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UNIT I: VECTOR SPACE

Structure

1.1 Introduction
1.2 Objectives
1.3 Vector Space
1.4 Subspace
1.5 Basis
1.6 Normed space
1.6.1 Linear Independence and Linear Dependence
1.6.2 Finite and Infinite Dimensional Vector Spaces
1.7 Basis
1.8 Normed Space
1.8.1 Banach Space
1.8.2 Schauder Basis
1.9 Exercise

1.1 INTRODUCTION

Functional Analysis is the study of vector spaces endowed with
topological structures (that are compatible with the linear structure of
the space) and of (linear) mappings between such spaces. Throughout
this unit we will be working with vector spaces whose underlying field

is the field of real numbers R or the field of complex numbers . We

begin our unit with some basic definitions, results and examples from
linear algebra. Linear space also known as vector spaces arise naturally
in applications, where in a physical problem is often modelled as a
mathematical equation. The theory of Normed spaces, in particular
Banach spaces, and the theory of linear operators defined on them are

the most highly developed parts of functional analysis.

1.2 OBJECTIVES

Students will be able to

To understand Normed space.
Describe completion of a Normed space.
To differentiate Linearly independent and Linearly dependent.

To solve the results related to Normed space.
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1.3 VECTOR SPACE

A vector space is anonempty set V' over a field F together with two
operations + and . are defined called vector addition and scalar

multiplication.

The operation + is defined by +: V' x V— V, (vector addition) which is

satisfy the following conditions:

1. Closure: If u and v are any vectors in V, then the sum u + v belongs

toV
2. Commutative law: For all vectorsuandvinV, u+v=v-+u

3. Associative law: For all vectors u, v, w in V, u + (v + w)

=(utv)t+w

4. Additive identity: The set V contains an additive identity element,
denoted by 0, such that for any vector vin V, 0 + v =v and

v+0=v.

5. Additive inverses: For each vector v in V, the equations v +x=10
and x+v=0 have a solution x in V, called an additive inverse of v,

and denoted by - v.

The operation ‘" is defined by .:VxV— V, (scalar multiplication)

which is satisfy the following conditions:

1. Closure: If v in any vector in V, and c is any real number, then the

product c¢-v belongsto V.

2. Distributive law: For all real numbers ¢ and all vectors u, v in V,

c(utv)=c-utc-v

3. Distributive law: For all real numbers ¢, d and all vectors v in V,

(ctd):v=c-v+d-v

4. Associative law: For all real numbers c,d and all vectors v in V,

c-(d-v)=(cd)-v

5. Unitary law: For all vectorsvinV, 1-v=v



Example:

(1) Space RE™: This is the Eucliden space, the underlying set being

the set of all n-tuples of real numbers, written

x= (8, e 8,),% =(d,, ... 4, )etc., and we now see that this is a
real vector space (K =ZR) with two algebraic operations defined
by

z+¥=(a,+ &, .. 8 + 8]

oex = (@8, wu, @8, ), (@ €E]

1.4 SUBSPACE

A subspace of a vector space X is a nonempty subset Y of X such that for

all 35,35 € ¥ and all scalars &, & we have ay, + #¥; € ¥. Hence Y is itself
a vector space, the two algebraic operations being those induced from X.

A special subspace of X is the improper subspace Y=X. Every other
subspace of X [z {0}] is called proper. Another special subspace of any

vector space X is Y ={0}.

1.5 LINEAR COMBINATION

A linear combination of vectors xy,m.,%, Of a vector space X is an
expression of the form e, x; + e x4+ + &y, Where the coefficients

€y, - O AT€ any scalars.

1.6 LINEAR SPAN

For any nonempty subset M = X the set of all linear combinations of

vector of #f is called the span of M, written span M.

1.6.1 Linear Independence and Linear Dependence

Let M be the set of vectors xy,..,x, {(#=1) in a vector space X are

defined by means of the equation

Gy Xy FapXs + ot @ = 0w (1]
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Where  @,,..,@&, are scalars. Clearly, equation (1) holds for
g ™= Gl e g, = i

If this is the only r-tuple of scalars for which (1) holds, the set M is said to
be linearly independent. M is said to be linearly dependent if M is not

linearly independent, that is, if (1) also holds for some r-tuple of scalars,

not all zero.

1.6.2 Finite and Infinite Dimensional Vector Spaces

A vector space X is said to be finite dimensional if there is a positive
integer n such that X contains a linearly independent set of # vectors
whereas any set of s 4 1 or more vectors of X is linearly dependent. 2 is
called the dimension of X, written = dim X. By definition X={0} is

finite dimensional and dim X=0. If X is not finite dimensional, it is said to

be infinite dimensional.

1.7 BASIS

If X is any vector space, not necessarily finite dimensional, and B is a
linearly independent subset of X which spans X, then B is called a basis (or

Hamel basis) for X.
Note:

Hence if B is a basis for X, then every nonzero x & X has a unique

representation as a linear combination of elements of B with nonzero

scalars as coefficients.
Theorem: 1.7.1 (Dimension of a subspace)

Let X be an n-dimensional vector space. Then any proper subspace Y of X

has

dimension less than n.

Proof:

Ifn =0, then X = {0} and has no proper subspace.

Ifdim Y =0, then Y = {0}, and X Y implies dim X =1.
4



Clearly, dim Y< dim ¥ = #. If dim Y were n, then

Y would have a basis of n elements, which would also be a basis for X

since dim X =n, so that X =Y.
This shows that any linearly independent set of vectors in Y

must have fewer than n elements, and dim Y <n.

1.8 NORMED SPACE

Let X be a real or complex vector space. A real valued function ||.|| is said

to be a norm on X if
({illellz0, ¥rxeX
()lxll=0 tffx=0
(ttt) leexll = || x|l Ya €K andwx€ X
Cwdle + 2l = l=ll + izl ¥x.p € X
Where X is either K er ©
Then the pair { X,|I.|[} is called a normed space. This norm induces a
metric & g X by d(e,y) = lx— |l ¥ayreXx.
1.8.1 Banach Space

A normed space ( X,|l.|I] is said to be a Banach Space if it is a complete
metric space with respect to the metric induced by ||.||.
Examples:
(1) Euclidean Space k™ :
We know that R¥ is a vector space over R with respect to the
addiction and scalar multiplication defined as follow
(2% e Xy ) + (}’y.?z,...,.}’n} = {xy + Xz + 30,5 T )
Uy g e X ) = (@Y, @G, R )

If we define ||. ||, on &* by
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|I {Hlpﬁzp-..pﬁm]llg = "f{mlz + :';22 + ".+ -"IT'N,E T'?r{.'-’ﬁu_,-.'-’f-gp-up.'-’i'-“::[ E R"

Then |||l is norm on E"
(2) Unitary Space C*#:
L™ is a normed space with respect to the norm |[. || defined by
I¢zizamll = (el e
(3) ©([a, ] the set of all continuous valued function on [, k]

€([a, B]} is a vector space with respect to pointwise addition and
pointwise scalar multiplication

It is a normed space with respect to the norm ||f]] = ::E;E](ﬂl

Remark:

The above three normed spaces are Banach spaces but €([e,&]] with

[]
the norm [If]l = {I’: Fix) |2:£x]-! is a normed space but not a Banach

space.

Result 1:

If x,—2xasnw—+o and y, - yasw—+w is a normed space

(X[} then
Ko+ ¥, +x+yasm—mw nX

(or) In a normed space X addition is continuous.

Proof:

x, v xasn—w02 |lx,—xll-0asn—
Wporaesn—s@=>p, -yl 0arn - w
0 = [I(x, +3) — (x — ¥)ll = 1Cx, — ) + (3, — ¥l

= lx,— xll + 13, —¥ll + Casn — o=

> x,t¥ 2xty asn—> @



Result 2:

If @,+aasme—+® in K and x, +xasn—+0w in X, then

@x, — @X a5 — @@ in X,
(or) Scalar multiplication is continuous in a normed space.
Proof:
We have ||a, — all + Q@ asn —w and ||z, —x|| = O ase = =
Now |la x, — ax|l = la,x, — a 2+ a2 — ax|
= e, x,, — a2l + le,x — ax|l
= |@,lllx, — x|l + &, — alllxl
— |0+ Tllxll=0 as n—
& @k, = @X AFI — 00
Result 3:
Let (X, |l. ]} be a normed space and 4 be the metric induced by ||. ||
CEX el = lllll = llx — 2l ¥x.y €X
(it) d(x+=z,¥+ =) = d(x,¥) (translation invariant)
(i) dfax ,ay) = |a|d(x5) Yy EXandac K
Proof:
(i) izl = [l=— ¥+ ¥l
< |l — 2l + ¥l
=lxll + liyll £ llx = ¥l
2zl - l=ll = lly— =ll = ll=— ¥l
el = ] = [l — wll

(il) e+ 2,7 +2) = [I(z+ 2) - (¥ + =]l
= |lx — wll

7
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= d(x.¥)
(i)d(ax ,ay) = [lax — ayll
= lla{x -2
= |ex|llx — ¥l

= lel d(x.¥]
Result 4:

Let (x,|I.][} be a normed space and ¥ be a vector subspace of X . Then ¥

is a vector subspace of X .
Proof:

Let »,3 € ¥. Then there exists a sequences (x,) and (y,) from ¥ such

that

X, = x as w—w@ and ¥, = ¥ as n—+ ®@

Then x, + 3, €Y ¥ueN and x,+ ¥, -xt ¥ afs i —ww
Sx+yEY

Let x €Y and @ €K

Then there exists a sequence (i, ) &x ¥ such that x, =& wr & —w

@x, EY VmEN and ax, —ax aFm-—w

=Sy €Y = Y isa vector space of X.

Result 5:

Let (#,[I.Il,) and {X,.[l.[l;) be normed space. Then prove that &, ¥ X,

is a normed space

with respect to the norm  [[{zxy, x5}l = max{|lzx |y, 125 [l.]
Proof:

(i) Clearly [[(xy,eq)ll = mazf|lzy|ly, I3l } = ©

(strrce |l |l. |, are norms)

8



(i) ICeg,22)ll = © = max{llxy |l l=;/l.} = ©
& llxglly= 0 and |lx,ll, =0
Sxy=0and x; =0
= (xx5) = (0.0)
(iii) Ner(ep )l = (e, cex)ll
= max{ lax, |l lex;|l )}
= maxe] |a| ey 1 leel |25 |2}
= | lmaw{llxy [y ]2 [l
= lelll Ceppe ) N
(iv) ICxyp22) + (rroap )l = 1Cxy + 3p020 + 301
= max{llx, + ¥/l llxg + ¥ll}
= max { ey lly, (el + maely g 135123
= [ICxy, 20 14 (32l

« (X % Xy |I.]I) is a normed space.

Result 6: Let (§,|l.]]) be a normed space and ¥ be a closed vector

subspace of X . Then X j}, is a normed space with the norm defined by
llz + ¥Y1I' = tnf{ll= — yil:3 € ¥}
Proof:

We know that & ;‘Fy is a vector space with respect to addition and scalar

multiplication as follows
ey + ¥)+ e+ V) =y +x,) +Y Waxpx €X
a(z+t)=(ox) 1Y YxEX,Ya€R

O x4+ Tl = tof{lle —pll:y €¥} = 0
(stnce [lx— 3l = @ ¥rEY)

i) lx+7lI'=0
= there existe a sequence (v, ) from ¥ such that

lx, — ¥l = Casn — w
9
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Functional Analysis & o rasn—@andy, €Y, VnEN
NOTES _
=xE¥ =Y (sinceY teclosed) = x+¥=VY
(i) flex+¥)I" = llax + ¥II*
= tnF{llex + ¥ll: ¥ € ¥}
= tnf{lla(x— ¥)ll:y € Y} where a = O
= tnf{lalllx — ¥l: ¥ € ¥ (sinecs ¥ iz vacter space]
= laltnf{llx — yl:y €1}
= Jalllx + 71"
If @ =@, then lalx +¥)' =I¥I"'=190
= |alllx + ¥l
(1) MGy + ¥) + Cea + ¥) = (2, + 20 + YII'
= inf{ll(xy +2xy) — yll:y € ¥}
= tf{ll Gry + 220 — Gy + 33 M)
= ¥, € ¥,3, € I (since ¥ iz @ vector space)
= tmnfflley — wll + ey — iy 3 € ¥3
Sinflllzy -yl € Yi+
tnf{llea — 3 ll:3 € ¥}
= [lx, + YlI' + ll=; + ¥
Theorem: 1.8.2
If ¥ is a Banach space and ¥ is a closed subspace of X, then 4 j}; is a
Banach space.
Proof:
By result 6, & _f? is a normed space with respect to the norm
lx+ YlI* = tef{llx — pll:y € ¥}
Self-Instructional Material Now, we prove that & Jy is complete

Let {x,, 4+ ¥} be a Cauchy sequence in & ‘g":rr

10



We find a subsequence Ix'“h' + Y_E of {x, + ¥} such that
Gy + )= Gony,, + 1) <26 viE N

By definition of ||{:;vrwi5r + 1’)— (:.: +Y:l||’ there existsy, , ¥sq such

Birta

that

|I(x"i¥'+ yﬁr}_ (xﬂkﬂ + filﬂ-]_}‘l - %k Yke M

If z, = %, + ¥, ¥k € N, we claim that {z,} is a Cauchy sequence in ¥.

