called the force 

of restitution 

 Elasticity: The property which causes a solid body to recover its shape is called 

elasticity. 

 Inelasticity: . If a body does not tend to recover its shape, it will cause no force 

of restitution and such a body is said to be inelastic. 

 Perfectly elastic and Perfectly inelastic: If 𝑣 = 𝑢, the velocity with which the 

ball leaves the floor is the same as that with which it strikes it. In this case, the 

ball is said to be perfectly elastic. If 𝑣 = 0, the ball does not rebound at all. It is 

said to be inelastic. More generally, when a body completely regains its shape 

after a collision, it is said to be 𝑝𝑒𝑟𝑓𝑒𝑐𝑡𝑙𝑦 𝑒𝑙𝑎𝑠𝑡𝑖𝑐. If it does not come to its 

original shape, it is said to be perfectly inelastic. 

 Impinge directly: Two bodies are said to impinge directly when the direction of 

motion of each before impact is along the common normal at the point where 

they touch.   

 Impinge obliquely: They are said to impinge obliquely, if the direction of 

motion of either body or both is not along the common normal at the point 

where they touch.  

 Line of impact: The common normal at the point of contact is called the line of 

impact. Thus, in the case of two spheres, the line of impact is the line joining 

their centers. 

Newton’s Experimental law: When two bodies impinge directly, their relative 

velocity after impact bears a constant ratio to their relative velocity before 

impact and is in the opposite direction. If two bodies impinge obliquely, their 

relative velocity resolved along their common normal after impact bears a 

constant ratio to their relative velocity before impact, resolved in the same 

direction, and is of opposite sign. 

Principle of conservation of momentum: The algebraic sum of the momenta 

of the impinging bodies after impact is equal to the algebraic sum their momenta 

before impact, all momenta being measured along the common normal. 

11.7 KEYWORDS 
 Impulsive force: The change of momentum produced by a variable force 𝑃 

acting on a body of mass 𝑚from time 𝑡 = 𝑡1 to 𝑡 = 𝑡2 is  𝑃
𝑡2

𝑡1
𝑑𝑡. Suppose 𝑃 is 

very large but the time interval 𝑡2 − 𝑡1 during which it acts is very small. It is 

quite possible that the above definition integral tends to a finite limit. Such a 

force is called an 𝑖𝑚𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑓𝑜𝑟𝑐𝑒. 
 Principle of conservation of linear momentum: The sum of the momenta of 

the bodies, measured along the common normal, is not altered by impact. This is 

called the 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑖𝑛𝑒𝑎𝑟 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 which is used 

in dealing with problems in which impacts or impulsive forces occur. 
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 Newton’s Experimental law: When two bodies impinge directly, their relative 

velocity after impact bears a constant ratio to their relative velocity before 

impact and is in the opposite direction. If two bodies impinge obliquely, their 

relative velocity resolved along their common normal after impact bears a 

constant ratio to their relative velocity before impact, resolved in the same 

direction, and is of opposite sign. 

 Elasticity: The property which causes a solid body to recover its shape is 

called elasticity. 

11.18 SELF ASSESSMENT QUESTIONS AND EXERCISES 
1) A shell explodes and breaks into two fragments of masses 𝑚1 ,𝑚2 moving with 

initial velocities 𝑢1 and 𝑢2 respectively in opposite directions. Show that there 

is a gain in kinetic energy of magnitude 
1

2
  
𝑚1  𝑚2

𝑚1+𝑚2
 𝑢1 + 𝑢2 

2. 

2) A body of mass 𝑚1 + 𝑚2 is split into two parts of masses 𝑚1 and 𝑚2 by an 

internal explosion which generates a K.E. Show that, if after explosion, the 

parts move in the same line as before, their relative speed is  
2 𝐸 𝑚1+𝑚2  

𝑚1𝑚2
. 

3) A gun of mass M gm firing a shot of mass  m gm. recoils with velocity 𝑣 m. 

per second. Show that , if the mass of the shot is increased to 2m, the kinetic 

energy of the explosion remaining the same, the velocity of recoil becomes 

𝑣 
 2 𝑚+𝑚  

𝑀+2𝑚
 . 

4) A gun of mass 𝑀 fires a shell of mass 𝑚 horizontally and the energy of 

explosion is such as sufficient to project the shell vertically to a height . Show 

that the velocity of recoil is  
2 𝑚2𝑔

𝑀(𝑀+𝑚 )
 

1

2
. 

5) A particle falls from a height  in time 𝑡upon a fixed horizontal plane. Prove 

that it rebounds and reaches a maximum height 𝑒2 in time 𝑒𝑡. 
6) A heavy ball drops from the ceiling of a room and after rebounding twice from 

the floor reaches a height equal to one half that of the ceiling. Show that the 

coefficient of restitution is  
1

2
 

1

4
. 

7) A ball is projected with a velocity of 24  3 ft per second at an elevation of 

45∘. It strikes a wall at a distance of 18 ft. and returns to the point of projection. 

Show that 𝑒 =
1

2
. 

8) A ball falls vertically for 2 seconds and hits a plane inclined at 30∘ to the 

horizon. If the coefficient of restitution be 
3

4
, show that the time that elapses 

befpre it again hits the plane is 3 seconds. 

9) A ball is thrown from a point on a smooth horizontal ground with a speed 𝑉 at 

an angle 𝛼 to the horizon. If 𝑒 be the coefficient of restitution, show that the 

total time for which the ball rebounds on the ground is 
2𝑉 sin 𝛼

𝑔(1−𝑒)
 and the 

horizontal distance travelled by it is 
𝑉2 sin 2𝛼

𝑔(1−𝑒)
. 
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UNIT-XII      IMPACT OF SPHERE 
STRUCTURE 

12.0 Introduction  

12.1 Objectives  

12.2 Direct Impact of Two Smooth Spheres 

12.3 Loss of Kinetic Energy due to Direct Impact of Two Smooth    Spheres 

12.4 Worked examples 

12.5 Oblique Impact of Two Smooth Spheres 

12.6 Loss of Kinetic Energy due to Oblique Impact of Two Smooth    Spheres  

12.7 Check your Progress 

12.8 Answers to Check Your Progress Questions 

12.9 Summary 

12.10 Keywords 

12.11 Self Assessment Questions and Exercises 

12.12 Further Readings 

12.0  INTRODUCTION 
 

Impact of two bodies: 

                               If two bodies A and B impinge on each other, then we know 

by Newton‟s third law that the action of A and B is equal and opposite to that of B 

on A, during the period in which they are in contact, and further these forces of 

action and reaction act along the common normal to the surfaces. Which are in 

contact? Hence the impulse of the force exerted by A on B is equal and opposite 

to that of the force exerted by B on A. it follows that the change in momentum of 

A is equal  and opposite to the change in momentum of B, the moments being 

measured along the common normal. The sum of the moments of the bodies; 

measured along the common normal is altered by impact. This is called the 

principle of conservation of linear momentum. 

12.1 OBJECTIVES 
  After going through this unit, you will be able to: 

 To find the velocity of the direct impact spheres 

 To find the amount  of loss K.E due to direct Impact 

 To find the velocity of the Oblique Impact of two spheres 

12.2            IMPACT OF TWO SMOOTH SPHERES: 
                         A smooth sphere of mass m1 impinges directly with velocity u1 on 

another smooth sphere of mass m2 moving in the same direction with velocity u2; 

if the coefficient of restitution is e, to find their velocities after the impact: 



 

154 
 

 

Impact of Sphere 

 

Notes 
 

Self Instructional Material 

 

     AB is the line of impact, i.e the common normal. Due to the impact 

there is no tangential force and hence, for either sphere the velocity along the 

tangent is not altered by impact. But before impact, the spheres had been moving 

only along the line AB (as this is a case of direct impact). Hence for either sphere 

tangential velocity after impact = its tangent velocity before impact = 0. So, after 

impact, the spheres will move only in the direction AB. let their velocities be v1 

and v2.   

 

 

 

 

By Newton‟s experimental law, the relative velocity of m2 with respect  m1 after 

impact   is   (-e) times the corresponding relative velocity before impact. 

                        v2 − v1 = −e u2 − u1     ……………. (1) 

By the principle of conservation of momentum, the total momentum along the 

common normal after impact is equal to the total momentum in the same direction 

before impact. 

                 m1v1 + m2v2 = m1u1 + m2u2  …………………                    (2) 

(2) – (1) × m2 gives                                      

 v1 m1 + m2 = m1u1 + m2u2 + em2 u2 − u1  

                     = m2u2 1 + e + (m1 − em2)u1 

                v1 =  
m2u2 1+e +(m1−em2 )u1

m1 +m2
     …….…………….            (3) 

(1)× m1 + (2) gives 

 v2 m1 + m2 = −em1 u2 − u1 + m1u1 + m2u2 

                      = m1u1 1 + e + (m2 − em1)u2 

                      = m1u1 1 + e + (m2 − em1)u2 

Therefore,  

 v2 =  
m1 u1 1+e +(m2−em1)u2

m1 +m2
     ……….…………….                         (4) 

Equations (3) and (4) give the velocities of the spheres after impact 

U1 

 

m1 

A V2 B 

u2 

m2 

V1 
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Note:  If one sphere says m2 moving originally in a direction opposite to that of 

m1, the sign of u2 will be negative. Also it is important that the directions of v1 

and v2 must be specified clearly. Usually we take the positive direction as from 

left to right and then assume that both v1 and v2 are in this direction. If either of 

them is actually in the opposite direction, the value obtained for it will turn to be 

negative 

In writing equation (1) corresponding to Newton‟s law, the velocities must be 

subtracted in the same order on both sides. In all problems it is better to draw a 

diagram showing clearly the positive direction and the directions of the velocities 

of the bodies 

Corollary 1. If the two spheres are perfectly elastic and of equal mass, e = 1 and 

m1= m2. Then, from equations (3) and (4), we have 

     v1 =
m1 u2 .2+0

2m1
= u2 and v2 =

m1 u1 .2+0

2m1
= u1i.e. If two equal perfectly 

elastic spheres impinge directly, they interchange their velocities. 