For k = §,
= — =l = Mo — s + 5041 — Facaz + Fpaz — - — 5]
= Iz — Zega | + I2qy — Zpegall + -+ |I’I-|u._’;||
R
_ 1 _1f 1} 1 beol
MEE—F 3 —F—?— Qg b —
Bk 3

» {z,} is a Cauchy sequence in X. Since X is complete z, =z as w — &

for some z € X,
Claim: {x, +¥} convergestoz4¥ asn -+
ICen, + ¥} — (2 + ' < || Cen,, + 923 — 2]
=z, —zll - 0azn— w
Xy Y +24Y asnswin ¥,
Since {x, 4+ ¥} is a Cauchy sequence, and it has a convergent subsequence
{-”"r»k + ¥} is converge in & Iy
=> & ;? is complete
=& #y is a Banach space.

11
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Theorem: 1.8.3 (Completion of a normed space)

If (X.|I.II) is a normed space, which is not complete, then there exists a
complete normed space {X",|l.[I') such that there is a map
AX = X 3 lxll = [lACx) . ¥x € X and A(X) is dense in X',

Proof:

Let d be the metric on X induced by ||, [l

Then (X, d] is a metric space and hence it has a completion.

(i.e)(X',4") is a complete metric space with the following properties

(i) X'= the collection of all equivalence classes of Cauchy sequences
obtained by {x, )~ (y, ) if d(x,.¥,) = 0azn = w.

(ii) dfx' ¥ ) = PP.-I?]I;[E d(x,, ¥, ), Where (x,) € x'2 (¥, ) € ¥

(iii)There exists a map 4: X — X' such that

dxy) = d (Ax.A¥) ¥x, ¥ € X and A(X) is dense in X’

First we define addition and scalar multiplication on X’ by
[(rp )] + [(3,)] = [(x, + 3]

el ()] = [(aeacy,]]

Claim:

If (x,) and (.} are Cauchy sequences, then {x, +,) is a Cauchy

sequence.
Iz, # 35.) = (2 + 7 £ ey — 2 1+ Iy — 35/l = Casmn = @
& (x, + ¥, ) is Cauchy
If (e Yoo, *) amed (e, Jo(35,") then
lim ||, — 'l = 0 and lim Iy, = 3/l = @
Now

Wi, + 20— Cxt + 30l = Mz, — 2 N4+ 1, — w1l 2 O asnn— @

12



& L2, + 3¢, )] € X* and it is independent of the representatives.
Next to show that if (x, ) is a Cauchy sequence and « € K, then (ax,)is a
Cauchy sequence.

laxy — axgll = le(x, —x, ) = lalllx, — 2, | = Qasmn— w

o (@x,) is Cauchy
[(ax,)]€ X'

The remaining properties of addition and scalar multiplication to for X' a
vector space are straight forward.

Now we define ||, |':&* = E by [la'|I' = & (0".x") ¥’ € X"

Claim: |[.||I' is a norm on X’

@) =l = ¢ ¥x' € X' (ebvieusly)

(i) ll=tll=0ed(dx')=0=x'=0

(iii) Letx' e X'and a € K |lax*[[' = &*(0',ax")

Choose a sequence

(x, JEX =A(x,)—x"as n—+ o X' (since Alx) = XY

SA(wa,) = ax'asn = @ o X

Since metric is continuous
' (0, ex') = lim d'(A(0),A(ax,))
-t

= li: 0, e ]
n;};ﬂ:ﬂ: axg]

= lim [lax, || = |a| lm ||=,|
- ] =0

- | PP..-IE: d(0,x,)

- |l ?PI-E'L d (0, A(x,))
= |a|d (0',x")

= || |l

13
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(iv) Let ‘.3 € X*. Then choose (x,) and (3, ) in
A(X) 3: Ax,—x'asn— @, Ay, » Fasn =+ @ nX'
Now '+ I = d (0. x" + ¥)
= ' (4(0), lim A(x, +,) )
= lm " (A(0LA(x, +3.0)
= lm d(0.x, + 3,)
= rll_ﬂf}ullxﬂ + 35l
< lim Lz, 1+ lion [y,
= lim d(0,x,) + lm (0, 3,)
= lmdrqﬁlrﬂﬁxﬁﬁ + lﬂd‘{ﬁl Al
= d:{ﬂ:rxij[_l_ d“:ﬁ‘r}fﬁ
= ' + Il
& I |I" is a norm on X°.
Definition: 1.8.4
A series Z=_, x, in a normal linear space X is said to be
(i) Convergent if g, = x, + x5+ =+ x, ¥n € N and (s,) converges
in X.
(1) Absolutely convergent if Z>z, [z, [l is convergent.
1.8.2 Schauder Basis

A sequence {g, ] of vectors in a normed space X is said to be a schauder
basis if for every # € ¥ there exists a unique sequence of scalars (e} such
that [la,ey + aqeq + -+ age, —x[| = 0asw —-o. In other words,

— ==
X = Lomy @8

1.9 EXERCISES

(1) Let {g,....8,} be a basis for a complex vector space X. Find a

basis for

14



X regarded as a real vector space. What is the dimension of X in
either case ?
(2) Let X Dbe the wvector space of all ordered pairs

x= (8,,8,),* = (1§, ) -.of real numbers. Show that norms on
X are defined by
el = lay|*lag]
llell, = (2% + 2,92
%l = max{ayl ey F
(3) Show that the closure ¥ of a subspace Y of a normed space X is

again a vector subspace.
(4) If in a normed space X, absolute convergence of any series always

implies convergence of that series, show that X is complete.

15
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UNIT II: CONVEX SETS

Structure

2.1 Introduction
2.2 Objectives
2.3 Convex Sets
2.4 Norm Topology
2.4.1 Coset
2.4.2 Quotient Space
2.5 Equivalent Norms
2.6 Exercises

2.1 INTRODUCTION

In this unit we will introduce convex set and Quotient space and also give
some results. We differentiate spaces which are quotient space or not. We
will discuss about the equivalent conditions of Normed spaces and some of
its results. Some important results in Normed spaces are determined by

theorems.

2.2 OBJECTIVES

Students will able to

To understand the Quotient space.

Describe the basic properties of Quotient space.

Identify which spaces are Quotient.

To understand the equivalent norms.

Determine the necessary conditions of a normed space as

equivalent norms.

2.3 CONVEX SETS

(a) Let V be real normed linear space and let J: ¥ — & be a given mapping.
A subset K of V is said to be convex if, for every w and v+ € K and for

every £ € [01], we have that ¢+ (1 — t)jvr E K.

Let K = 1F be a closed convex set. Assume that J attains its minimum over

K at
16



u € K. If J is differentiable at 1, then
Jilu)iv—wu) =@ Forevery v EK.

(b) Let K=V. If J attains its minimum at ¢ € ¥* and if J is differentiable at

kT
Aty

Then [*(ul=

Definition: 2.3.1

Let V be a real normed linear space. A mapping J: ¥ = [ is said to be
convex if,

for every u and ¥ £ ¥ and for every t € [@,1], we have

F(tw + (1= 9] 5 ) +(L— DI ().

(a) If J: ¥ =+ R is convex and differentiable at every point, then
Fiv) — F(u) = F'(u)(v— u). Foreverywand » € ¥

(b) Let J: ¥ — K be convex and differentiable at every point of V. Let
E = ¥ be a closed convex set. Let 11 € K be such that
F(u)(v—w) = €. For every + € K, then

it

(c) If J: ¥ = R is convex and differentiable at every point of V, and if
w € ¥ is such that J*{n) = @, then J attains its minimum (over all of V)
at w.

Remark:

The above definition gave the necessary conditions for a differentiable

function J to attain a minimum at a point w. The preceding definition

shows that these conditions are also sufficient in the case of convex

functions.
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Definition: 2.3.2
A norm on a vector space V is a function ||. || : ¥ — [@, &) such that
() Nxll= ¥ if and only {f.x = O;

(ii) lexll = |l llxll for everya € F and everyx €

(ii1) (Triangle nequality) for every x and ¥ € V.we have

=+ 7l = ll=ll + llxl.

2.4 NORM TOPOLOGY

A normed linear space is a vector space V endowed with a norm. The

metric
Topology induced by the norm is called its norm topology.
2.4.1 Coset
Let V be a normed linear space and let W be a closed subspace of V,
i.e. Wis a linear subspace of V and is closed under the norm topology.
We define an equivalence relation on V by

xS —-—yeEW.

The equivalence class containing a vector x € ¥ is called a coset and is

denoted as x + W*.
It consists of all elements of the form x 4+ w where w € 1.

2.4.2 Quotient Space

The set of all cosets is called the quotient space and is denoted ¥ #W*.
Addition and scalar multiplication on ¥# W are defined by

(x+ W)+ (r+Wl=(x+¥ +W and alx+ W)= ax + .
If seevxe’ et v, then, clearly, x 4+ w¥~x' 4 ¥ and ax~gx', since

W is a linear subspace of V. Thus, addition and scalar multiplication are

well defined.

18



Thus the quotient space becomes a vector space. On this, we define

L4173
b+ Wil = 4wl

In other words, the ‘norm’ defined above is the infimum of the norms of all

the elements in the coset and so, clearly, it is well defined.
Theorem: 2.4.1

Let V be a normed linear space and let W be a closed subspace. Then

|l [l 5 defined above is a norm on the quotient space ¥ /. Further, if V
is a Banach space, so is ¥ /W,
Proof:

Clearly lx+ Wllpqpe =0 forall xe V. [f ¥ + W = 0+ Win ¥/, we
have x € Wi then —x € W and so O £ [lx+ Wl qr = llx + (=x)I|=0C
and so |lx 4 Wlyqy= 0. Conversely, if [lx + W,y =0, then, by
definition, there exists a sequence {w:,} in W such that [|x 4+ w, [ = @. This
means that w,, = —x in V and, since W is closed, it follows that —x € W
and so x € W as well. This means that x~@, {,&.x 4 W is the zero element

of ¥/W.

If e @, then @x + w= a(x + w') where w' = @ *w € W. From this it
is easy to see that [lax + Wl = lalllx + Wk, 4. The case @ =10 is

obvious.
Finally, we prove the triangle inequality.
Iz + 57+ Wl ae — mf{lls+ 7 +wll v w e w}
=imfillx+r+w+wrww e W}
= tmf{llx + wil + lly + w'll: wiw' € W}
= inf{llx + wll:w € W} + tnf{lly + w'll:w' € W}

= x4+ W |y e ¥ + Wl g
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Thus, ¥ /W is a normed linear space. Now assume that V is complete. Let

{x, + W} be a Cauchy sequence in V/W. Then, we can find a

<

subsequence such that ||(-ka + W} - {xﬂfm + Iflr':t IWHF —

Now choose y; € x,, + W such that|ly, — ¥y ll = 1}{2;{ . Then the
sequence

{37} 1s Cauchy and so, since V is complete, 3. = 3 in V. Thus

IGes, + W)= r+ W), = llye—yll =0

Thus, the Cauchy sequence f{x, + W7} has a convergent subsequence
{r, + W}

and so the Cauchy sequence itself must be convergent and converge to the

same limit.

Hence ¥ #¥ is complete.

2.5 EQUIVALENT NORMS

Let X be a vector space and |[|.[I.[I. [I' be two norms on X. We say that

these two
norms are equivalent if there exists @ = @ aud & = @ such that
allzll = llx|l' = Bllxll, vxeX.

Theorem: 2.5.1

If |||l and |J. |I* are equivalent norms on X, then 4 & X is open with respect

to

[I.ll if and only if 4 & X is open with respect to |[. I’

Proof:

Assume that A is open with respect to|]. ||.

Forxed, 3r>0 i {rel|lr—vl<r}c 4

20



We claim that {y € Xt [lx — ¥ll' = ar}  {yr € X: [lx — ¥l <}
If v &€ L.H.S, then lx— ¥’ = ar

= lr—ylls Yalls—yl'= T =v

= yvERH.S

={relillx—7ll'c<ar} =4

= A te open with respect te |L||'

Conversely, assume that A is open with respect to |].||".

Then thereexistsr = @ I {rEX:|lx—¥lI'<r} =4

We claim that {y € :llz — yll < 7/} & O € & lx = yll' 5 1}
Letye LH.S, = lx— 3l =74

Then flx — yl = blle —pll = ¥fy b =r

- 3 € F.H.5

=2 A is open with respect to |. |I.

Result:

If |||l and [I.[I* are equivalent norms on a vector space, then {x,} is Cauchy

with respect to ||. || if and only if (x,} is Cauchy with respect to ||. |*.

Theorem: 2.5.2

Let X be a finite dimensional vector space. If ||.|| azzd |l. ||' are norms on

X, then
they are equivalent norms.
Proof:

Let {&,,85, ... &, } be a basis of X.

By a theorem, there exists ¢ = @ such that
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Zk, aell = c i, |a,| forall choice of e,
Let x £ X be arbitrary

Then x = T, a;e, for some @, ag, v, .0, €K

(8

2 e

=1
[ 53
; max
<D lalliell <K ) gl (where K= Ty llel)
=1 t=1

[l = *

& &
< ElZE, wpell =Z 1l

& Ll and |I.|I' are equivalent.

2.6 EXERCISES

(1) Show that the closed unit ball B(0,1)={x €X:|lx|l=1} in a

normed space X is convex.

(2) Show that the norm [|x|| of x is the distance from x to 0.
(3) Show that equivalent norms on a vector space X induce the same

topology for X.

(4) If two norms |k || and [l. [l on a vector space X are equivalent,

show that

()llx, — =ll = @ implies (ii) [|x, — x|l = @ (and vice versa, of

course).
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UNIT III: NORMED SPACES AND
SUBSPACES

Structure

3.1 Introduction

3.2 Objectives

3.3 Finite Dimensional Normed Spaces and Subspaces
3.4 Compactness

3.5 Exercises

3.1 INTRODUCTION

Finite dimensional normed spaces and infinite dimensions spaces are
important since finite dimensional spaces and subspaces play a role in
various considerations (for instance, in approximation theory and
spectral theory). In this unit we will introduces the most important
characteristic of finite dimensional normed spaces and subspaces such
as linear combinations, closedness, continuity results are introduced.
Here the maximum and minimum values of a continuous mapping have

been discussed.

3.2 OBJECTIVES

Students will be able to

Identify the basic properties of finite dimensional normed space.
Determine the compactness, completeness, continuity of a normed
space in finite dimensional space.

Recognize the difference between maximum and minimum values.

3.3 FINITE DIMENSIONAL NORMED SPACES AND
SUBSPACES

Theorem 3.1: Linear combinations

Let X be a normed linear space and {x,,x;, ..., x,] be an independent sets.
Then
Jez0 3 lax tagx, + ot auxllz ellay + lag |+ +la) ¥

choices of @, &g, v, ¥y EK .
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Proof:
Let s = ay| 4 lag| + - 4 la,|

If =0, then @y = @, =+ =@, = @ and denote the required inequality

follows.

If &= @, by dividing by s on both sides of the inequality, we get

By %, + Boxy + -+ Buxpll = e, where By By...fy €K with

*al8l=1 forsome¢, =@
Suppose inf{lIZi, Bexll: ByoBye-- B E K ZL B =1}=10
Then there exists a sequence (¥, = £, ™2, 8, "™ %y, e, f, ™2, ], with
Zi=y £, =1 ¥m € M, such that ||y, || + 0 asm — o

For each ¢ € {1,2, ...}, the sequence {,ﬁiu:'_. f.?ﬁ::', } is bounded in K. By

Bolzano-Weierstrass property, ﬁﬁ,um:"} has a convergent subsequence
which converges to f (sa¥). The corresponding subsequence of {¥,} is

denoted by {y, ,u2}

Using {@,'*™} is bounded, we find a subsequence {@;"*™} of {g,"*™}

such that 8,*™ =+ §, as(2,m) =+ w for some f,
Let the corresponding subsequence of {5, m} be {35, m}.

Proceeding like this at the m»™ stage we get a subsequence {y,,m} of

Uy m}
Such that & *™ = @ for some §, € & a= (@mm) = @
If ¥ = Loy ™ x, then 3, = 4, asm = @ VL€ {12, w11}

Now {[l,

I} is a subsequence of {llxllI],

b= F}E‘L‘I}Fﬁﬁ |I = |I.1-'?-|I.l where ¥= E?:lﬁi‘xf =¥= 0

On the other hand, since Zi,| ﬁ,ﬂmﬂ =1 vi€ {12 ..,u}
24



=T, 8| = 1=notall g,’s are zeroes

=since {#y,%q, v, &, ] 18 linearly independent = = @
Which is a contradiction

inf{lZizL Bix,ll: By By B, € K. EyIBl = 1}=¢,
=g =0

Hence the theorem.
Theorem: 3.2

Let X be a normed linear space. If Y is a finite dimensional subspace of X,

then Y is complete.
In particular, if X is finite dimensional then X is complete.
Proof:

Let Y be a finite dimensional subspace of X with a basis {g,€g, ., 8, ]}
By using theorem 3.1 there exists & = @ such that

&, el = ¢ Ty oyl Wy @y e, &y € K

Let {y,} be a Cauchy sequence in Y.

Let y,, = i, a,'™e, ¥im c M, for some suitable

c@q’“}' EE (— 1Z wtteore BN

By definition, gives & = @, there exists & € M such that

Iy, — ¥l =2 ¥Ymr =N

=a > |I.?m - .—?—Fll = |IE?=J_ ﬂ:pl:miﬂe_ E;Llﬂ:r[r‘}&r"

IEF=s(ar™ — ey

= e Zg|a,™ — a2 |a™ — o,

¥i= 12 ...m
{@,"™} is a Cauchy sequence in K ¥t = 12, ., m

25

Functional Analysis

NOTES

Self-Instructional Material



Functional Analysis

NOTES

Self-Instructional Material

Since K (= R er ] is complete,

a,™ s aq asm—w vi€{L2,.. 0}

If y = L, a8, , then

¥ = ¥l = |2y @™ e — Tiey eyl
=2y (™ — e Je |
= Iy e ™ = ay|llg | = 0 asm =
=¥, —+F asm— @

~ Y is complete.

Theorem: 3.3

Y is a finite dimensional subspace of a normed linear space X, then Y is

closed in X.

Proof:

Let & € X be a limit point of Y.

Then there exists a sequence {¥, } from Y, such that 3 = x @g1t = @ in
X.

={s=,} is Cauchy in Y

By theorem 3.2, Y is complete

Therefore, {3} converges to a point in Y

Since im ¥, = x, wehave x € ¥

=T
Y contains all of its limit points

Y is closed in X.

3.4 COMPACTNESS

A metric space M is said to be compact of every sequence (x,) from M has

a convergent subsequence.

26



Theorem: 3.4
A subset K of a metric space is compact, then K is closed and bounded.
Proof:

Let x be a limit point of K

Then there exists a sequence (x,) from K converges to x

Then by compactness x £ K.

(since (x,,) has a convergent subsequence whose limit x € K )

Suppose K is not bounded, for a fixed » € K, and for each

1 € M there exists &, € K such that d(x ¥} > mw Yon€E N

=(x ) has no convergent subsequence

(since every subsequence of (] is unbounded and hence not convergent)
=K is not compact which is a >«

=K is bounded.

Remark:

Converse of this theorem is not true. Consider {,d), where W is the set of

all

natural numbers and d is the discrete metric. Then B is closed and bounded

but not compact.
Theorem: 3.5

Let X be a finite dimensional normed space and 4 & ¥. A is compact if

and only if A is closed and bounded.

Proof:

By theorem 3.4, if A is compact then it is closed and bounded.
Conversely, assume that A is closed and bounded.

To prove: A is compact
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Let (x,) be a sequence from A

= {x, ] is bounded (since A is bounded)

=IAM>03:[lx,/l=M YreEMN

Let {&y,€q, wu, €, ) be a basis of X.

Then x, = 7, @, ®!g, for some suitable scalars q, "™ ¥n € N

By a theorem,

¢ =0 3 Ix,ll = |22, &, e]| = ¢ ERy & ¥neM

= for each £ € {1,2, ..., m)}, Erxﬁ“?] is a bounded sequence.

Then there exists a subsequence {z,) of (x,) Z: z, = TM, 8¢, and
g™ =B asm—w ¥i=12.,m

= If z=Ela B:s: then
Iz, — =l = E:"‘:ﬂﬁ,(”} - ﬁ,[lle,ll =@ grm— 02

= (x,) has a convergent subsequence.

= A is compact (since A is closed, zA)

Lemma: 3.6 (F.Riesz’s)

Let X be a normed space and Y, Z be subspaces of X. If Y is closed and Y
isa

Proper subspace of Z, then forevery 8 €(@,1) Izx€£Z =:||z|=1and
lyr—=zllz& Yyev

Proof:

Let v € Z/Y
If @m tnfflle—¥ll:¥y€¥}theng >0 (since Y iz clored)

Let & € (0,1) be arbitrary.

28



a
=‘-"ﬂ}ﬂ

Since @ = inf{llv— yll:¥ €Y} I €Y Za< lv—mwll = Tfs

Letz = -7 =—
z=¢(v—1y), wherec -

=zcZand|lzll=1
Claim: [y —zl| 28 Yy eV
Iy — zll = lly — cCv— 3]l
= clle™ty — v+ 3l
= ¢llv— (e™4¥ + 3y}l

=ca (sinee ¢ty 41, € V)

1

lle=35 1

= =g
“a
Theorem: 3.7

If X is a normed space such that i = {x € ¥ ¢ [|lx|| = 1} is compact, then
X is finite dimensional

Proof:

Suppose dim X =+ca

Fix x, € M be arbitrary such that x, = 0

Then the subspace generated by x, is a closed proper subspace of X.

Then by Riesz’s lemma, there exists x;, € X 3: [lxy|l= 1 and

Ix: - x-_ll Pl j‘_f‘g
Since the subspace generated by {x,,x,} is closed and properly contained
in
X, there exists xz €EX 2 [lxgll =1 and ||lx; — x,/l = l‘fzrt =12 ..

Proceeding like this, we find a sequence {x,) from X such that ||z, || = 1
29
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and lx, —xll2 15 Yi=12m,m—1 YREN
We note that (x,,) is a sequence in M such that it has no convergent

Subsequence

= M is not compact
Which is a =«
X has finite dimension.

Theorem: 3.8

Let X and Y be metric spaces and T:X — ¥ a continuous mapping. Then

the image of a compact subset M of X under T is compact.
Proof:

By the definition of compactness it suffices to show that every sequence

(3.)
in the image T'(M) = ¥ contains a subsequence which converges in T'(A},

we have y;, = T'x, for some x, € M, Since M is compact, {x,,) contains a

subsequence an;—} which converges in M. The image of ('T"ii;) is a
subsequence of (3.} which converges in T'(}]} by knowing theorem (A
mapping T:X —+ ¥ of a Metric space (X,d) into a metric space (¥,d) is
continuous at a point x, € & iff x, = x; implies T'x,, = T'x, ) because T

is continuous. Hence T(M) is compact.

Corollary: (Maximum and minimum)

A continuous mapping T of a compact subset M of a metric space X into R

assumes a maximum and a minimum at some points of M.
Proof:

T(M) = K is compact by above theorem and closed and bounded by

theorem 3.3 [applied to T(#4)], so that infT(M) € T(M), supT(M)

30



€ T (M), and the inverse images of these two points consist of points of M

at which T, is minimum or maximum, respectively.