Corollary 2.  The impulse of the blow on the spheres A of mass m1= change of 

momentum of A = m1 v1 − u1 .     

       =  m1  
m2 u2 1+e + m1−em2 u1

m1+m2
− u1  

      = m1  
m2u2 1+e +m1 u1−em2 u1−m1 u1−m2 u1

m1 +m2
  

      =  m1  
m2 u2 1+e −m2 u1(1+e)

m1 +m2
  

      =
m1 m2 1+e (u2−u1)

m1 +m2
 

The impulsive blow on m2 will be equal and opposite to the impulsive 

blow on m1. 

12.3 LOSS OF KINETIC ENERGY DUE TO DIRECT IMPACT  

OF TWO SMOOTH SPHERES: 
                         Two spheres of given masses with given velocities impinge 

directly; to show that there is a loss of kinetic energy and to find the amount: 

Let m1m2 be the masses of the spheres, u1 and u2 , v1 and v2 be their velocities 

before and after impact and e the coefficient of restitution. 

By the Newton‟s law,  

v2 − v1 = −e u2 − u1     …………….. (1) 

By the principle of conservation of momentum, 

  m1v1 + m2v2 = m1u1 + m2u2  ….. (2) 
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Total kinetic energy before  

Impact = 
1

2
 m1u2

1 +
1

2
 m2u2

2 

Total kinetic energy after 

 Impact = 
1

2
 m1v2

1 +
1

2
 m2v2

2 

Change in K.E = initial K.E – final K.E 

  =  
1

2
 m1u2

1 +
1

2
 m2u2

2 −
1

2
 m1v2

1 −
1

2
 m2v2

2   

   = 
1

2
 m1 u1 − v1  u1 + v1 +

1

2
 m2(u2 − v2)(u2 + v2)  

   =
1

2
 m1 u1 − v1  u1 + v1 +

1

2
 m1  v1 − u1  u2 + v2                                                        

   =
1

2
 m1 u1 − v1  u1 + v1 −  u2 + v2   

   =  
1

2
 m1 u1 − v1  u1 − u2 −  v2 − v1   

   =
1

2
 m1 u1 − v1 [u1 − u2 + e u2 − u1  Using(1)                                                                             

   =
1

2
 m1 u1 − v1 (u1 − u2)(1 − e) ……...  (3) 

   Now, from (2)           

 m1 u1 − v1 = m2 v2 − u2  

  
u1−v1

m2
=

v2−u2

m1
 And each = 

u1−v1 +v2−u2

m1 +m2
 

 i.e. each = 
(u1−u2)+(v2−v1)

m1 +m2
  

=    
(u1−u2)+e(u2−u1)

m1 +m2
      Using (1) 

=   
(u1−u2)(1+e)

m1 +m2
 

u1 − v1 =
m2(u1 − u2)(1 + e)

m1 + m2
 

And substituting this in (3), 

Change in K.E. 

         = 
1

2
 
m1 m2(u1−u2)(1+e)(u1−u2)(1−e)

m1 +m2
 

         = 
1

2
 
m1 m2 (u1−u2 

2(1−e2)

 m1+m2 
     ……. (4) 

As e<1,the expression (4) is always positive and so the initial kinetic energy of 

the system is greater than final kinetic energy. So there is a actual loss of total 

kinetic energy by a collision. Only in the case of, when e = 1, i.e. only when the 
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bodies are perfectly elastic, the expression (4) becomes zero and hence the total 

kinetic energy is unchanged by impact. 

 

Example 1: A ball of mass 13 gm. moving with a velocity of 13 cm. per sec. 

impinges directly on another of mass 24 gm., moving at 2cm/sec in the direction. 

If e = ½, find the velocities after impact. Also calculate the loss in kinetic energy. 

Solution: 

 

 positive 

 negative 

 

Let v1 and v2 cm/sec be the velocities of the masses 8gm and 24 gm respectively 

after impact. 

 By the Newton‟s law,  

                             24v2+8v1=24 ×2+13×13 = 128 

                                    i.e. 3v2+ v1 = 16                   ……….(2) 

Solving (1) and (2), we get 

                            v1=1cm, /sec., v2= 5cm. /sec 

The K.E. before impact  = ½ .13.10
2
+ ½ .24. 2

2 

                                                                   
= 448 dynes 

The K.E. after impact    = ½ .13.1
2
+ ½ .24. 5

2 

                                                                   
= 304 dynes 

Loss in K.E. after impact = 144 dynes. 

Example2: If the 24 gm. Mass in the previous question be moving in a direction 

opposite to that of the 8gm.mass, find the velocities after impact. 

 

 

 

12.4        WORKED EXAMPLES 

10 
24 8 

2 

A B V2 

10 
24 8 

2 

A B V1 V2 
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Let v1 and v2 cm/sec be the velocities of the 8gm and 24 gm mass respectively 

after impact. 

By the Newton‟s law, 

               v2 − v1 = −
1

2
 −2 − 13 = 6 

By the conservation of momentum 

24v2+8v1= 24 × (-2) +13×13 = 32 

 i.e. 3v2+ v1 = 4           

Solving (1) and (2),  

v1= −
1

2
 cm/sec., v2= 

5

2
 cm/sec 

The negative sign of v1 shoes that the direction of motion of the 8gm. Mass is 

reversed ,as we had taken the direction left to right as positive and assumed v1 to 

be in this direction. Since v2 is positive, the 24gm. Ball moves from left to right 

after impact, so that its direction of motion is also reversed. 

Example 3:   Two equal spheres A and B, of masses 2 gm. and 30gm. 

respectively lie on a smooth floor, so that their line of centers is perpendicular to 

fixed vertical wall. A being nearer to the wall. A is projected toward B. show that 

if the coefficient of restitution between the two spheres and that between the first 

sphere and the wall is 3/5 , then A will be reduced to rest after its second impact 

with B.  

 

 

 

 

 

Consider the impact between A and B. taking AB as the positive direction, let the 

velocity of A before impact be u. B is at rest. After theimpact, let the velocities of 

A and B be v1 and v2 respectively in the same direction. By the Newton‟s law 

                     v2 − v1 = −e 0 − u =
3

5
u 

By the conservation of momentum, along AB, 

𝑢

2
 

 
A B u 

V2 

30 2 
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                      30v2+2v1= 30×0+ 2 × u   

                       i.e. 15v2+ v1 = u       

Solving (1) and (2), 

                              v1= −
𝑢

2
   v2= 

u

13
    

 Since v1 is negative, the velocity of A after the impact towards the wall and = 

u/2 while the velocity of B is u/13 away from the wall.  

Now A strikes the wall with a velocity u/2.  After this impact will be reversed 

as e. 

  (U/2)= 3/5.U/2=3U/13 

With this velocity, A moves in the direction AB, away from the wall and 

strikes B a second time. Let the velocities of A and B be v3 and v4 after this 

impact, in the direction AB. For convenience, the velocity distribution can be 

noted as follows. 

                              A (2)                                B (30) 

 before impact    
3𝑢

13
                                        

𝑢

13
 

 after impact      𝑣3                                        𝑣4 

By Newton‟s law, 

 v4 –v3 =  −𝑒  
𝑢

13
−

3𝑢

13
 =

3𝑢

25
       ………         (3) 

By conservation of momentum,  

30v4+2v3 = = 30.
𝑢

13
+  2.

3𝑢

13
=

18𝑢

5
   

i.e. 15 v4 + v3 = 
9𝑢

5
          ……………..             (4) 

Multiplying (3) by 15, we have 

15 v4 + 15 v3 = 
9𝑢

5
      …………….                    (5) 

Subtracting (5) from (4), 16 v3 = 0 or v3 = 0. 

i.e. A is reduced to rest after its second impact with B. 

 

Example 4: Two equal marble balls A, B lie in a horizontal circular groove at 

the opposite ends of a diameter; A is projected along the groove and after  
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time t, impinges on B; show that a second impact takes place  after a further 

interval  
2𝑡

𝑒
. 

Let the ball A move with velocity u. as there is no tangential force acting on A 

at any point of its path, its speed remains the same throughout. Hence it 

impinges on B with a velocity u. 

Since the time from A to B is = t,  

We get  ut = πr or u =
πr

t
  …………………..                 (1) 

Let v and v‟
 
be the velocities of A and B respectively after impact.  

Then, by the principle of momentum, 

mv + mv′ = mu  (m being the mass of each ball)  

    i.e. v + v
‟ 
 = u       ……………..  (2)                                

Also by the Newton‟s law,  v − v′ = −e(u − 0) 

i.e. v − v′ = −eu   ………                              (3) 

Solving (2) and (3),  

We get v =
u

2
  1 − e ;  v′ =

u

2
 (1 + e) 

Clearly v
‟
 is greater than v. hence B will move in advance of A. let it strike A 

again t1 secs.  After the first impact 

The velocity of B relative to A, 

After the first impact = 𝑣′ − 𝑣 = 𝑒𝑢 

A B 
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U1 
M1 

𝜃1 

𝛼1 

A 

V1 

U2 

m2 

𝜃2 B 

𝛼2 

V2 

From (3), before striking again, B should cover a distance equal length to the 

circumference relative to A. 

Therefore  v′ − v . t1 = 2πr 

  i.e. eu. t1 = 2πr 

𝑡1 =
2𝜋𝑟

𝑒𝑢
=

2𝜋𝑟

𝑒

𝑒 . 
𝜋𝑟

𝑡
 
     Using (1) 

      =
2𝑡

𝑒
 

 

The second impact occurs 
2𝑡

𝑒
 secs. After the first. 