3.5 EXERCISES

(1) Show that R™ and C™ are not compact

(2) Show that a discrete metric space X consisting of infinitely many
points is not compact.

(3) Give examples of compact and non compact curves in the plane
R

(4) If dlm ¥ = o= in F.Riesz’s theorem , show that one can even choose

g =1
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UNIT IV: LINEAR OPERATOR

Structure

4.1 Introduction

4.2 Objectives

4.3 Linear Operator

4.4 Bounded Linear Operator
4.5 Exercise

4.1 INTRODUCTION

In calculus we consider the real-valued functions on R(or on a subset of R).
obviously, any such is a mapping of its domain in to R. In functional
analysis we consider the more general spaces such as metric spaces and
normed spaces and mapping of their spaces.The mappings of such spaces
known as operator and an operator is generally a mapping that acts on a
elements of a space to produce elements of another space. In this chapter
the abstract idea of linear operators and bounded linear operators have been

discussed.

4.2 OBJECTIVES

The students will be able to,

Analyse the concepts of Range space and null space of linear
operators
The existence of inverse operator of T

Continuity and boundedness of linear operators

4.3 LINEAR OPERATOR

Definition: 4.1 A linear operator T is an operator such that

(1) The domain D(T) of T is a vector space and the range R(T)
lies in a vector space over the same field
(i)  Forall x,v € D(T)and scalars a, it satisfies the following
T(x+¥wl=Tx+ Ty
T(ax) = aTx
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Note: 4.1.2 D(T) denotes the domain of T
R(T) denotes the range of T

N(T) denotes the null space of T

Definition: 4.1.3 The null space of T is the set of all x € P(T) such that

T(xl=0

Example: 4.1.4

1. The identity operator F:X — X, defined by I{x)=xVxe X is

bounded and [Jf||=1

2. The zero operator defined by @: ¥ — X% x € X, is bounded and

lell=0

3. Differentiation: Let X be the vector space of all polynomials on

[a,b]. we may define a linear operator T on X by setting

Tx(t]l = x*(t) foreveryrx €X, where the prime

denotes

differentiation with respect to t . This operator T maps X onto itself.

Theorem: 4.1 (Range and null space). Let T be a linear operator. Then:

(a) The range R(T) is a vector space.
(b) If dim (T} = n = w,then dinB(T) =

(c) The null space N(T) is a vector space.

Proof: (a) We take any y,, 7, € R(T)
Teo preve: ay, + fy, € R(I')for any scalars g, #
Let 3,3 € R(T),
we have ¥, = Tx,, ¥, = T'x, for seme x,,x, € P(T)and
ax, + @x, € D(T)because D(T) is a vector space.
The linearity of T yields,
T(ax, +8xz) = aTxy + ATxy—ayy +B¥
Hence a¥, + 8% € E(I7.
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siiice ¥, ¥, € R(T"), were arbitrary.
This proves that R(T) is a vector space.

(b) We choose n+1 elementsgs, ... .3, ef B(T)in an arbitrary manner.

Then we have,

¥ =T Ve = TXgey fOr 50me Xy, Ko wewp gy 11 DT
siiece dim D(T) =mn,

This set {2y, Xy weup Xyeq jmust be linearly dependent.

Hence, @y + 1 @pasfps = U

For some scalars not all zero.

Since T is linear and T0=0, application of T on both sides
T(aryxy 4 o @1 ¥nar) = @y + oo F s Fgr ™0

This shows that {¥,,%., ... ¥,2,} 15 a linearly dependent set because not

all scalars are zero. Since the subset R(T) was chosen in an arbitrary
manner, we conclude that R(T) has no linearly independent subsets of

n+l. = dimR(T)=n
(c)We take any x,,x, € N{T)

Then Tx)=Tx, =0

Since T is linear, for any scalar @, # we have
T'::le-fﬁ:’.‘g} = CIT.TH_'I'-ET.T: = {.
This shows that {ax, + Bx;) € N(T") is a vector space.

Theorem: 4.2 (Inverse operator). Let X, Y be vector spaces, both real or

both complex. Let T:D(I") =Y be a linear operator with domain

D(T)subset ef X and range R(T) subset of Y. Then

(a) The inverse T™%: R(T) — D(T") exists iff Tx=0 implies x=0
(b) If T~* exists, it is a linear operator.

(c) If dim B(T) = n = wo,and T~* sxlsts, then dimR(T) = dimD(T].
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Proof: (a) Suppose that Tx=0 implies x=0.
Let Ta, = T, . Since T is linear,
T(xy— %) =Ty =Ty, =0,
So that %, — %, = @ (by the hypothesis)
Hence Ty = Txy = 2y = 25
T ~Lexists.
Conversely if 7 ~* exists with x; = @ and we obtain,
ITx,=Te=0=2>x,=0
This completes the proof of (a).
(b) We assume that T~ exists
To prove: T~ 1is linear.
The domain of T~! is R(T) and is a vector space (by theorem 4.1 (a)).
We consider any x,,x, € P(T') and their images
¥v. =Tx, ondy =Tx,
Then x, =Ty, anmdx, =T 'y
T is linear, so that for any scalars a ana & we have,
T(ey, + Byn) = alxy + 8Txy = T(axy + Bxy]s
Since, x; = T'l}f_,,-, thiz timpslies
T~ (ayy + Bra) = axy + fxy = (aT 1y + AT 13n)

And proves that T~ is linear.

(c) we have , dimR(T) = dim I(T)(by Theorem:4.1(a))
Al P (T} = dun R(T)by the same theorem

applied to T4,

35

Functional Analysis

NOTES

Self-Instructional Material



Functional Analysis

NOTES

Self-Instructional Material

Lemma: 4.3 (Inverse of product). Let T:X — ¥ and $:¥ = Z be

bijective linear operators, where X, Y, Z are vector spaces. Then the

inverse (ST)~%:Z — X of the product( the composite) ST exists and

.ESF}-].:T-H.S =1

Proof: The operator $T: X — Z is bijective, so that (ST}~ exists. We thus

have
ST(ST)*=1I
Where I is the identity operator on Z.

Applying §~1 and using §=1§ = [(the identity operator on Y), we obtain,
STIST(ST) *=T(ST) *=5"F=5""

Applying T=land usingT™"LT" = [, we obtain the desired result.
i)t = (s ~i=r-is-!

This completes the proof.

4.4 BOUNDED LINEAR OPERATOR

Definition: 4.1.5 Let X and Y be normed spaces D(T) be a subspace of X.

A linear operator T:D(T) =¥ is called a bounded linear operator if

3¢ = @ such that ||[Tx[l < cllxll ¥ x€ D(T)

Definition: 4.1.6 Let T be a bounded linear operator on D(T). Then norm

of T is defined by, (IT|l = 5up geyap (ﬂ%

Remark: 4.1.7 For every bounded linear operator T, [|T|| £ 4o

Example: 4.1.8

4. The identity operator i:X — X, defined by F(x)=x¥x€ X, is
bounded and ||| = 1
5. The zero operator defined by §: X — X% x € X, is bounded and

ol = o
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6. If A4 = (@ )yxy 1S @ matrix then A defines a linear operator on

E™n e BT = Ax, where
p g
y—| " )€ B wnd x— € E® Then this operator is
¥
bounded .
" " ® P!
Azl = iyl = > y? = (z n:x)
#=1 =1 %=1
" o] 8
Y (Yer)(X )
=l =l -
= ¢*[l=lI%,

where ¢* = 25;12E=1“EH.
Then [l4xl £ Cllxl
Since x is arbitrary, A is bounded.

7. The differential operator from the normed space of polynomials on

[« &] is not bounded. Because if @ (£} = t® ¥ ¢t € [a.&] then
NBE |l = llwp, -, | = suplnt®™| t€ [a.b]
= |m|bmt
Ife=1, |IDR|| - wasn—+w

Therefore D is not bounded.

Result: 4.1.9 If T is a bounded linear operator on D(T) then,

Tl = sup apersll T/l
ell=1

Izl

Proof: Clearly, supapmliTzll = ITIF 5P gayenir

[lell=1

Let x, € D(T) with x, = 0
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Th 1 = L
en let, w Tl

T, |l
== IT¥ll = supapm!ITxll
] lell=1
_ gl
Izl = SUPgzxan(T) el = ST#F.XED(T}"T%"

[lell=1

ITll = supzepcnl Tl
Ilell=1

Then 3,¢ = €, 3: [ITx|l = cllx|l.% = € (T}

Example: 4.1.10 If T is a bounded linear operator from D(T) in to itself
then [|T®|| < IT]® ¥neEN

Proof:  First we prove that if T;:X — ¥ andT,:¥ —+ Z are bounded

linear operators then [T, T, || £ |IT, [T, [l Since T, is bounded,
I, €T, ()3l £ N7, Tl v € %

= (17T, W=l

175 [IIT, |lis an upper bound for {Er&lﬂa xEX x= Ei}

NTTy = D75 0T

By taking Ty = Iy =T, we get

T2l = T

By induction we get

== ITN* ¥newN

Example: 4.1.11 If T is a bounded linear operator from D(T) in to Y, then
(i) x, = xasw = o tnD(T)lmpliesTx, — Txasn — o in ¥
(i1) N(T) is closed in D(T)

Proof: (i) By theorem (4.6) T is bounded iff T if continuous

Therefore (i) follows immediately.
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(i) M(I)={x e D(ThTx=0}
= {T7{o}}
Since {0} is closed in Y and T is continuous we have,
T-L({0}) = N(T)isclosed
Example: 4.1.12

Let T be a bounded linear operator from a normed space X onto a normed

space Y. If there is a positive & =i [IT#|] = &|l=|l ¥x € X, then

T~1; ¥ —= x exists and T~ is a bounded linear operator.
Proof: If x € X and Tx = 0,then 0 = ITx[l = &llxl
Izl e¢= lxll=C=x=0
= T Iz ome — one
= T~h ¥ — X exists (T is a bijection)

We know that T~ exists. Let y ¢ ¥ be arbitrary,

Since, f: X =+ ¥isonto, IxEX =Tx =¥
v L v Lap j'
e *¢ll= e =l = llxll = EIIFII

. 1
= I J‘IIEE‘:'&?

= Tt iz bowndsd.

4.5 EXERCISE

1. Let T:X — ¥ be a linear operator. Show that the image of a

subspace  of V of X is a vector space, and so is the inverse image
of a subspace W of Y
2. If'the product of two linear operators exists, show that it is linear.

3. Let X and Y be normed spaces show that a linear operator T: X — ¥

is bounded iff T maps bounded sets in X in to bounded sets in Y.
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Functional Analysis 4. Show that the range R(T) of a bounded linear operator T+ X — ¥

NOTES Need not to be closed in Y

5. Let T: & — ¥ be a linear operator and dimX= dimY= n. show that

R(T)=Y iff 771 exists.

Self-Instructional Material
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UNIT V: LINEAR FUNCTIONAL

Structure

5.1 Introduction

5.2 Objectives

5.3 Linear Functionals

5.4 Normed Spaces of Operators
5.5 Exercise

5.1 INTRODUCTION

Functional analysis was initially the analysis of functionals. A
functional is an operator whose range lies on the real or complex
plane. Functionals are operators so the previous definitions apply
further our goal is to show, if we take any two normed spaces X and Y
and consider the set B(X,Y) consisting of all bounded linear operators
from X in to Y. we will prove that B(X, Y) itself made in to a normed

space.

5.2 OBJECTIVES

The Students will be able to,

Analyse the concepts of linear functionals and bounded linear
functionals

Algebraic dual and canonical mapping of spaces and oriented
results

Determine the completeness of B(X,Y)

5.3 LINEAR FUNCTIONALS

Definition: 5.1.1 A linear functional f is a linear operator with domain in

a vector space X and range in the scalar field K of X; thus fi D(f) = K
Where K=R if X is real and K=C if X is complex.

Example: 5.1.2

The norm ||.|J : ¥ = B on a normed space (X, |l.|I) is a functional

on X which is not linear.

Space C[a, b] is a functional on X.
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Definition: 5.1.3 A bounded linear functional f is a bounded linear
operator with range in the scalar field of the normed space X in which the

domain D (f) lies. Thus there exist a real number ¢ such that for all

x € DFY, IFC) = ellll.

For a continuous linear functional f on D(f) the norm ||£[l ef £ is defined

by,

Al = W%:xeﬂufg%

Example: 5.1.4 Consider for each @ € R, f,: B* — R is defined by
filx)=a.x¥ xR
Claim: f_is linear
Let x, v € R®,
folxt3) = fm((xu.r-"-'rzr-"ﬁ + {}’u.ryzr}’a}}
= fCry + 32 + ¥ 25 + 3yl
= ay(x +3) + aglxg +39) +az(xg + 33)

= ayx, + a3 +apxg Fag i+ agxg tagy

= (ayxy +ayxg + apxg) + (@ +ayyy + agyy)
= a(x) +aly)
= falx) + £ ()
Let x € R¥ and & € R,
folax) = f(ax, +ax, + axy)
= (@, Ay, ag)(@x,, €%, @xg)

= ay(@xy) + axaxy) + aglaxy)
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= afa.x)
- a{s )
Claim:|[|£, || = [lall
For every x € R®

15 Cx) = la.x] = lallllxll (Byschwartzinequality

£ = llall
If @ = ct,.tem="+:"
Then Ifl 2 1 £ (0] = e x|
=55 -l
IF M = llell

Thus [If, Il = llall

If @ = @, then £, = 0 tmplies |F,ll=0]=0

Example: 5.1.5 LetC( a,&]) be the Banach space of all real valued
continuous functions on |a,k&] with the supremum norm. clearly the

integral operator f is a linear functional on €([a,&]). We recall that f is

defined by,
ﬁ- -
flx) = f x(t)dt, ¥z € C([ab])

Claim:||fll=b—a
b
f x{t]dtl

T
< f L (E)lde

£ (x)| =

;.
= TUPealez] 2 (E)] _[ de

= =l (B - a)
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NOTES
Clearly, the constant function 1 € €([a, &])-

Al = IFCL)l

[

=|b —al

Al = 1k — af
It implies that,[|Fll= & — a

Definition: 5.1.6 Let X be a vector space. The space of all linear

functionals on X is called the algebraic dual of X and it is denoted by X*.
X*={f:X = K: fislinear}

Clearly X*is a vector space with respect to pointwise addition and scalar

multiplication.

Definition: 5.1.7 The map £: X —+ X** is called the canonical map if C is

defined by e(x)=f,¥x€X where f:X"—=K defined by
flg)=glx) ¥g € X*

Lemma: 5.1 For every x € X, £, € X** (or) equivalently £:X — X**
Proof: Fix x € X be arbitrary.

To prove: f_€ X*

we shall show that f, is a linear functional on ¥*.

Clearly, for every g € x*, f,(g) = g(x) € K.

It implies that f,is a functional on X*.

Let g,.g, € x" Then,

Self-Instructional Material

folgy+ g) = (g, + g)x
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= (g1(x) + ga(x) }
=fle) + files
Let « € K and g € X* Then,
folag) = (ag)(x)
= a(g(x))
=af.(g)
Therefore, f.is a linear functional on X*.
= f. e X"
= X X"

Definition: 5.1.8 A vector space X is said to be algebraically reflexive if

X is isomorphic on to X**,
(ie.,)C(X) = X"
Result: 5.1.9 {:X¥ — X¥*™ is linear and one to one.
Proof: Let x,,x, € X
Claim: €(x, + x,) = €(x ) + C(x3)
Fustg= Fiy # Fipo0 X"
Let g € X* be arbitrary. Then,
-?“.;:J_-I-.x!.{gj = (x, + ) g

= glx) + g(xg)

= fo (@) f,(g)

=fo + £ (g]

Claim: For aeK andx € X,

Clax) = a(Cx)
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Functional Analysis Let g E X" be arbitrary

NOTES

farlg) = (g)(ax)
= afg (=)
= ufl4)
Hence C is linear.
Claim: C is one to one

We shall show thatif x € ¥ Ze(x) = @ thenx = @
clx) =@
= f.=0on X'
= f.(gl=0 forevery g € X*
= g(x]= @ forevery g € X*
Claim: x = g
Let {¥,} be abasisof =x.
Since, x € X, x= ZiLy ¥, for some v,
If we define a linear map g,on X, such that

- _ [Lifa=ua,
Gilve) = {El tfa =

By assumption we have g,(x) =0 fereveryi=12..1n

= EH:-"-‘} = E‘;Ez}ti C'_sprr_r)

=g foreveryi= LZ. .0
Self-Instructional Material

=x=0

Therefore ¢ is one to one.
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Theorem: 5.2 If X is finite dimensional vector space then dim X = dim X*
Proof: Let {g,.&,, ...e,} be a basis of X.

For each i=1,2,..n we define,

1Efi=
fileg)=a,;= Egt‘f‘f‘; ¢::

Thus {fi, fr e f} subset ef X*
Claim: {f,f,...f,} is linearly independent.
X, af, =0 Fforsome a,a, ...a,inK, Then

Since g; € X.fer everyj=12..n

"
ertﬂf_&;} =0 ferevery =12..n

=1

=g, =0

m [ £ Fsweefiy Jis linearly independent.
Claim: {f, f, ... f,} spans X
Let fFeX*bearbitary,
We claim that = Zk., fie,)f

Let x € X be arbitrary,

Thenx=ZF, Ff.e, =0 Fforsome @,

Fa)=FO) B = ) BiF(e))
=L =1

= f - zﬁ‘.ﬂ:“r}ﬂ

=
s AfL e £} s abasizef X7

=dnX=dinX " =mn
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Corollary: 5.3 If X is a finite dimensional vector space then X is

algebraically reflexive.

Proof: We know that the canonical mapping £: ¥ — X** is linear and one

to one

By theorem 5.9 dim & = dim X*= dim X**
Clearly, €; X — R(C) is an isomorphism.
=2 dim ¥ = dim R(C)
But R(C) is a subspace of x**
= Rlc] =X*

= L iz o te

= C Iz algebrically reflexive.

5.4 NORMED SPACES OF OPERATORS

Theorem: 5.4 The space of all bounded linear operators from X in to Y

B(X,Y) is a normed space.

Proof: Firstly, B(X,Y) is a vector space if we define the addition as,
(T, +T)x=Tx+ Tox

And scalar multiplication defined as,

(al)x= alx

Claim: B(X,Y) is a normed space

Norm is defined as,  ||T|| = sup, apimlITxll
[ell=1

We know that the norm (N1) is obvious from the definition and
lell = . frem|Tll=0

Wehave Tx=¢ %x € D(T),sethat T=0
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Hence (N2) holds, (N3) is obtained from,
sup = laTx | = supg = a7l
= | sup =y I Txll
Where, x € P(T'), finally (N4) follows from
U my (T + Tl = sy jymy 1Ty 4+ ol
= 5‘1'#‘:?||,¥||=1||T1:¥|| + M7l

Hence B(X,Y) is a normed space.

Theorem:5.5 If X is a normed space and Y is a banach space, Then

B(X,Y) is a banach space.
Proof: We know that B(X,Y) is a banach space.

To prove: B(X, Y) is a banach space. We show that {T}} is a a cauchy

sequence in B(X, Y), then T, = T" asu — o for some T € B(X.¥).
Claim: For each x € X, {T,,x} is a Cauchy sequence in Y.
Form,n N,
T x — Tpxll = 1T, — T )xll
= 1F = Fallllxll = @
as m,m = o (since,{T, } is a a cauchy sequence in B(X,Y) )
implies that, {T',x«} is a a cauchy sequence in Y.
Since Y is complete, for each x 3 37, € ¥ Such that, T,x = ¥, as n— o
Define: /X = Y by T(x) =%, Y x€X
Letx,x, €X

Tlxy+2y) = Im T (x) £ )

= ltm (7, () + T ()
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=l (T,(e) + lm (T (2)

=Tx;+Tx,
Letx € X and a ek,
T(ax) = lim 7, (ax)
- a7,
= bim T ()
=al'x

Thus, T is a linear operator.

Applying m — w2 and keeping n fixed, in
IT,x — Txll = 1T, — Tl llxl

Implies that T, — T" € B(X,¥)

Therefore B(X,Y) is complete.

5.5 EXERCISE

. If fis a bounded linear functional on a complex normed space, is f

bounded? Linear? (The bar denotes the complex conjugate)

Show that two linear functionalsf; == @ auned f7 == @ which are

defined on the same vector space and have the same null space are
proportional.

Show that the functionals defined on C[ab] by
fol(x) = ax(a) + Gx(b) are linear and bounded.

. What is the zero element of the vector space B(X,Y)? The inverse

of'a T belongs to B(X,Y)?
Show that a linear functional f on a vector space X is uniquely

determined by its values on a hamel basis for X.
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UNIT VI: BOUNDED OR CONTINUOUS LINEAR
OPERATOR

Structure

6.1 Introduction

6.2 Objectives

6.3 Bounded or Continuous Linear Operator
6.4 Dual Space

6.5 Exercise

6.1 INTRODUCTION

In this section the most important characteristic of linear operators as such
continuity, boundedness and its related results are introduced and for any
vector space it has its corresponding dual space consists of all linear
functionals on v, Here the dual space of normed spaces have been

discussed.

6.2 OBJECTIVES

The Students will be able to,

Witness the equivalent conditions on continuity and boundedness of
linear operators

Determine the boundedness of a linear operator in finite
dimensional space.

Dual space of normed space and suitable examples

6.3 BOUNDED OR CONTINUOUS LINEAR OPERATOR

Definition: 6.1.1A continuous linear operator is a linear transformation

between two vector spaces and it is defined to be ,
VE=0 33> 0 3 |lx—yll = &= [|dx— Ayl <€
Then the operator A between these normed spaces is continuous.

Definition: 6.1.2 Let X and Y be normed spaces and T: D(T)— Y a linear
operator, where P(T'] is a subset of X. The operator T is said to be

bounded if there is a real number C such that for all x € Z(T"),
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NOTES o .
Then T is said to be bounded linear operator.

Theorem: 6.1 (Continuity and boundedness). Let T:D(T) =Y be a

linear operator, where D(T) is a subset of X,Y are normed spaces. Then

(i) T is bounded
(i1) T is continuous on D(T)

(111)T is continuous at a single point x in D(T)
Proof: (i) implies (ii)
Assume that T is bounded.
case (i): If T=0, then clearly,
T is continuous on domain D(T).
Case(ii): If T = @, then given €=  and chooze §= E, then for X,y in
D(T) with [l — ¥l = &.
172 = Tll = 17 Cx = )
< ¢llx— ¥l

=l

Il
™
Mol m

m

ITx—Tyll <€
Therefore T is continuous on domain D(T).

(iii)implies (iii) is an obvious result from the statement.
(iv)implies (i)

Let x, € D(T) aned T is continuous at x,. Since T is continuous at x,,

Self-Instructional Material

given €= @, 3¢ > 0,3 ¥ € P(T) and lyr— x;3ll = &

1Ty — Txgll <€.
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Let ¥ € P(T) with yw= @ and cheose,x =

¥ &
x=xgll = ||7——
Il = ol ”IIFIIE

LrH

=d

ba| 2

= ||z — x5/l = &

Similarly, [IT% — Txgll = €

IrGe= sl = [ (72 x)
I (2
- s

Ze
= |7yl = T"F"

Therefore, T is bounded.

Lemma: 6.2 Let T be a bounded linear operator defined as [|[Tx|| = e|l=|l.

Then,

Ib’ll ;tx

(a) An alternative formula for norm of T is,

Tl = supepimlI T
[ldl=1

(b) The norm defined by [JT| = mmmﬂ'fil

| satisfies ( &) to (N,)

[l

of definition of norm

Proof: (a) Let ||x|| = @ and set ¥ = ( :]-x,w.ﬁ;ara x = 0.Then,

iyl = llxllfa =1
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NOTES ,

_— [lEx||

|l = H*erﬂiﬂw
(Ll

= s'rtzﬁxlaﬂi? “T Gx}"

= supyapin 1Tl
lorli=2

Henwee, ||T|| = supapirs|IT =l
[lell=L1

(b)We know that the norm (N1) is obvious from the definition and
lel=0. from lFll=0
WehaveTx=¢ %x € D(T),sethat T=0
Hence (N2) holds, (N3) is obtained from,
sup =y laTx | = supy =y |l 1Tl

= el st =, 1T
Where, x € P(T), finally (N4) follows from
sup e | (T + T )l = 520 gy 1Ty + Tl

=2 SUP =0 Tyl + ([Tl

Hence the proof.
Example: 6.1.3
Identity operator: The identity operator F: ¥ — ¥ on a normed space
x 2 @, is bounded and has norm ||f]| = 1.