A smooth sphere of mass m1 impinges obliquely with velocity u1 on another 

smooth sphere of mass m2 moving with velocity u2. If the directions of motion 

before impact makes angle 𝛼1𝑎𝑛𝑑 𝛼2 respectively with the line joining the centers 

of the sphere and if the coefficient of restitution be e, to find the velocities and 

directions of motion after impact. 

 

 

 

 

Let the velocities of the spheres after impact be v1 and v2 in directions inclined at 

𝜃1𝑎𝑛𝑑 𝜃2 respectively to the line of centers. Since the spheres are smooth,  

There is no force perpendicular to the line of centers and therefore, for each 

sphere the velocities in the tangential direction are not affected by impact  

V1 sin𝜃1 = u1 sin 𝛼1       …………………………                   (1) 

V2 sin 𝜃2 = u2 sin 𝛼2       ………………………                      (2) 

By Newton‟s law concerning velocities along the common normal AB, 

V2 cos 𝜃2 = 𝑣1 cos 𝜃1  = −𝑒(u2cosα2 − u1cosα1)  …………….. (3) 

By the principle of conservation of momentum along AB  

 m1v2cosθ2 + m1v1cosθ1 = m2u2cosα2 + m1u1cosα1……….  (4) 

 4 −  3 × m2  gives  

12.5    OBLIQUE IMPACT OF TWO SMOOTH SPHERES 
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  v1cosθ1.  m1 + m2 = m2u2cosα2 + m1u1cosα1 +  em2(u2cosα2 − u1cosα1) 

i.e. v1cosθ1 =
u1cos α1 m1−em2 +m2 u2cos α2(1+e)

m1 +m2
    ………     (5) 

 4 +  3 × 𝑚1 gives  

v2cosθ2 =
u2cos α2 m2−em1 +m1u1cos α1 (1+e)

m1+m2
  …………       (6) 

From (1) and (5) , by squaring and adding ,we obtain v1
2
 and by division ,we have 

tan 𝜃1. 

Similarly from (2) and (6) we get  v2
2
 and tan 𝜃2. Hence the motion after 

impact is completely determined. 

Corollary:  If the two spheres are perfectly elastic and of equal mass, then e = 

1  

And 𝑚1 = 𝑚2  

Then from equations (5) and (6) we have  

    v1cosθ1 =
0+m1 u2cos α2 .2

2m1
= u2cosα2 

And    v2cosθ2 =
0+m1 u1cos α2 .2

2m1
= u1cosα1 

Hence if two equal perfectly elastic spheres impinge, they interchange their 

velocities in the direction of the line of centers. 

Corollary: 2 

Usually, in most important problems on oblique impact, one of the spheres is at 

rest. Suppose m2 is at rest i.e. u2 = 0. 

From equation (2) 

 v2 sin 𝜃2 = 0. i.e. 𝜃2 = 0. 

Hence m2 moves along AB after impact. This is seen independently ,since the 

only force on m2 during impact is along the lines of centers 

Corollary: 3 

The impulse of the blow on the sphere A of mass m1 = change of momentum of A 

along the common normal  

  = m1(v1cosθ1 − u1cosα1) 

=  𝑚1[
𝑢1𝑐𝑜𝑠𝛼1 𝑚1−𝑒𝑚2 +𝑚2𝑢2𝑐𝑜𝑠𝛼2 (1+𝑒)

𝑚1+𝑚2
− 𝑢1𝑐𝑜𝑠𝛼1] 
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=  m1[
m1u1cosα1 − em2u1cosα1 + m2u2cosα2 + em2u2cosα2 − m1u1cosα1 − m2u1cosα1

m1 + m2

] 

=
m1  m2 u2cos α2 1+e −m2 u1cos α1 1+e  

m1+m2
  

=
m1 m2 1+e 

m1 +m2
 u2cosα2 − u1cosα1   

The impulsive blow on m2 will be equal and opposite to the impulsive blow on m1. 

 

  Two spheres of masses m1 and m2 moving along with velocities u1 and u2 at 

angles 𝛼1𝑎𝑛𝑑 𝛼2 with their collision. To find an expression for the loss of kinetic 

energy. 

The velocities perpendicular to the line of centers are not altered by impact. Hence 

the loss of kinetic energy in the case of oblique impact is therefore the same as in 

the case of direct impact , the quantities  by u1 and u2 and  𝑢1𝑐𝑜𝑠𝛼1 and  u2cosα2 

respectively .therefore the loss is ½ (m1m2)/(m1+m2) –  1 − 𝑒2 (u1cosα1 −
u2cosα2)2 

We shall now derive this independently. 

Let v1 and v2 be the velocities of the spheres after impact, in directions 

inclined at angles   𝜃1and 𝜃2respectively to the line of centers. The tangential 

velocity of each sphere is not altered by impact. 

  V1 sin𝜃1 = u1 sin 𝛼1               ………………………… (1) And  

   V2 sin 𝜃2 = u2 sin 𝛼2       ………………………………… (2) 

By Newton‟s law 

V2 cos 𝜃2 = 𝑣1 cos 𝜃1  = −𝑒(𝑢2𝑐𝑜𝑠𝛼2 − 𝑢1𝑐𝑜𝑠𝛼1)     

…………………………….. (3) 

By the principle of conservation of momentum 

        m1v2cosθ2 + m1v1cosθ1 = m2u2cosα2 + m1u1cosα1  

i.e. m1 u1cosα1 − v1cosθ1 = m2 v2cosθ2 −
u2cosα2    …….......................… (4) 

Change in K.E.   =  
1

2
 m1u2

1 +
1

2
 m2u2

2 −
1

2
 m1v2

1 −
1

2
 m2v2

2  

12.6   LOSS OF KINETIC ENERGY DUE TO OBLIQUE 

           IMPACT OF  TWO SMOOTH SPHERES: 
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 =
1

2
 𝑚1𝑢1

2
 (𝑐𝑜𝑠2𝛼1 + 𝑠𝑖𝑛2𝛼1) +

1

2
 𝑚2𝑢2

2
(𝑐𝑜𝑠2𝛼2 + 𝑠𝑖𝑛2𝛼2) 

    −
1

2
 𝑚1𝑣1

2
 ( 𝑐𝑜𝑠2𝜃1 + 𝑠𝑖𝑛2𝜃1) −  

1

2
 𝑚2𝑣2

2
(𝑐𝑜𝑠2𝜃2 + 𝑠𝑖𝑛2𝜃2)  

=  
1

2
 𝑚1𝑢1

2
 𝑐𝑜𝑠2𝛼1+

1

2
 𝑚2𝑢2

2𝑐𝑜𝑠2𝛼2 

                                                 −
1

2
 𝑚1𝑣1

2
 𝑐𝑜𝑠2𝜃1 −

1

2
 𝑚2𝑣2

2𝑐𝑜𝑠2𝜃2  

                                                                     Using (1) and (2) 

=  
1

2
 𝑚1(𝑢1

2𝑐𝑜𝑠2𝛼1 − 𝑣1
2
 𝑐𝑜𝑠2𝜃1)+ 

1

2
 𝑚2(𝑢2

2𝑐𝑜𝑠2𝛼2 − 𝑣2
2𝑐𝑜𝑠2𝜃2) 

=
1

2
 𝑚1 u1cosα1 + v1cosθ1  u1cosα1 − v1cosθ1  

                                     +
1

2
 m2(u2cosα2 + v2cosθ2)(u2c𝑜𝑠𝛼2 − 𝑣2𝑐𝑜𝑠𝜃2) 

= 
1

2
 𝑚1 u1cosα1 + v1cosθ1  𝑢1𝑐𝑜𝑠𝛼1 − 𝑣1𝑐𝑜𝑠𝜃1  

                                      −
1

2
  u2cosα2 + v2cosθ2 . m1 u1cosα1 − v1cosθ1  

                                                                                                            Using (4) 

= 
1

2
 m1 u1cosα1 − v1cosθ1 (u1cosα1 + v1cosθ1 

                                                                                  −u2cosα2 − v2cosθ2)  

=  
1

2
 m1 u1cosα1 − v1cosθ1  

                                      u1cosα1 − u2cosα2 + e u2cosα2 − u1cosα1                         

                                                                                               using (3) 

= 
1

2
 m1 u1cosα1 − v1cosθ1 (u1cosα1 − u2cosα2)(1 − e)   …….. (5) 

u1cosα1 − v1cosθ1

m2
=

v2cosθ2 − u2cosα2

m1
 

And each =  
u1cosα1−v1cos θ1+v2cos θ2−u2cos α2

m1+m2
 

=
(u1cosα1 − u2cosα2) + (v2cosθ2 − v1cosθ1)

m1 + m2
 

=
u1cos α1−u2cos α2−e(u2cos α2−u1cos α1)

m1 +m2
               Using (3) 
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=  
 u1cos α1−u2cos α2  1+e 

m1 +m2
 

Therefore  u1cosα1 − v1cosθ1 =
m2 1+e 

m1+m2
(u1cosα1 − u2cosα2) 

Substituting in (5) 

Change in K.E. = 
1

2

m2 1+e 

m1+m2
 u1cosα1 − u2cosα2  

                                                                    ×  u1cosα1 − u2cosα2 (1 − e) 

     =
1

2

m2 1+e 

m1+m2
 1 − e2 (u1cosα1 − u2cosα2)2

 

If the spheres are imperfectly elastic, e = 1 and the loss of kinetic energy is 

Zero.  

 1. Define the Principle of Conservation of Momentum? 

2. What is meant by direct Impact? 

3. What is meant by Oblique Impact? 

4. Define line of Impact? 

12.8 ANSWERS TO CHECK YOUR PROGRESS QUESTIONS 
 

1. The impulse of the force exerted by A on B is equal and opposite to that 

of the force exerted by B on A. it follows that the change in momentum of 

A is equal  and opposite to the change in momentum of B, the moments 

being measured along the common normal. The sum of the moments of the 

bodies; measured along the common normal is altered by impact. This is 

called the principle of conservation of linear momentum. 

2. When two bodies, moving along the same line, collide the impact is 

called direct impact. 

3. When two bodies, moving along different lines, collide the impact is 

called oblique impact. 

4. The instant when two bodies just collide, the line joining their centers is 

called the line of impact. 

 

 

 

 

 

12.7          CHECK YOUR PROGRESS 
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- The total momentum along the common normal after impact is equal to the total 

momentum in the same direction before impact. 

- The sum of the moments of the bodies; measured along the common normal is 

altered by impact. This is called the principle of conservation of linear momentum 

- When two bodies, moving along the same line, collide the impact is called direct 

impact. 

 

- When two bodies, moving along different lines, collide the impact is called 

oblique impact. 

 

- The instant when two bodies just collide, the line joining their centers is called 

the line of impact. 

 

12.10  KEYWORDS 

Direct Impact – Oblique Impact- Loss of Kinetic Energy- Smooth Spheres 

12.11 SELF ASSESSMENT QUESTIONS AND EXERCISES 
 

1. A sphere of mass m moving on a horizontal plane with velocity v impinges 

obliquely on a sphere of mass m
1
 at rest on the same plane. If e = 1 , and m = m

1
 , 

prove that the directions of motion after impact are at right angles. 

2. A smooth sphere impinges on another one at rest. After collision, their 

directions of motion are at right angles. Show that if they assumed perfectly 

elastic their masses must be equal. 

3. If two equal perfectly elastic spheres impinge obliquely, prove that they 

interchange their velocities in the directions of the line of centers. 

3. Two equal perfectly elastic balls impinge; if their directions of motion before 

impact be at right angles, show that their directions of motion after impact are also 

at right angles. 

4. A sphere of mass m collides with a sphere of mass m1 at rest, both spheres 

being smooth. After collision, their paths are at right angles. If e is the coefficient 

of restitution, prove that m = em1. 

 

12.12   FURTHER READINGS 
Dr. M.K. Venkataraman, Statics, Agasthiar publications, 17

th
 Edition, 2014. 

Dr.M.K.Venkataraman, Dynamics, Agasthiar publications, 13
th
 Edition, 2009 

P.Duraipandiyan, Laxmi Duraipandiyan & Muthamizh Jayapragasm, Mechanics, 

S.Chand & Co.Pvt.Ltd, 2014.

12.9  SUMMARY 
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UNIT XIII SIMPLE HARMONIC  

MOTION 
STRUCTURE 

13.0 Introduction 

13.1 Objectives 

13.2 Velocity and Acceleration in Polar Coordinates  

13.3 Equation of Motion  

13.4 Note on Equiangular Spiral 

13.5 Worked Example 

13.6 Check your Progress 

13.7 Answers to Check Your Progress Questions 

13.8 Summary 

13. 9Keywords 

13.10 Self Assessment Questions and Exercises 

13.11 Further Readings 

13.0 INTRODUCTION 

                        In the previous chapters, we have considered some particular 

cases of motion of a particle in two dimensions. To fix the position of a 

particle in a plane, we require two coordinates and to study the motion of the 

particle, we require its components velocities and accelerations in two 

mutually perpendicular directions. We had previously used Cartesian 

coordinates. In this chapter we shall use polar coordinates. 

  
After going through this unit, you will be able to: 

 To learn about the meaning of  central forces 

 To learn about the path and accelerations of central forces 

 To learn about the motion of a particle by using polar coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

13.1       OBJECTIVES 
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13.2 VELOCITY AND ACCELERATION IN 

 POLAR COORDINATES 
  

               

 

 Let P be the position of a moving particle at time t. taking O as the pole and 

OX as the initial line, let the polar coordinates of P be (r,𝜃). OP = r is the 

position vector of P. hence the velocity of P =
𝑑

𝑑𝑡
(𝑟). Since r is the modulus 

and amplitude𝜃,
𝑑

𝑑𝑡
(𝑟). Will have components r along OP and r𝜃  to OP. 

Hence the velocity vector v at P components 𝑟  along OP in the direction in 

which r increases and r𝜃  perpendicular to OP in the direction in which  𝜃 

increases. These are respectively called the radial and transverse components 

of v. 

         

Magnitude  

        

   Direction  

               

        Sense 

1. 

 

 

2. 

 

 

3. 

 

 

4. 

Radial 

component 

of velocity 

Transverse  

component of 

velocity 

Radial 

component of  

acceleration 

 

Transverse  

component of  

acceleration 

 

𝑟  

𝑟𝜃  

𝑑

𝑑𝑡
 (𝑟2𝜃  ) 

 

 

 

𝑟 −  𝑟𝜃 2 

 

 

Along the radius 

 vector 

 

Perpendicular  

to the  

Radius vector 

 

Along the  

radius vector. 

 

Perpendicular 

to the 

Radius vector 

 

In the direction in  

which r increases. 

In the direction in  

which the 𝜃 increases. 

 

 

In the direction in  

which the r increases. 

 

In the direction in 

which the 𝜃 increases. 
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The acceleration vector at p is the derivative of the velocity vector v. 

the radial component of v is a vector with modulus r and amplitude 𝜃. Hence 

the derivative of 𝑟  will have components 

𝑑

𝑑𝑡
 𝑟  = 𝑟  along OP in the direction in which r increases and  

              𝑟 
𝑑

𝑑𝑡
 𝜃 = 𝑟 𝜃 

 
 Perpendicular to OP I the direction in which 𝜃 increases. 

The transverse component of v is vector with modulus r𝜃  and amplitude𝜑 =
𝜋

2
+

𝜃. 

Hence the derivative of r𝜃  will have components 

(i) 
𝑑

𝑑𝑡
  r𝜃  = 𝑟𝜃  + 𝜃 𝑟  along the line of r𝜃  i.e. in the direction perpendicular to OP 

and  

     (ii) 𝑟𝜃  
𝑑

𝑑𝑡
  
𝜋

2
+ 𝜃 = 𝑟𝜃 2  

 in the direction perpendicular to the line of  r𝜃  in the 

direction PO. 

Hence the totals of the components of acceleration are 𝑟 −  𝑟𝜃 2  
  in the direction 

OP and 𝑟𝜃 +2𝑟 𝜃  in the perpendicular direction. 

Now 
1

𝑟

𝑑

𝑑𝑡
 (𝑟2𝜃  )=

1

𝑟
  𝑟2𝜃 + 2𝑟𝑟 𝜃  =  𝑟𝜃 +2𝑟 𝜃  

Therefore acceleration perpendicular to OP is also = 
1

𝑟

𝑑

𝑑𝑡
 (𝑟2𝜃  ) 

 

 

 

 

 

 

 

Corollary :(1) suppose the particle P is describing a circle of radius „a‟ . the r = a 

throughout the motion 

Hence 𝑟  = 0 , and the radial acceleration  = 𝑟 −  𝑟𝜃 2  
   

                                                              = −𝑎𝜃 2 

o 

r 

𝜃 

900
 

 ∅ 

𝑟  

𝑟𝜃  
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The acceleration perpendicular to OP =
1

𝑟

𝑑

𝑑𝑡
  𝑟2𝜃    = 

1

𝑎
 𝑎2 𝜃   = 𝑎𝜃  

Hence for a particle describing a circle of radius a, the acceleration at any point P 

has the component at  𝜃  along the tangent at P and 𝜃 2   along the radius to the 

centre. 

(2) the magnitude of the resultant  velocity of P, 

       𝑟 2 +  𝑟𝜃  
2
 =   𝑟 2 + 𝑟2𝜃 2  

And the magnitude of the resultant acceleration =   𝑟 −  𝑟𝜃 2  
2

+  
1

𝑟

𝑑

𝑑𝑡
  𝑟2𝜃    

2

   

13.3 EQUATION OF  MOTION IN POLAR  

COORDINATES 
 If R and S are the components of the external force acting on a 

particle of mass m in the radial and transverse directions, we have the equations   

 

 R = m (𝑟 −  𝑟𝜃 2 
)

 
  ……………………………………………   (1) 

              S = m.  
1

𝑟

𝑑

𝑑𝑡
  𝑟2𝜃   ……………………………………………… 

(2) 

If R and S are known functions of the coordinate‟s r, 𝜃 and the time t, the 

differential equations (1) and (2) can be solved to find r and 𝜃 as functions of t 

and by eliminating t, the polar equation to the path is got. 

13.4  NOTE ON EQUIANGULAR SPIRAL 
 

 Some questions in this chapter will relate to the curve called the equiangular 

spiral. This curve has the important property that the tangent at any point P on it 

makes a constant angle with the radius vector OP. 

 

  

 

 

 

 
P 

O 
∅ 

Q 

O 
P r 

L 

𝑟 + ∆𝜃 
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Let OP (=r) and OQ (= r+∆𝑟) be two consecutive radii vectors such that  the 

inclined angle POQ = ∆𝜃 

Draw QL perpendicular to OP. 

Then OL = ( r+∆r) cos ∆𝜃 = r + ∆𝑟 approximately . 

Hence PL = OL− OP = ∆𝑟  

And LQ = ( r+ ∆𝑟) sin ∆𝜃 = (r+∆𝑟) ∆𝜃 nearly  

= r  ∆ 𝜃 to the first order of smallness  

Hence tan ∠OPL = 
𝑄𝐿

𝑃𝐿
= 𝑟

∆𝜃

∆𝑟
   

In the limit as  ∆𝑟 and ∆𝜃 both tends to 0, the point Q tends to coincide with P.  let 

𝜑 be the angle made by the tangent  at  P with OP. 