Zero operator: The zero operator ©: X — ¥, on a normed space X is
bounded and has norm [[¥|| = @.

Self-Instructional Material Differentiation operator: Let X be the normed space of all polynomial

on J=[,1] with norm given by
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llxll = max|x(t)}l. t € J.
A differentiation operator T is defined on X by,
Te(t]l = x"(t]

Where the prime denotes the differentiation with respect to t. This

operator is linear but not bounded.

Theorem:6.3 (Finite dimension) If a normed space X is finite

dimensional, then every linear operator on X is bounded.

Proof: Let {g,.€;, . ... €,] be the basis on domain D(T).

For every x € (T}, X can be written as,
x = I, a,e,for some scalars a;,

Now, [ITx|l = IT Zi=y @&l

I
EZ lallITe,l
=1
"
ﬂfsz et
=l

Where k = mary,. . /|ITell

Therefore, ||T x| EE (2 N

k
=[xl
o

k
T=ll = - llc]

Hence, T is bounded.

Thus, T is bounded.

6.4 DUAL SPACE

Definition: 6.1.4 Two normed spaces X and Y are said to be isomorphic if

there exists a linear operator T: X — ¥ such that,
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@ ll=ll = lITell vxexXx
(i1) T is on-to
Note: One to one follows from (i)

Definition: 6.1.5 Let X be a normed space, the dual space of X is defined
by the normed space of all bounded linear functionals on X with point wise

addition and point wise multiplication and the norm is defined as,

el = Erwgmx%

The dual space of X is denoted by x'

Example: 6.1.6 The dual space of &® iz R®,

Proof: Let (a,, a5, .t,) € R®

Define: fo1 B® = R by £ (818 wr By) = Ly @8,

Then £, is clearly linear.

Since R™is finite dimensional

= f.e(R™)

Conversely, let £ € (F®)"

Put, @; = f(g;)] ¥i= 12, .1 Wwhere (g, is the standard basis of R™

Then for every x € R,

x= iaif‘:ﬁtj
=1

=
= &,
=1

= J“:r':?‘j_r'f‘:r r?n::[
= F.(x] and asR™

There is a one to one correspondence between R*® and (F™)'
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Further, |£,(x}| = |25, a8,

By Schwartz inequality,

= |/l = l=ll
_ el , ligld o

Now I Il = srtgignegn =E5= 2 <EG= Where @ = 0
by &
=]

= I£0 =221 = el

el
=2 Il =llall fa=xa

Ifa=0then f,=0=|e||=0=][fl
Therefore, ||lall = If Il ¥ a sE™.

Example: 6.1.7 The dual space of [* igI¥, where, I* = {(x,) = +w} amnd

withthenormllx,ll, = Z |, |

B=1

Proof: Let x= (x,) € I* be arbitrary,
Define: f1d° = B, by fi(3,) =Efmyx,¥, ¥ (v) €
Since, |:'n}rn| = |xulll}rnllm¥ nmEN,

By comparison test,

D < e
=1

Therefore, f 1 I* = R

Clearly f, ts nsar.

Conversely, If ( £*)*, then f(e, ) =x, YR€EN
Where {e,_} is the standard schauder basis in I*

(ie.) e, = (1,00, ...)
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NOTES

€y = {0,8,1, wusx Jand so on
e, = (0,00, ...1,0.)

Ify € ththen y= (y,) and Iz, |y = 4o

=F= FuSy
w=L
b3
= fly) = f‘(z Fﬁeﬁ)
=1

= f(Jl_I:L: E§=LFNEN

5
= llm ZH- ﬁ;f‘(ﬂﬂl

=fe(y)y where x = (x,]
Claim: (%) € ¥
Foreache € N, |f.Ce )] = IF M,
= |xp| 2 IfIl vmeEN
= llxll.. = sup, . x| = IF = £
= xe 1%

For xe [, ve I*;

F0I= [} w

o
= E |2 5 35 |
Self-Instructional Material n=1

L=
Sy Il
m=1
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NOTES

= lIfll. = lixll.

= Ifll. = ll=ll..

Hence the proof.

6.5 EXERCISE

1. Show that inverse of a bounded linear operator need not to be

bounded.

2. Show that an operator T is bounded iff it is continuous.
3. Show that the dual space of g 15 I*.
4. If X is a normed space and dim x = @&, show that the dual space

of x' is not identical with the algebraically dual space of x*

Self-Instructional Material
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UNIT VII: INNER PRODUCT SPACE

Structure

7.1 Introduction

7.2 Objectives

7.3 Inner Product

7.4 Orthogonal

7.5 Orthogonal Set

7.6 Orthonormal

7.7 Gram Schmidt’s Process
7.8 Total Orthonormal Set
7.9 Exercise

7.1 INTRODUCTION

Here we will introduce inner product space and orthonormal sets and
sequences and also gives some examples. We differentiate spaces which
are inner product space or not. We will discuss about orthonormality of
Hilbert spaces and some of its examples. Some important results in Hilbert

spaces are determined by theorems.

7.2 OBJECTIVES

The students will be able to

To understand the inner product space.
Describe orthonormality of Hilbert space.
Identify which spaces are inner product.
Understand parallelogram law.

To solve the problems related to inner product space.

7.3 INNER PRODUCT

Let X be a vector space over K, where K =R or C. A function <:,>>from

X xX — K is called an inner product (or a scalar product) on X if

(1) «xty ,z>=(x,z>t<y,z>

(1) «x,y>=wmX,y>, vuckK, ¥i veX

(1) «x,y >=<¢, 1), ¥R TFEX

(iv) «x,x>>0,%¥=zeXand (x,x>=0iff x=0
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Example:

1. R"™ is an inner product space with respect to the inner product
defined by
(g, Xy g e (W1 > Fao ¥ = Zii=y X ¥
2. €% is an inner product space with respect to the inner product
defined by
2y s Xgr g Lol ¥y » FooenFy) = L=y Ty
3. 1%s an inner product space with respect to the inner product defined

£

{

4

1S an

£

by
'Exra:['{?rﬂ) = z?{.:=lxﬂ-}rﬂ

oz e 1D

Here I*= {( x,) :xz e R %RENEEZle;} = w}}

() = FiR—=C: flisrLebesgue measurable, [
' |F )P = oo

inner product space with respect to the inner product defined by

tg> = [ Fx)glx)dx

Results:

1.

Schwartz inequality:
Ifx,y € X, then [¢x,3)| < <X ,X> <y, y».
Proof:

Let & € K be arbitrary.

0 £ {x — ayx —ay} = {x,x — ay}+ {—ay,x — ay}

= {x, 2kt (x —ar — a(ly ) T (v —ay))

= {x, 2} — @2, ¥} — @y, 7} + a&iy, ¥

If 3 = @, then clearly , {x, ¥} = 0

6,0 = {x, 04 0} = {x,0} + {x,0 = {x,0} = O

If ¥ = @, by definition, {y, ¥} = 0
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Functional Analysis s [{xri? =0 = {x,xky ¥}
NOTES
v&0, let a= gg; then (1)
s ey~ 0
|6z 3H* = € by
2. Every inner product space X is a normed space with the norm defined
by
|2 l|l= b, xk, T € X.
(i) clearly || = l|= 4/{x, x} = 0, ¥x € X.
(1) = |I= @ = {x, x} = 0 = x = 0 (By condition 4)
(i)l ex | = ffax,ax} = famix,x}
=/laP{x, x}
=al Il =
(iv) Let x,3 € X,
I x+y IP= {x+¥.x+ 5}
= fxox) + (. yk + nxk + (v
= N I® 41 3 1+ 2Redx, 40+ Gx.3) = (3x))
= lx II* 41 3 17+ 2|Redx, ¥}
= 1 x 1% +0 ¥ 174 2[6x 3
el nstractional Material <l IF 41 3 14 2 1 x Il 3 | (By schwarhz inequality )
= (llx Il +l 1)
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Alat izl xl +0xI0

Remark : The Schwarz inequality can be written as

[z 34 21l x 0141 ¥
3. Paralogram Law:
In an inner product space X,
x4+ yIF 4+l x =3 17 = 2 (0= 1% 411 17) Yx,y € X
I+ 12+l x—yIF={x+y,2—yi+ {x—y.x—5}
= (e, xk + b yk + drak 4 (e )+ ex)
—G 3 — (k4 ()

=20 x 1*+1 ¥ 1%

7.4 ORTHOGONAL

Let ¥ be an inner product space. If x,3 € X and {x,} = 8. We say that x

is Orthogonal to y (or) x L ¥
4. Pythagorian identity:
If x,3 € X such thatx L ¥, then || x4+ IF=ll 2 I +1 3 I°
Proof:
Ix+ ¥ IF= fx+y.x+ ¥
= {x,xp+ 42, 30 + (nxp 03

=l x 1%+l ¥ I* (% x5 = {mxk = 0)

7.5 ORTHOGONAL SET

Let X be an inner product space. A set § &= X is said to be an orthogonal set
if e} =0, ¥r,r €S withx = yandx 2 0¥z €S

1. If S is an orthogonal set in an inner product space X, then S is an

independent set.

63

Functional Analysis

NOTES

Self-Instructional Material



Functional Analysis

NOTES

Self-Instructional Material

Proof:
Let xy,.%g...X, ES be arbitrary. If FE, @x,=@ for some
@10 @y € K, thendEih, ox,x0= 0¥} € {L2....01}

="zr=1ﬁtixpﬁf} = ?f |5 {1:2,-" -ﬂ}

ﬁf%}ﬁf;’= ﬁ‘ Tff E l,lz,lll lﬁ
a; || x; I°= 0%} € 1.2,...n
a;=0,% € L,2....n(~l x; I ©)
= S is linearly independent.

2. Polarization Identity:
Let X be a complex inner product space. Then for every x,¥ € X, we

have

Gyt =20+ 3 1% =z —y P+ 02+t I =l 2= iy 1%)
Proof:
lx+3 1 =l x=yI%= {x 432+ 57} = {x —3x —¥)
=(x,xp + {3k + (nxk+ 05— [nxd +{n -+ {—pmxk H (- —r)
= 2(x.3) + (x.¥¥)
il x + iy 1P x — ity 17)) = dxc 4 byox 4 i) — {x — by x — by}
= ey 4 Gx, tv 4 (v 4 v v — [k 4+ (e, —tv)
H—tyxt + {(—iy, —iy}]
= 2(4x, ) + (R X))
= 2{x, ¥k — 2{¥ x}
I+ 3 1° =l x=y 1%+ il =+ t7 17 x = &y II*)

= 2w,y 4+ 2yak 4+ 2dx v — 24y, x}
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= 4{x. ¥

1
e L e EE e R e B )

3. If (&, 1.1} is a normed space satifying the parallogram law, then X is an

inner product space.

4. Let X be an inner product space. If x € ¥ = éx.u} = {x.v¥vu. ¢ then

U=
Proof:
Given that{x, u} = {x, vive € X
=i u—vi=0 TxeX
Sfu—rvu—vi=g
I u—vi*=0
le—wl=0
u—r=1{
U=¥

5. Let X be an inner product space. Then inner product is continuous on X

(or) prove that {x, v, } =+ {x, ¥} as 1w = 0@ whenever

el s - )
Proof:

Wehave | x, —x|= 0, | 3y —x|= 0 asn — =
0= [{xpeFul — 2 = [{rp. 358 — 42070 F g, 3 — (203
= |{xpr Pk — X ¥ + {23 — (o M
= |60 ¥ — FH + {255 — 2, 3%
Sz 3 — 3 0+l x,— 200N

2zl .8 +®) ¥l asn -2
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Functional Analysis = {x,,, ¥} — (X, Flase =
NOTES
6.Ifx, Ly¥n EMand x_ + xasw—mthenx Ly
Proof:
Now fx, yp = (lim x, v}
= lm x,., 7}
= O(sincex, L ¥)
=xly¥y
7. Prove that [¥ is not an inner product space ifp % 2.
We show that parallelogram law fails in IF if @ = 2.
Let (x,) be (1,1,0,0,...) and (3 ) be (1,—1,0,0,...)