Then  𝜑 = lim𝑄→𝑃 ∠𝑄𝑃𝐿    

Hence tan 𝜑 = lim∆𝑟→0 𝑡𝑎𝑛∠𝑄𝑃𝐿 = lim
∆𝑟→0

r 
∆𝜃

∆𝑟
 = r 

𝑑𝜃

𝑑𝑟
 

i.e. tan 𝜑 =r 
𝑑𝜃

𝑑𝑟
 

This formula is an important one in dealing with curves in polar coordinates and it 

gives the angle between the radius vector and the tangent. Now for the 

equiangular spiral, at any point P on it the angle 𝜑 is constant.  

Let  𝜑 = 𝛼  then    tan 𝜑 = tan𝛼. 

i.e. r 
𝑑𝜃

𝑑𝑟
= tan 𝛼 or 

𝑑𝑟

𝑟
= 𝑐𝑜𝑡𝛼. 𝑑𝜃 

Integrating log r = 𝜃𝑐𝑜𝑡𝛼 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

i.e. r = 𝑎 𝑒𝜃𝑐𝑜𝑡𝛼  

this is the polar equation to the equiangular spiral. 
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Example: 1 the velocities of a particle along and perpendicular to a radius vector 

form a fixed origin are 𝜆r
2
 and 𝜇𝜃2

 where 𝜇 and 𝜆 are constants. Show that the 

equation to the path of the particle is 
𝜆

𝜃
 + c = 

𝜇

2𝑟2   where c is a constant. 

Show that the accelerations along and perpendicular to the radius vector are  

2𝜆2𝑟3 −
𝜇 2𝜃4

𝑟
 And 𝜇(𝜆𝑟𝜃2 +

2𝜇𝜃3

𝑟
 ) 

Radial velocity = 
𝑑𝑟

𝑑𝑡
  = 𝜆𝑟2  

Transverse velocity = r 
𝑑𝜃

𝑑𝑡
= 𝜇𝜃2   

Divided (2) by (1) , we have  

r 
𝑑𝜃

𝑑𝑟
=

𝜇𝜃2

𝜆𝑟2  

i.e. 𝜆 
𝑑𝜃

𝜃2 =  
𝜇

𝑟3 𝑑𝑟 

Integrating –
𝜆

𝜃
= −

𝜇

2𝑟2 + 𝐶 

i.e. 
𝜇

2𝑟2 =
𝜆

𝜃
+ 𝐶 

(3) Is the equation to the path 

Differentiating (1), 
𝑑2𝑟

𝑑𝑡2 = 𝜆. 2𝑟 
𝑑𝑟

𝑑𝑡
 = 2𝜆2𝑟3  using (1) 

Radial acceleration = 𝑟 −  𝑟𝜃 2  
  = 

𝑑2𝑟

𝑑𝑡2 − 𝑟  
𝑑𝜃

𝑑𝑡
 

2

 

 2𝜆2𝑟3 − 𝑟  
𝜇𝜃2

𝑟
 

2

= 2𝜆2𝑟3 −
𝜇 2𝜃4

𝑟
  Using (2) 

Transverse acceleration = 
1

𝑟

𝑑

𝑑𝑡
  𝑟2𝜃 =

1

𝑟

𝑑

𝑑𝑡
(𝑟2 𝜇𝜃2

𝑟
)  

                                          = 
1

𝑟

𝑑

𝑑𝑡
 𝜇𝑟𝜃2 =

𝜇

𝑟
 [𝑟2𝜃

𝑑𝜃

𝑑𝑡
+ 𝜃2 𝑑𝑟

𝑑𝑡
] 

                                       = 
μ

r
 2r.θ

μθ2

r
+ θ2 . λr2 = μ  

2μθ3

r
+ λrθ2 . 

Example :2 

             Show that the path of a point P which possesses two constant velocity u 

and v first of which is in a fixed direction and the second of which is 

13.5          WORKED EXAMPLE 

v 
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perpendicular to the radius OP drawn from a fixed point O, is a conic whose 

eccentricity is 
𝑢

𝑣
.  

Take O as the pole and the line OXC parallel to the given direction as then initial 

line . P has two velocities u parallel to OX and v perpendicular to OP 

Resolving the velocities along and perpendicular to OP ,we have  

    
𝑑𝑟

𝑑𝑡
= 𝑢 𝑐𝑜𝑠𝜃  ……………………………………(1) 

r
dθ

dt
 = v − u sin𝜃…………………………………(2) 

to get the equation to the path ,we have to eliminate t.  

Dividing (2) by (1) , we have  

   r
dθ

dt
=

v−usin θ

ucos θ
  

i.e. 
𝑢  𝑐𝑜𝑠  𝜃

𝑣−𝑢𝑠𝑖𝑛𝜃
 𝑑𝜃 =

𝑑𝑟

𝑟
 𝑜𝑟

𝑑 𝑢𝑠𝑖𝑛𝜃  

𝑣−𝑢𝑠𝑖𝑛𝜃
=

𝑑𝑟

𝑟
  

 Integrating  

− log 𝑣 − 𝑢 𝑠𝑖𝑛𝜃 + log𝐴 = log 𝑟 ,where log A is the constant of integration . 

i.e. log r + log (v – u sin 𝜃)= log A 

r(v – u sin𝜃)= A or 
𝐴

𝑟
  =  𝑣 − 𝑢𝑠𝑖𝑛 𝜃 

This is the form  
𝑙

𝑟
= 1 + 𝑒𝑐𝑜𝑠(𝜃 + 𝛼) 

Comparing (1) and (2)  we have 𝑙 =
𝐴

𝑣
 , 𝑒 =

𝑢

𝑣
  𝑎𝑛𝑑 𝛼 = 900

 

We know from analytical geometry that   (2) is the polar equation to conic whose 

focus is at the pole, semi- latus rectum is l, eccentricity is e and whose major axis 

makes an angle 𝛼 with the initial line. Hence (1) is a conic whose focus is at O, 

semi-latus rectum is 
𝐴

𝑣
 , eccentricity is 

𝑢

𝑣
 and whose major axis is perpendicular to 

the initial line. 

Example 3: 

A point P describes a curve with constant velocity and its angular velocity about a 

given fixed point O varies inversely as the distance from O; show that the curve is 

an equiangular spiral whose pole is O, and that the acceleration of the point is 

along the normal at P and varies inversely as OP. 
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Taking O as the pole ,let p be (r , 𝜃), 

Resultant velocity of P =   𝑟  2 + 𝑟2 𝜃  
2
 = constant (given) 

If this velocity = k , we have   

                 𝑟  2 + 𝑟2 𝜃  
2
= 𝑘2………………………………(1) 

Also angular velocity about O 𝜃 =
𝜆

𝑟
(𝑔𝑖𝑣𝑒𝑛)…………………………….(2) 

Form (1) and (2), 

 𝑟  2 + 𝑟2 𝜆2

𝑟2 =  𝑘2 

i.e.  𝑟  2 = 𝑘2 − 𝜆2 or 𝑟 =  𝑘2 − 𝜆2……………………………….(3) 

eliminate t from (2) and (3) 

𝑑𝑟

𝑑𝜃
=

𝑑𝑟

𝑑𝑡
𝑑𝜃

𝑑𝑡

 =
𝑟 

𝜃 
 = 

 𝑘2−𝜆2

𝜆
 𝑟 

i.e. 
𝑑𝑟

𝑟
=  

 𝑘2−𝜆2

𝜆
𝑑𝜃 

integrating log r = 
 𝑘2−𝜆2

𝜆
𝜃 + 𝐵 or 𝑒

 𝑘2−𝜆2

𝜆
𝜃+𝐵 = 𝑒𝐵𝑒

 𝑘2−𝜆2

𝜆
𝜃
 

putting 𝑒𝐵  = a and 
 𝑘2−𝜆2

𝜆
 = cot 𝛼 , 

the above becomes  𝑟 = 𝑎𝑒𝜃𝑐𝑜𝑡𝛼   ………………………………(4) 

hence the path is an equiangular spiral , whose pole is O. 

𝛽 

𝛼 

O T 

N 

P 
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differentiating (3) , 𝑟 = 0. 

Radial acceleration = 𝑟 −  𝑟𝜃 2  
  =−𝑟2 𝜆2

 𝑟  2 = −
𝜆2

𝑟
 

The negative sign shows that the radial acceleration at P is along PO 

Transverse acceleration = 
1

𝑟

𝑑

𝑑𝑡
  𝑟2𝜃   =

1

𝑟

𝑑

𝑑𝑡
 𝑟2 𝜆

𝑟
 =

1

𝑟
.
𝑑

𝑑𝑡
 (𝑟𝜆) 

                                           =
𝜆

𝑟
 𝑟 =

𝜆

𝑟
  𝑘2 − 𝜆2 From (3)  

Resultant acceleration of P =   −
𝜆2

𝑟
 

2

+  
𝜆

𝑟
  𝑘2 − 𝜆2 

2

 

                                                =  
𝜆4

𝑟2 +
𝜆2

𝑟2
 𝑘2 − 𝜆2 =   

𝜆2𝑘2

𝑟2 =
𝜆𝑘

𝑟
 

Thus the resultant acceleration varies inversely as r i.e. as OP. let this acceleration 

be along PN making an angle with PO. 

                         𝑡𝑎𝑛𝛽 =
𝑐𝑜𝑚𝑝𝑜𝑛𝑒 𝑛𝑡  𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟  𝑡𝑜  𝑃𝑂

𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  𝑎𝑙𝑜𝑛𝑔  𝑃𝑂
 

= 

𝜆

𝑟
 𝑘2−𝜆2

𝜆2

𝑟

=
 𝑘2−𝜆2

𝜆
  

But cot𝛼 =  
 𝑘2−𝜆2

𝜆
  from equation (4) 

Hence tan 𝛽 = cot𝛼 = tan 900 − 𝛼  

i.e. 𝛽 = 900 − 𝛼  or 𝛽 +  𝛼 = 900 

Hence angle NPT = 900 where PT is the tangent at P.  

Hence PN is the normal at P. 

 

 

13.6 CHECK YOUR PROGRESS 

1. What is meant by Radial Transverse? 

2. Write the equation of polar coordinates? 

3. Define Center of Forces? 
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13.7 ANSWERS TO CHECK YOUR PROGRESS 

 QUESTIONS 
 

1. The velocity vector v at P components 𝑟  along OP in the direction in which r 

increases and r𝜃  perpendicular to OP in the direction in which  𝜃 increases. 

These are respectively called the radial and transverse components of v. 

2. The Equation of Polar Coordinate is given by  

                           R = m (𝑟 −  𝑟𝜃 2 
)

 
  ……………………………………………   

(1) 

              S = m.  
1

𝑟

𝑑

𝑑𝑡
  𝑟2𝜃   ……………………………………………… (2) 

If R and S are known functions of the coordinate‟s r, 𝜃 and the time t 

4. A particle describes a path, acted on by an attractive force F towards a 

fixed point O. such a force is called central force and the path described by 

the particle is called a central orbit. The fixed point is known as the centre 

of the force 

. 

- To fix the position of a particle in a plane, we require two coordinates and 

to study the motion of the particle, we require its components velocities 

and accelerations in two mutually perpendicular directions. 

- The magnitude of the resultant  velocity of P, 

                                                      𝑟 2 +  𝑟𝜃  
2
 =   𝑟 2 + 𝑟2𝜃 2  

- The velocity vector v at P components 𝑟  along OP in the direction in which 

r increases and r𝜃  perpendicular to OP in the direction in which  𝜃 

increases. These are respectively called the radial and transverse 

components of v. 

- A particle describes a path, acted on by an attractive force F towards a fixed 

point O. such a force is called central force and the path described by the 

particle is called a central orbit. The fixed point is known as the centre of the 

force 

- tan 𝜑 =r 
𝑑𝜃

𝑑𝑟
 , This formula is an important one in dealing with curves in polar 

coordinates and it gives the angle between the radius vector and the tangent. 

 

13.8         SUMMARY 
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 13.9     KEYWORDS 

Velocity and Acceleration- Polar Coordinates- Equation of Motion- Simple 

Harmonic Motion. 

13.10     SELF ASSESSMENT QUESTIONS AND           

          EXERCISES 

1. The velocities of a particle along and perpendicular to the radius vector from a 

fixed origin are a and b. Find the path and the accelerations along and 

perpendicular to the radius vector.  

2. If a point moves so that its radial velocity is k times its transverse velocity, 

show that its path is an equiangular spiral. 

3. If the angular velocity of a particle about a point in its plane of motion be 

constant, prove that the transverse component of its acceleration is proportional to 

the radial component of its velocity. 

4. A point moves in a parabola in such a manner that the component velocity at 

right angles to the Radius vector form the focus is constant. Show that the 

acceleration of the point is constant in magnitude. 

5. A point P describes an equiangular spiral with constant angular velocity about 

the pole O; show that its accelerations varies as OP and is in a direction making 

with the tangent at P the same constant angle that OP makes. 
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UNIT XIV  CENTRAL ORBITS 
STRUCTURE 

14.1 Introduction  

14.1 Objectives  

14.2 Differential Equation of Central Orbits 

14.3 Perpendicular Pole from the Tangent 

11.4 Pedal equation of Central Orbit 

14.5 Pedal Equation of Well Known Curves 

14.6 Velocities in Central Orbits 

14.7 Two Folded Problem 

     14.8 Check your Progress 

14.9 Answers to Check Your Progress Questions 

14.10 Summary 

14.11 Keywords 

14.12 Self Assessment Questions and Exercises 

14.13 Further Readings 

14.0 INTRODUCTION 
                 A particle describes a path, acted on by an attractive force F towards 

a fixed point O. such a force is called central force and the path described by 

the particle is called a central orbit. The fixed point is known as the centre of 

the force. Usually the magnitude of the central attraction F is a function only of 

the distance r of the particle from O. In such a motion, the particle must be 

always moving only in the plane containing O and the tangent at any point on 

its path, since there is no component of attraction perpendicular to the above 

plane. Hence central orbit must be a plane curve. 

14.1  OBJECTIVES 

After going through this unit, you will be able to: 

 To learn about the Differential Equation of Central     Orbits 

 To learn about the Pedal equations of Orbits 

 To learn about the velocity and well known curves of Pedal equations 

14.2  DIFFERENTIAL EQUATIONS OF CENTRAL  

ORBITS 

 

A particle moves in a plane with an acceleration which is always directed to a 

fixed point O in the plane; to obtain the differential equation of its path. 

 

 

 

𝑝(𝑟,𝜃) 

p 

O 
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Take O as the pole and a fixed line through O as the initial line. Let P(r,𝜃) be the 

polar coordinates of the particle at time t and m be its mass. Also let P be the 

magnitude of the central acceleration along PO. 

The equations of motion of the particle are  

  𝑚 𝑟 −  𝑟𝜃 2 = −𝑚𝑃     i.e.   𝑟 −  𝑟𝜃 2 = −𝑃         ……………………. (1) 

And 
𝑚

𝑟
 .

𝑑

𝑑𝑡
  𝑟2𝜃   =  0  i.e. 

1

𝑟
 .

𝑑

𝑑𝑡
   𝑟2𝜃   = 0             …………………... (2)  

Equation (2) follows from the fact that as there is no force at right angles to OP , 

the transverse component of the acceleration is zero throughout the motion. 

    From (2) , 𝑟2𝜃   =  constant =  h (say) 

To get the polar equation of the path, we have to eliminate the element of time 

between equations (1) and (3). For this purposes, it is found convenient to put 

𝑢 =
1

𝑟
 and work with u as the dependent variable. 

From (3) ,  𝜃 =


𝑟2 = 𝑢2  

Also 𝑟 =
𝑑𝑟

𝑑𝑡
=

𝑑

𝑑𝑡
  

1

𝑢
 =  −

1

𝑢2

𝑑𝑢

𝑑𝑡
= −

1

𝑢2

𝑑𝑢

𝑑𝜃
 .
𝑑𝜃

𝑑𝑡
  

                                    =  −
1

𝑢2

𝑑𝑢

𝑑𝜃
 . 𝑢2 =  −

𝑑𝑢

𝑑𝜃
  

   𝑟  =
𝑑

𝑑𝑡
  −

𝑑𝑢

𝑑𝜃
 = −

𝑑

𝑑𝜃
  
𝑑𝑢

𝑑𝜃
 .

𝑑𝜃

𝑑𝑡
   

=  −
𝑑2𝑢

𝑑𝑡 2  . 𝑢2 = −
2𝑢2𝑑2𝑢

𝑑𝜃 2   

Substitute r and 𝜃  in (1) , we get  

−2𝑢2 𝑑2𝑢

𝑑𝜃 2 −
1

𝑢
 2𝑢4 = −𝑝 or  2𝑢2  

𝑑2𝑢

𝑑𝜃 2 + 𝑢 = 𝑝    or 𝑢 +
𝑑2𝑢

𝑑𝜃 2 =
𝑝

2𝑢2  

This is the differential equation of a central orbit, in polar coordinates. 

Note:  if the central force is a repulsive one in a particular problem, the 

sign of P in (4) must be changed. 

 

 

14.3 PERPENDICULAR POLE FROM THE TANGENT 
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Let 𝜑 be the angle made by tangent at P with the radius vector OP. we know that 

tan𝜑 = 𝑟
𝑑𝜃

𝑑𝑟
   …………………………(1) 

 

 

 

 

 

 

 

From O draw OL perpendicular to the tangent at P and let OL = P. 

Then sin 𝜑 =
𝑂𝐿

𝑂𝑃
=

𝑝

𝑟
   or p = r sin 𝜑   ………………………….. (2)  

Let us eliminate 𝜑 between (1) and (2) .  