I () = Ez |2, [F)HP = (1 + 1) = 24F

m=l

I () + () =1 (20,0,...) Il ,= (27)4% = 2

I () = () 1,=1 (02,0.0,...) Il ,= (2F)¥F = 2

I Ge) + () 1241 Ge) = () 12= 8 = 2(25 + 2F)

ApEl
8. Prove that {[a, k] is not a product space.

Proof:

We show tht parallelogram law is not satsified in €[a, &].
Let £(£) = 1t € [a,b] and g(1) = =vt € [a,b].f. g € C[a, k]

I £ 1= 8UPoegalF (] = L1 g =1

Self-Instructional Material

But | £ + g I= sup,aps (1 +0) = 2
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t—a
I =g I= epraem(l -3 =) =1

IF4+g P H F—glP=5=4=2(1FI +l g %)

« C[a, &] is not an inner product space.

7.6 ORTHONORMAL

A subset A7 of a Hilbert space is said to be orthonormal

. 1 ifx=1y
1f{x,_?}(0 :fth}r,'ﬂ'x,yeﬂ

In particular, a sequence (x,,} is said to be orthonormal if
{XpgrXg} = O VN, 1 € M Where &, , is the kronecker delta .

Example:

Let E*([0,2%]) be the Hilbert space consisting of real valued function on
[0.2x] with the inner product {f, g = f;“ f(e)gleide, v f, g € L*([0,2r])
If

fo(t) = =Vt € [0,2x]

fu(8) = == ve & [0.21]

g.(t) = =2t € [0,2x]

¥

then {f;, £, &, 1 € [} is an orthonormal set in E*([@,2x])

. -1
£ == = —_—ilt =
I &5 Ii= (o ful L 5 de=1

T comt

at=1

o fi = [

Theorem:7.4.1

Let (&) be an orthonormal sequence in a Hilbert space H. If x € H, then

AP (2R T P
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Functional Analysis Proof:

NOTES First we prove that for any m € M,

> lnedPsixr

m=l

g=llx—ZM, {x.e,0e, |

= {x _Er=l &FEH}EH’K _Er=l {x, EH}ER}

= {-"frx} - Ezi:j_ {xr'gn}{-xr‘gn}_zi?:j_ {X,EH}{EH,X} +

E?:u_ E?:u_ {K,EH}{X,EI}{EHpE}-}
=|| = ||:_z :?:1 |{xr EHH: +EE=1 |{xrgra}|:
= = ":_ ?:1 |{x-'&ﬂ}|:
= Inzy [z 1 =1 x 1P

Since this inequality is true for every m € M, allowing m — oo, we get

> M M Sl P
m=l

Remark:

If {&,) is an orthonormal sequence then () is linearly independent.

7.7 GRAM SCHMIDT’S PROCESS

To obtain an orthonomal sequence ({g,) from a sequence {(x,) of

independent  vectors such  that  span E T SV
span{e,.&,...e, Jir & M.
Step:1

.
Self-Instructional Material Let El = llzen, I 'E&Eﬁ |I El |I_ 1
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Step:2

xp  Sxgegey

[
" Mxy —fxge e |l

Thenlle; =1

and {g,,e,} =@
Step:3

Let € = e Ly T T Then | € =1

g = gy By gty T, B

and {e,, ez} = 0 simillarly {g,,e5} = 0 Proceeding like this, at the #™stage

we get

e = %y = Lial (XBiley
T lxg —IRIT g ie |l

clearly, {e e =0k =12,...u — Llle, =1
Theorem:7.5.1

If (e, be an orthonormal family of vectors in a Hilbert space H, for every
x € H there exists atmost finite or countably infinitie number of Fourier

co-efficients {x,&_} which are non-zero.

Proof:

For each m € H,

1
Let §,,, = {a: [{x, e} > 2}
we claim that, 5 is a finite set ¥ € M

Suppose 5, is not finite, then there exists a infinite sequence {e.) of

~m

vectors from (g} belongs to 5,

By Bessel’s inequality, we have

D knell=lx =) el
#=l %=1

is convergent, |{x, e }* =+ @ asn — oo
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Functional Analysis {x, En:} — Jasnw — o2

NOTES
For € = 1/m, then there exists n € M =

(el = = ¥n €N
which is a contradiction to g, € 5, ¥z EM
s §,, 1s a finite set.
Let § = fa: |{x, )| = 0}
Claim: 5 =uZ_, 5
clearly, s, S S¥Ym €N
Let @ € §. Then {x,e_} = @.
= [¢x,€,)| > @ then for & = |{x.e ) > 0
choose 1t € M =: 1/ = |{x,&,}|
=a €5, CUL-, 7,
=3 e Fy
Since each S, is finite, § is either finite or countably infinite.

Theorem:7.5.2

Let (&) be an orthogonal sequence in a Hilbert spae H and x € H, then

(a) Z=., ,e, converges if and only if T, |e,|* converges .
(b) If £, a, e, converges to x, then @, = {x.e Yon €N
(c)Forevery x € B , £%., éx e ke, converges.

Proof:

Lets, =X%, a.e. and g, = |a, |*¥neEN

for mz = =, we have

Self-Instructional Material n n
| 5 — 3 1Pl Zegsy @go I

= {Litne1 TpbpLimnsy ﬂ’;r&_:}
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= Li=nsl Li=ns1 Tl Cp e}

=Zienay lag* =0, — o,
= (&,) is a cauchy in H if and only if (&) if cauchy in K.
= Tomy By 8, CcONverges in B & %%, |a,|* converges in K
(b) x = Efsy @q6, and 5, = I, a8,
Fix m € M be arbitrary ,
For % = m,

{7, R k= Z Ep g B

k=L

&, = F}l_:ﬂq{&ﬁ,&m} = {JE};S‘H,EW}

= {x.e )

(c) By Bessel’s inequality,

1=
Z [z, e, |* =1 x 1P o0

n=1
By using (a)E¥z, {x, ¢, e, converges.

Theorem:7.5.3

Let {e,) be an orthogonal sequence in a Hilbert space. If x € H, then every

rearrangement of -, {x,8,}g, converges to the same limit.
Proof:
Let m: N = M be a bijection and wry, .y = €,%n € N.
Letx, =27, {x.g. e, and x, = E=_, {x,w,, bw,,
claim: {x; —xg,e.b= C¥n e M
(g — %, 8,0 = (Lozy (68,08, — Lay (W W, 8)
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= {.1‘, Ep} - {xrwm(p}}
= {)’:r Ep} - {xrﬁp}

claim: {x; —x,,w =0vm €N

{xl_ x:pr} = {E§=1 &’EH}&H - E$=l {erm}er P:i
= (X 8p) — (X Wy)

- {x, '5}} — ¢ ':p.}

-

Now || &, — 2, 1= éx, — 20,2, — 2, =0

=3|| .'fl— .TE |I= !]:L‘Ei = If

7.8 TOTAL ORTHONORMAL SET

Let H be a Hilbert space. An orthonormal set if is said to be total if the
span of i is dense in H.

Remark:

A total orthonormal set is called an orthonormal basis and M is a total
orthonormal set if and only if A{ is orthonormal and M, = {&} ( that is, if
x L m¥m € M, then x = ).

Theorem:7.6.1.

Let H be a Hilbert space and M & H be an orthonormal set. A is total if
and only if | = "= Iy |{x. e }|", where (&) & M = {x, e} = 0%x € H.
Proof:

Assume that || x |I*= I, |[¢x. .} *wx € B To prove M is total, ( we show
that x L mvm € H)

=x=0
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By assumption, we have {x,e, = 0¥k
=Z [z, e} =0x|=0=2x=0
e

= M 1s total

Conversly, assume that Af is total. Let ¥ = &, ix, e, }e, (By theorem this

series converges)

Claim: x — ¥ | m¥m € M
case(i): {x,m} =0 = m = e VK
f — o} = {xpam} — {yrm}
=0-Z, (xepkegm)
case(ii): {x,m} = 0 = m = e, forsomeK
fx — yom} = {x, ek — {1 e )
=X, &} — Ly §X085 08 € )

= (X e} — (X oyl

=0
=Sx—yLlmVme M =x—y= 0 (since M is total)
=y= EK {xepher
Now, | = 1*= fx, x}
= {Zi=y bosy e diny (xosphegd
=Lz E}E=| {xrﬂk}{xr_‘fi::m*‘:ﬂkrﬂ;}

= Ef:u. |{;‘:’,&,{}F

Hence the theorem follows.
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7.9 EXERCISE

I Prove that {x,3} = (I x +3 I =l x— ¥ IY)
2. Prove that Re {x,yF = £(I 2 + 3 I? =l x — ¥ %)
3. Prove that Im {x, y¥ = _"i(u x+yIP —lx—wvI%)

3. If an inner product space X is real , show that the condition || x l|=]] ||

implies {x + ¥,x — ¥} = @. What does this mean geomentrically if X=R?>?
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UNIT VIII: ANNIHILATORS AND
PROJECTIONS

Structure

8.1 Introduction

8.2 Objectives

8.3 Annihilator

8.4 Orthogonal Projection
8.5 Exercise

8.1 INTRODUCTION

This unit discuss about the annihilators and projections in Hilbert spaces.
Also discuss about the important results of annihilators and theorems. We
will provide some examples to projection map on Hilbert spaces. At the

end, we provide exercises to readers.

8.2 OBJECTIVES

To describe the annihilator set in Hilbert space.
To define the projection maps on Hilbert space.

Describe the orthogonal projection maps on Hilbert space.

8.3 ANNIHILATOR

The annihilator = of a set M = @ in an inner product space X is the set
M={xeX|x LM}
Thus, x € M= if and only if {x,w} = @ for all v € M.at

Result:

Let ¢ & M © H. Then
(i) M+ is a subspace of H.
(ii) M+ is closed in H
(iii) M = M4t
(iv) If 4 = B, then 4= 2 B*
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Functional Analysis Proof:

NOTES (i) Let x,,x, € M*,%,8 € k. Then to prove ax, + fx, € M*, we show

that let 3 € M be arbitrary. Then {ax, + fxq, ¥) = @fwy, ¥+ Fxq,34=0

(shece x, € M+, x, € MY
(ii) Let x € M*, then there xists (x,) in M+ such that x, — x as n — o
Forevery y € M, {x, 3} = {;ﬂxw?b
= Ei'q‘q X, 73
= Q(since x, € M-¥n € N
=x € M*
= M*isclosed.
(iii) Since for every x € M, x L ¥ ¥ ¥ € M* obviously M = M+t
(iv)LetxeBL=2x Ly¥reEB
=x Ly ¥yre A(sinced S B)
=x €At
=Bt cat
Lemma: 8.3.1
Let ¢ == M &= H. M = M** ifand only if M is a closed subspace of H.
Proof:
Obviously, M = mM**.
= M is a closed subspace of H.
Conversely assume that, M is a closed subspace of H.

WKT, M & M**

Self-Instructional Material

Now, Let » € M*+ C H.
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by previous theorem, H = M & M*
= x =y + r,where ¥ € M,z € M*
claim: r € M+
Let v € M+, then {z,v} = {x — ¥, v}
={nri—ari=0
Dz lM Dizn=02z=02x=yvEM.
Lemma: 8.3.2

Let M be a non-empty subset of a Hilbert space H. Then span of A is

dense in H if and only if M* = {0}.

Proof:

Letv = gpan ef M

Assume that ¥ is dense in H.

Letxe M-S H

since # = H, there exists (x,,) from ¥ Z:x, - x asw —+ w.

Since x € M*,wehavex LV = x Lx,¥nE N

={xx =0 Yn€EMN

Now, ¢, x} = {Um, _ oo xp =lm _ ¢x . x}=0
= =
= Mt = {0}

Conversely, assume that M+ = {0}

clearly, ¥ is a closed subspace of H.

= H = & P+ (by theorem)

LetzePEt=2z Ly YreEP =2z Llyv¥reM
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DreMi=az=8
=7+ = {0}

= H=F=wisdensein H..

8.4. ORTHOGONAL PROJECTION

The linear operator Py : H — H that maps x to vis called the orthogonal
projection onto V. There is a natural one-to-one correspondence between
the set of all closed subspaces of H and the set of all bounded self-adjoint
operators P such that P> = P.

Examples:

(1) Let Y be a orthogonal subspace of H then the map f is from H
onto Y.

(i1) The map g is from Y onto Y.