 From (2) , 
1

𝑝2 =
1

𝑟2𝑠𝑖𝑛 2𝜑
=

1

𝑟2  𝑐𝑜𝑠𝑠𝑒𝑐2𝜑 

                           =
1

𝑟2  (1 + 𝑐𝑜𝑡2𝜑) 

                        =
1

𝑟2   1 +
1

𝑟2   
𝑑𝑟

𝑑𝜃
 

2

 ,   substituting from (1) 

 i.e. 
1

𝑝2 =
1

𝑟2 +
1

𝑟4   
𝑑𝑟

𝑑𝜃
 

2

   …………………………….. (3)  

Using 𝑟 =
1

𝑢
 ,  

𝑑𝑟

𝑑𝜃
=

𝑑𝑟

𝑑𝑢
 .
𝑑𝑢

𝑑𝜃
= −

1

𝑢2

𝑑𝑢

𝑑𝜃
  

Hence (3) becomes  

      
1

𝑝2 =  𝑢2 + 𝑢4.
1

𝑢4   
𝑑𝑢

𝑑𝜃
 

2

       i.e.  
1

𝑝2 =  𝑢2 +  
𝑑𝑢

𝑑𝜃
 

2

 

 

 

14.4  PEDAL EQUATION OF CENTRAL ORBIT 
 

 In certain curves the relation between P ( the perpendicular from the pole on the 

tangent ) and r (radius vector) is very simple. Such a relation is called the pedal  

O L p 

P 

r 
∅ 
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equation or the         ( p , r ) equation to the curve. We can get the ( p , r ) equation 

to a central orbit as follows: 

 In the usual notation, we have  

  
1

𝑝2 =  𝑢2 +  
𝑑𝑢

𝑑𝜃
 

2

  …………………………………………………… (1) 

Differentiating both sides of (1) with respect to, 

−
2

𝑝3  .
𝑑𝑝

𝑑𝜃
= 2𝑢

𝑑𝑢

𝑑𝜃
+ 2

𝑑𝑢

𝑑𝜃
 .
𝑑2𝑢

𝑑𝜃 2 = 2
𝑑𝑢

𝑑𝜃
 (𝑢 +

𝑑2𝑢

𝑑𝜃 2)   …………... (2) 

But the differential equation in polars  is 𝑢 +
𝑑2𝑢

𝑑𝜃 2 =
𝑝

2𝑢2   

Hence (2) becomes  −
1

𝑝3  .
𝑑𝑝

𝑑𝜃
=

𝑝

2𝑢2 

𝑑𝑢

𝑑𝜃
 

i.e. −
1

𝑝3  𝑑𝑝 =
𝑃

2𝑢2 𝑑𝑢 =
𝑃

2  𝑟2  𝑑  
1

𝑟
   

                    =
𝑃𝑟2

2  ×−
1

𝑟2  𝑑𝑟 = −
𝑃

2  𝑑𝑟 

Or  
2

𝑝3  .
𝑑𝑝

𝑑𝑟
= 𝑃.             ………………………………….. (3) 

(3)  is the ( p , r ) equation or the pedal equation to the central orbit 

14.5  PEDAL EQUATION OF THE SOME OF THE WELL  

KNOWN CURVES 
 

(1) Circle – pole at any point: 

Let C be the center , a  be the radius , O the pole where OC = c. 

Let P be the any point on the circle and OL be the perpendicular from O on the 

tangent at P. 

   OP = r and OL = p ,  

 

 

 

 

 

From Δ𝑂𝑃𝐶 ,   𝑐2 = 𝑟2 + 𝑎2 −  2𝑟𝑎 𝑐𝑜𝑠∠𝑂𝑃𝐶 =   𝑟2 + 𝑎2 −  2𝑟𝑎 𝑐𝑜𝑠∠𝑃𝑂𝐿 

L P 

O 

C 

a r p 

c 

A 

y 

P 

r 

a 

p 
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                       = 𝑟2 + 𝑎2 −  2𝑟𝑎.
𝑝

𝑟
= 𝑟2 + 𝑎2 − 2𝑎𝑝   

Hence the pedal equations of the circle for general position of the pole are  

𝑐2 = 𝑟2 + 𝑎2 − 2𝑎𝑝. When c = a, the pole is on the circumference and the 

equation is 𝑟2 = 2𝑎𝑝. 

(2) Parabola- pole at focus: 

     

 

To get the ( p , r ) equation to a parabola , we assume the geometrical property 

that if the tangent at P meets the tangent at the vertex A in Y and S is the focus , 

then SY is perpendicular to PY and the triangle SAY are similar.  

    Hence 
𝑆𝐴

𝑆𝑌
=

𝑆𝑌

𝑆𝑃
   

i.e. 
𝑎

𝑝
=

𝑝

𝑟
  or  𝑝2 = 𝑎𝑟 

(3) Ellipse or Hyperbola – pole at focus: 

   Let S and 𝑆′  be the foci of the ellipse and SY , 𝑆′ ,𝑌′  be the perpendiculars to 

the tangent at P. taking S as the pole , let SP = r, 𝑆′𝑃 =  𝑟′  , 𝑆𝑌 = 𝑝,  𝑆′𝑌′ = 𝑝′ . 

 

 

 

 

 

Let a and b be the semi-axes. 

To find the  ( p , r ) equation , we assume the following  geometrical properties of 

the ellipse . 

   (i) 𝑆𝑃 = 𝑆′𝑃 = 2𝑎   i.e. 𝑟 + 𝑟′ = 2𝑎 

  (ii)  𝑆𝑌.𝑆′𝑌′ = 𝑏2     i.e. 𝑝𝑝′ = 𝑏2  

  (iii) The tangent at P is equally inclined to the focal distances so that SPY 

and𝑆′  𝑃 𝑌′   are similar triangles. 

So we have 
𝑝

𝑟
=

𝑝 ′

𝑟 ′
  

S 

Y 
P 

𝑦′  

𝑠′  

 

r 

𝑟′  
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Now  
𝑏2

𝑝2 =
𝑝𝑝 ′

𝑝2     using (ii) 

        =
𝑝 ′

𝑝
=

𝑟 ′

𝑟
 using (iii) 

     =
2𝑎−𝑟

𝑟
   using (1) 

      =
2𝑎

𝑟
 − 1 

Hence 
𝑏2

𝑝2 =
2𝑎

𝑟
 − 1 is the (p, r) equation to the ellipse. 

By a similar argument, the (p, r) equation of the branch of the hyperbola nearer 

to the focus 
𝑏2

𝑝2 =
2𝑎

𝑟
+ 1 

(4) Equiangular spiral: 

    In 𝑝 = 𝑟 𝑠𝑖𝑛𝜑 in the usual notation. 

In the equilibrium spiral, 𝜑 = constant = 𝛼(𝑠𝑎𝑦) 

Hence 𝑝 = 𝑠𝑖𝑛𝛼 = 𝑘𝑟 is the (p, r) equation to the spiral 

14.6 VELOCITIES IN A CENTRAL ORBIT 
In every central orbit the areal velocity is constant and the linear velocity varies 

inversely as the perpendicular from the centre upon the tangent to the path. 

Let at time t the particle be at P (r , 𝜃 ) and at time t+ Δ𝑡, let it be at Q ( r + 

Δ𝑟, 𝜃 + Δ𝜃) .   

sectional area OPQ described by the radius vector OP =  Area of ΔOPQ nearly 

                                          =
1

2
 𝑂𝑃.𝑂𝑄𝑠𝑖𝑛∠𝑃𝑂𝑄 

                                         =
1

2
 𝑟 𝑟 + Δ𝑟 sinΔ𝜃  

                                        =
1

2
 𝑟2  Δ𝜃, to the first o In every central orbit the areal 

velocity is constant and the linear velocity varies inversely as the perpendicular 

from the centre upon the tangent to the path. 

Let at time t the particle be at P (r , 𝜃 ) and at time t+ Δ𝑡, let it be at Q ( r + 

Δ𝑟, 𝜃 + Δ𝜃) .   

sectional area OPQ described by the radius vector OP =  Area of ΔOPQ nearly 

    =
1

2
 𝑂𝑃.𝑂𝑄𝑠𝑖𝑛∠𝑃𝑂𝑄 
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    =
1

2
 𝑟 𝑟 + Δ𝑟 sin Δ𝜃  

   =
1

2
 𝑟2  Δ𝜃, to the first order of smallness. 

The rate of description of the area traced out by the radius vector joining the 

particle to a fixed point is called the areal velocity of the particle . 

 

 

 

 

 

 

 

Hence in the central orbit, areal velocity of P 

   =  limΔ𝑡→0
1

2
 𝑟2 Δ𝜃

Δ𝑡
=

1

2
 𝑟2 𝑑𝜃

𝑑𝑡
=

1

2
        ………………………….. (1) 

Since 𝑟2𝜃 =  constant = h from equation (3)  

Hence h = twice the areal velocity and as h is a constant, the areal velocity is 

constant. In other words, equal areas are described by the radius vector in equal 

times. 

We can get another expression for the areal velocity. 

 Let Δs be the length of the arc PQ. Draw OL perpendicular to PQ. Sectional area 

POQ = ΔPOQ nearly = 
1

2
 𝑃𝑄.𝑂𝐿 

As tends to 0, Q tends to coincide with P along the curve and the chord QP 

becomes the tangent at P. length PQ = Δs , nearly and OL becomes the 

perpendicular from O on the tangent at P. let OL= P 

Hence the areal velocity =  lim
Δ𝑡→0

1

2

Δs

Δ𝑡
 .𝑃 =

1

2
 𝑃

𝑑𝑠

𝑑𝑡
=

1

2
 𝑝𝑣   …….. (2) 

As 
𝑑𝑠

𝑑𝑡
 is the rate pf describing s and so as the linear velocity of P. 

Hence combining (1) and (2) , areal velocity = 
1

2
  =

1

2
 𝑝𝑣.  or  = 𝑝𝑣 (i.e.) v = 



𝑝
. 

Hence linear velocity varies inversely as OP. 

∆𝜃 
𝜃 

𝑟 + ∆𝑟 

O 

Q 

L 

X 

P r 
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14.7  TWO FOLD PROBLEMS CENTRAL ORBITS 
                       It is clear that two types of problems arise in connection with 

central orbits. They are  

(i) Given the orbit, to find the law of force to the pole. 

(ii) Given the law of force, to find the path. 

We shall first take up (i) 

    The differential equation to the central orbit in polar coordinates is  

        𝑢 +
𝑑2𝑢

𝑑𝜃 2  =
𝑝

2𝑢2  

 Hence 𝑝 = 2𝑢2(𝑢 +
𝑑2𝑢

𝑑𝜃 2 ) 

Since the orbit is given, u is known as a function of𝜃. Hence by differentiation, P 

can be got from the above equation. 

In a few cases we may know the ( p , r ) equation to the path. To find P, we 

can use the equation  

               𝑃 =
2

𝑝3  .
𝑑𝑝

𝑑𝑟
    

Example 2: 

 Find the law of force towards the pole under which the curve 𝑟𝑛 = 𝑎𝑛𝑐𝑜𝑠𝑛𝜃  

can be described. 

𝑟𝑛 = 𝑎𝑛𝑐𝑜𝑠𝑛𝜃   

Since  𝑟 =
1

𝑢
 , the equations 𝑢𝑛𝑎𝑛 cos 𝑛 𝜃 = 1  ……………………… (1)  

Taking algorithms, 

        𝑛 log𝑢 + 𝑛 log𝑎 + log cos𝑛 𝜃 = 0 

Differentiating (2) with respect to𝜃. 

𝑛.
1

𝑢

𝑑𝑢

𝑑𝜃
−  𝑛

𝑠𝑖𝑛𝑛𝜃

𝑐𝑜𝑠𝑛𝜃
= 0  i.e. 

𝑑𝑢

𝑑𝜃
 = 𝑢 𝑡𝑎𝑛 𝑛 𝜃  ………………… (3) 

Differentiating (2) with respect to 𝜃, 

𝑑2𝑢

𝑑𝜃2
= 𝑢 𝑛 𝑠𝑒𝑐2𝑛 𝜃 + tan 𝑛 𝜃 .

𝑑𝑢

𝑑𝜃
  

                                                 = 𝑛𝑢 𝑠𝑒𝑐2𝑛 𝜃 + 𝑢 𝑡𝑎𝑛2𝑛 𝜃 Using (2) 
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𝑢 +
𝑑2𝑢

𝑑𝜃2
= 𝑢 + 𝑛𝑢 𝑠𝑒𝑐2𝑛 𝜃 + 𝑢 𝑡𝑎𝑛2𝑛 𝜃    

                                                 = 𝑛𝑢 𝑠𝑒𝑐2𝑛 𝜃 + 𝑢 1 + 𝑡𝑎𝑛2𝑛 𝜃  

                                                 =  𝑛𝑢 𝑠𝑒𝑐2𝑛 𝜃 + 𝑢 𝑠𝑒𝑐2𝑛 𝜃  

   =  𝑛 + 1 𝑢 𝑠𝑒𝑐2𝑛 𝜃  

   =  𝑛 + 1 𝑢. 𝑎2𝑛𝑢2𝑛+1 

 𝑃 =  2𝑢2   𝑢 +
𝑑2𝑢

𝑑𝜃 2 =  2𝑢2 .  𝑛 + 1 𝑢.𝑎2𝑛𝑢2𝑛+1 

   =  𝑛 + 1  𝑎2𝑛𝑢2𝑛+3  2 

   =   𝑛 + 1  𝑎2𝑛2.
1

Γ2𝑛+3   …………………………. (3) 

 i.e. p is directly proportional to   
1

Γ2𝑛+3 which means the central acceleration 

varies inversely as the (2n+3)
rd

  power of the distance. 

Note:  

 From (3), p is positive only when n+1 > 0  

   i.e. n > −1. 

For values of n < −1 , P will be negative and in such cases the central forces will 

be a repulsive one. The above case is a comprehensive   one, giving the law of 

force for describing the follow well-known curves corresponding to particular 

values of n. 

(i) When n = 1 , the equation is 𝑟 = 𝑎 cos𝜃. The curve is a circle and P 𝛼 
1

𝑟5 

  (ii) When n = 2 , the equation is 𝑟2 = 𝑎2 cos 2 𝜃. This is the lemniscates of 

Bernoulli and P 𝛼
1

𝑟7 

(iii) When n = 
1

2
 , the equation is 𝑟

1

2 = 𝑎
1

2 cos
𝜃

2
 , this is a cardioids and  P  𝛼 

1

𝑟4  

(iv) When n =−  
1

2
 , the equation is 𝑟−

1

2 = 𝑎−
1

2 cos
𝜃

2
     i.e.   𝑎

1

2 = 𝑟
1

2 cos
𝜃

2
 

So 
2𝑎

𝑟
= 1 + cos 𝜃, this is a parabola and  P 𝛼 

1

𝑟5 

(v) When 𝑛 =  −2, the equation is  𝑟−2 = 𝑎−2 cos 2 𝜃   i.e. 𝑟2 cos 2 𝜃 = 𝑎2 . 

This is a rectangular hyperbola. In this case the actual value of 𝑃 =  −𝑎−42𝑟. The 

negative sign of P shows that the central force is a repulsive one.  
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Example 2: 

 Find the law of force to an internal point under which a body will describe a circle. 

 

The pedal equation of the circle for a general position of the pole is  

                            𝑐2 = 𝑟2 + 𝑎2 − 2𝑎𝑝…………………………….. (1) 

 Differentiating with respect to r, 

   0 = 2𝑟 − 2𝑎
𝑑𝑝

𝑑𝑟
     i.e. 

𝑑𝑝

𝑑𝑟
=

𝑟

𝑎
  

Now the central acceleration  

    𝑃 =
2

𝑝3

𝑑𝑝

𝑑𝑟
=

2𝑟

𝑝3𝑎
=

82𝑎2𝑟

 𝑟2+𝑎2−𝑐2 3    Substituting for p from (1) 

Example 3: 

 A particle moves in a curve under a central attraction so that its velocity at any 

point is equal to that in a circle at the same distance and under the same distance 

and under the same attraction . show that the path is an  equiangular spiral and that 

the law of force is that of the universe cube.  

Let the central acceleration be P. if v is the velocity in a circle at a distance r under 

the normal acceleration P, then  

                              
𝑣2

𝑝
= 𝑃   i.e. 𝑣2 = 𝑃𝑟    ……………………………….. (1)  

Since v is also the velocity in the central orbit,  

       = 𝑝𝑣 or 𝑣 =


𝑝
   

Putting this is (1) , 
2

𝑝2 = 𝑃𝑟    …………………………………………..(2) 

We know that  𝑃 =
2

𝑝3  .
𝑑𝑝

𝑑𝑟
  ……………………………………………… (3) 

Substituting (3) in (2) , 

   
2

𝑝2 =
2

𝑝3  .
𝑑𝑝

𝑑𝑟
 . 𝑟   i.e. 

𝑑𝑝

𝑝
=

𝑑𝑟

𝑟
   

Integrating, log p = log r + log A    i.e. p = A r ……………………….. (4) 

 (4) Clearly the ( p , r ) equation to an equiangular spiral. 

 From (4), 
𝑑𝑝

𝑑𝑟
= 𝐴. Substituting this in (3),  
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𝑃 =  
2

𝑝3  .𝐴 = 
𝐴2

𝐴3𝑝3 Using (4)  

     =
2

𝐴2   
1

𝑟3    i.e.   𝑃 𝛼  1/𝑟3.    

The following three general principles hold good when two smooth moving 

bodies make an impact. 

 

 

14.8 CHECK YOUR PROGRESS 

 
1. Define central Orbit? 

2. What is Velocity in central Orbit? 

3. Write the Pedal Equation of central orbit? 

4. Give the Differential Equation of Central Orbits? 

 

14.9 ANSWERS TO CHECK YOUR PROGRESS 
 

1. A particle describes a path, acted on by an attractive force F towards a fixed 

point O. such a force is called central force and the path described by the particle is 

called a central orbit 

2. In every central orbit the areal velocity is constant and the linear velocity varies 

inversely as the perpendicular from the centre upon the tangent to the path 

3.The Pedal equation of Central Orbit  given as    
h2

p3  .
dp

dr
= P 

4 The Differential Equation of Central Orbits is given by 

                                     𝑢 +
𝑑2𝑢

𝑑𝜃 2 =
𝑝

2𝑢2 

 

14.10 SUMMARY 
- A particle describes a path, acted on by an attractive force F towards a fixed point 

O. such a force is called central force and the path described by the particle is 

called a central orbit. The fixed point is known as the centre of the force 

 

- In every central orbit the areal velocity is constant and the linear velocity 

varies inversely as the perpendicular from the centre upon the tangent to 

the path 

 

- The rate of description of the area traced out by the radius vector joining 

the particle to a fixed point is called the areal velocity of the particle 

 

 

- The Pedal equation of Central Orbit  given as    
h2

p3  .
dp

dr
= P 

- The Differential Equation of Central Orbits is given by 

                                     𝑢 +
𝑑2𝑢

𝑑𝜃 2 =
𝑝

2𝑢2 

  



 

189 

      

Low of Forces 

 

NOTES 

 

Central Orbit 

 

Notes 
 

 

Self Instructional Material 

 

14.11 KEYWORDS 

 

Central orbits – Pedal Equations – Tangent – Equation of Well Known Curves 

– velocity. 

 

14.12  SELF ASSESSMENT QUESTIONS AND EXERCISES 

 

1. Find the law of forces when a circle id described under a central force to a 

point O on its circumference. 

2. The velocity at any point of a central orbit is one half of what it would be 

for a circular orbit at the same distance. Obtain the law of forces 

3. Using pedal equations, find the law of force towards the pole under which 

the following curves described: (i) Parabola (ii) Ellipse (iii) Hyperbola. 

4. If the radius vector to a point which is describing an orbit sweeps out equal 

areas in equal times shows that the acceleration acting on the particle must be 

directed along the radius vector. 

5. A particle moves in an ellipse under a force which is always directed 

towards its focus. Find the law of force, the velocity at any point of the path 

and its periodic time. 

 

14.13  FURTHER READINGS 
Dr. M.K. Venkataraman, Statics, Agasthiar publications, 17

th
 Edition, 2014. 

Dr.M.K.Venkataraman, Dynamics, Agasthiar publications, 13
th
 Edition, 2009 

P.Duraipandiyan, Laxmi Duraipandiyan & Muthamizh Jayapragasm, 

Mechanics, S.Chand & Co.Pvt.Ltd, 2014 

 