(iii) The map H is from ¥+eonte {0}

8.5 EXERCISE

1. Let A and B = A be nonempty subsets of an inner product space X.

Show that (a) A = A++ (b) BL = A* (c) A*++ = 4+
2. Show that the annihilator M+ of a setM = ¢ is an inner product space

is a closed subspace of X.

3. Show that a subspace Y of a Hilbert space H is closed in H is closed in
Hif and only if Y= ¥+-.

4. If M s ¢ is any subset of a Hilbert space H, show that m++is the
smallest closed subspace of H which contains M, that is, M** is contained

in any closed subspace Y&« H such that Y2 M.
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UNIT IX: HILBERT SPACE

Structure

9.1 Introduction

9.2 Objectives

9.3 Hilbert Space

9.4 Convex Set

9.5 Direct Sum

9.6 Orthogonal

9.7 Isomorphic

9.8 Hilbert Dimension
9.9 Exercise

9.1 INTRODUCTION

In this unit, we introduce the concept of Hilbert spaces and convexicity. It
introduce the notion of complete space of Hilbert space through definitions

and theorems. Finally this unit ends with some exercises.

9.2 OBJECTIVES

The students will be able to

Understand more about Hilbert space.
Describe the direct sum between two vector spaces.

Determine the isomorphism and Hilbert dimension.

9.3 HILBERT SPACE

A complete inner product space is called a Hilbert space.
Example:
1. Consider the space R, For X = (x;, %o, X)) Y = (¥ Fou ve Fy)s WE
define
(ep) =T, w¥

This defines as inner product and the norm associated to it is the norm

I 12,
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Thus [ is a Hilbert space. In the case of €7, the {nner product s given by
(my) =Ly x5

Again the norm || . |2.

9.4 CONVEX SET

A subset A of a vector space X is said to be a convex set

ifill-tlx+tredvxryedand¥te [01]
Theorem. 9.4.1

Let H be a hilbert space and Af be a proper complete subspace of H. For

every x € H/M, there exists unique ¥ & M =
| x— ¥ l=int{ll x—1m ll:m € M}

Proof:

Let & = inf{]] x —m |l:m € M}

Then there exists a sequence () from M =: || x — m,, |= &§,%n € M and

d,+fasn—wletl, =x—m_ ¥YueHN
We claim that (m,,) is a cauchy sequence in M.
Now
Il mey — g 2= v — w5 13= =1 vy + v 1%+ 21 v, 12 +11 v, 1%}
= =l 2z —m, + m; P+ 2(87 + &)
=4 || x— 1/2(m, + m) I°+ 2(87 4+ &)
= =4d? + 28] + 287 = Dasl,j = w,

= (m,, )} is a cauchy sequence in M. Since A is complete , m, — ¥ as

1 — w2 for some y€ M.

s llF—x =l lmm,— x|
P+ O

=lim [|m,— x|
RS
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=lmd, =4

-
=inf||x—m|:m M

To prove the wuniqueness of 1y, let there is ¥ €M 3
I¥ —xl=lly—x|=&
Now,
ly=3 1 =ly—x—(—x)IF
=2y —x P H o —x -l y—x+ 3 —x |
=4d%—| y +5' - 22 I
=48 -4 12(y+ ) - =
£48* —4d*=0
=y=y

Theorem: 9.4.2

Let M be a proper complete subspace of a Hilbert space H. If x € HiM
and ¥ € M = || x —  |= inf{ll x —m |:m € M} then

x—FLM|(le)r—y Lm.¥m € M]
Proof:

Suppose there exists m, € M =: {m,.z} = @ where =z = x — y. For every

a € k, Consider
| = — amy [|I°= {z— am,,z— am,}
={z, 2} — @z.m,}— alm,z} + |a|*(mm, )
=l z 1*— —&Fz.m b — ablm .z + |el® | my 1P

zam b 2 3 tEmy
Put = ’ITI‘I-;. (Note that m, = @) || z — am, [|°=I = |I*— ﬁl‘r;{z,ml}
- 1

. . mmg b
=] z - am, |*=| =z [F= 2° —M =
Il ey I
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Functional Analysis Now z— am, = x—y¥—am;=x— l:,?"' mJ

NOTES
2| z— am, |= §(since y+ amy € M]
which is a contradiction.

A ozl M.

From the above two results we have the following. Given a closed

subspace Y of H and x € X, there exists unique

FEVY:ly—xl=Inf{l v—x v €E¥jand x —y LY.

9.5 DIRECT SUM

Let ¥ be a vector space. We say that X is a direct sum of its subspace A
and B if for every x € X can be uniquely written as x = ¥+ z, where

yeEAdandze B. Wewritethisby ¥ = A B.

9.6 ORTHOGONAL

Let H be a Hilbert space and & be a non-empty subset of H. The
orthogonal complement of Af is defined by

M*=[x€Hixly ¥ y €M}

Theorem: 9.5.1

Let ¥ be a closed subsapce of a Hilbert space H. Then H =¥ & ¥+
Proof:

By earlier results, for every x € H, there exists unique y € ¥ =
l¥y—xll=inffl v—x: v€ ¥landx — ¥ L ¥
Putz=x—y,thenx=y+zandz L ¥ (or) z€ ¥*
2H=Y+¥*

Toprove H=¥Y @¥* ifr=y4z=3'42

Self-Instructional Material

such that ¥, 3 € ¥ andz, z' € ¥* Then
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Recall:

A topological space X is said to separable if X has a countable dense set.

Theorem: 9.5.2

Let H be a Hilbert space. Then
(a) H is countable.
(b) If H has a orthonomal basis, then H is separable.

Proof:

(a) Let A be a countable dense set in H. If B is an orthonormal basis of H,

then we show that B is countable. If x, v € B with & = w, then
=3 11%= {x — 2 — ¥}
= {x,x} — {5.¥— Onx} +{F )
=2
l£—w¥l=+2
If N, —{zeHlz—zll=S) and N,—{z €B:ll 2=y 1<}, then

3

since A4 is dense in H, for every x € B, there exists at least one point say

z, EN_NA Fixsuchz e N_n4,

Define f: B =+ A by f(x) ==z Wx€ Bfis 1-1
~.cordinality of E = cordinality of 4

sine A is countable, we get B is countable.

To prove let {&,: % € N} be an orthonormal basis of H.

Let § = {ZR=y Grbrih € Gl 0T §X )V K= L2y ity it € N}
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Let ¢ = @ be given. Since {g_:m € M} is an orthonormal basis of H, for

every x € H, we have x= Z=, {x e, e,

= II.].I“.H — Zk-l{xp ER}EFC

For this & = @, there exists N € M = || Zityay (.8, e, =

=R

Since @ is dense in R for each k=1,2,...N

choose g, €@ = |{x. e} — G| = %

If gy =Z¥., gpe. then v € S

Claim:y € {zeH: ||[z—x|=¢}

Tl T =
| ¥—x = IIZ T -Z &rrgk}ﬂk__z fx.eg e, |
k=1 k=1l k=N+1

S1) (e-meded 41 (nedel

R=E1

< "4‘{2';;=1| Gy — iz e )| +§

-+

A
[N ]
vale

i}

since S is countable, H is seperable.

9.7 ISOMORPHIC

Let H and H be Hilbert spaces one a same field K. H is said to be

isomorphic H if there exists a linear bijection T from onto H such that

fe, ¥k = (L, T.)vxy € H.
Example:

If {ex}x e 3 is an orthonormal basis of H, then the map @ : H — [A(B)
defined by @(x) = (x, ex)kes is an isometric isomorphism of Hilbert spaces:

it is a bijective linear mapping such that
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(@x) , 2(y) = Gyt

for all x, y € H. The cardinal number of B is the Hilbert dimension of H.
Thus every Hilbert space is isometrically isomorphic to a sequence space

2(B) for some set B.

9.8 HILBERT DIMENSION

Let H be a Hilbert space. The Hilbert dimension (or orthogonal dimension)

of H is defined as the cordinality of any orthonormal basis of H.
Example:

P(B) has an orthonormal basis indexed by B, its Hilbert dimension is the
cardinality of B (which may be a finite integer, or a countable or

uncountable cardinal number).

9.9 EXERCISE

1. Show that an inner product space of finite dimension n has a basis

{b,, b, ... b Jof orthonormal vectors.

2. If 2 L w in an inner product space X, show that
I+ ¥ 12=1x 1% +1 3 I

3. If an inner product space, ¢, up = §x, vt for all x, show that u=v
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UNIT X: REFLEXIVITY OF HILBERT
SPACES

Structure

10.1 Introduction

10.2 Objectives

10.3 Reflexivity of Hilbert Spaces
10.4 Exercise

10.1 INTRODUCTION

The concept of Hilbert space named after David Hilbert, generalizes the
notion of Euclidean space. It extends the method of vector algebra and
calculus from the two dimensional Euclidean plane and three dimensional
Euclidean space in to infinite dimensional space. In this section we discuss

the reflexivity of Hilbert spaces.

10.2 OBJECTIVES

The Students will be able to,

Witness the detailed proof of reflexivity of Hilbert space.
Determine the results oriented to Separability.

Identify there flexivity of finite dimensional spaces.

10.3 REFLEXIVITY OF HILBERT SPACES

Definition: 10.1.1 (Reflexivity) A normed space X is said to be reflexive
if,
B(C) = X©

Where €: X — X* is a canonical mapping.

Definition: 10.1.2 (Embeddable) X is said to be embeddable in a normed

space Z. if X is isomorphic with a subspace of Z.

Lemma: 10.1 (Canonical mapping) The canonical mapping €: X — X' is

an isomorphism of the normed space X on to the normed space R(C), the

range of C.
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Proof: Linearity of C as follows,

O: X = X'is linear.
Let x,,x; € X
Claim: €(x, + x.) = C(x,) + C(x,])
Fusty= Fos # Fryon'
Let g € X' be arbitrary. Then,
Festan (@) = (21 4 x5) g
= glx)+ g(xa)
= £ (grfe (&)
= fo, T ()
Claim: For aeK and x € X, C(ax) = a{Cx)
Let g € X' be arbitrary
fau(@) = (g)(ax]
- a(gix))
= af.(a)
Hence C is linear.

Claim: Bijective of C

For every fixed x in a normed space X, the functional g, is a bounded

linear functional on X", so that g, € X**, and has the norm

lg.ll= Ikl

Hence we obtain,

ng = gy" = |ng-.}-‘|l = |Ix - F"
This shows that, C is isometric= Injectivity.

Indeed if, x = 3. g, = g,
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Hence C is bijective implies one-one and on-to.

On-to implies R(C)=X

Hence the proof.

Theorem : 10.2 If a normed space X is reflexive, it is complete

(Hence a banach space).

Proof: Let X* L= the dual space of X' and X" is complete

(By theorem: The dual space X of a normed space X is a banach space)
Claim: X is complete

Reflexivity of X implies , F(C = &*

Completeness of X now follows from that of " (from lemma:10.2)

Theorem: 10.3 (Finite dimension) Every finite dimensional normed space

1s reflexive.
Proof: [¥ with 1 =2 p = 4 is reflexive.
Similarly, E* [a,&] with 1 = p = 4o is reflexive.

It can also be proved that non-reflexive spaces are C[a, b], i*, and the

subspaces ¢ and ¢, of I,

where C - Space of all convergent sequences of scalars

¢, - The space of all sequences of scalars converging to zero.

Theorem: 10.4 Every Hilbert space is reflexive.

Proof: Let H be a Hilbert space and A:B" — H be the operator such that
A(f)=Z where f(x) ={x,zivx € B and |lz|l = |Ifll

(from Riesz’s theorem) we define £.,.¥: B = k by,
(L RY=tAf AR Y AL.f € H
We know that A(f, + £) = Af, + Afa ¥ f.fa € H'

And Alafl=alAf) Vi.fh € H,aeK
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Claim: {.,.) is an inner product of H'
A+ A /Y =tAR + AL+ £))
={Af, TAf, T ALf)
= (A AfLE + AR AR
= (- fRY . RY
(i) {efu o = (AL Alafi))
= {Aj, ad(f)}
=aldfy. ACAD
= atf, fo}
() Fufa¥ = AR AR

={Af, AR}

(V) (£.F¥ = LAF.AF)

= lAfIIF =@

Therefore, H' is an inner product space with respect to {,,.)" and hence it is

a Hilbert space.

To prove: H is a reflexive space, we show that the canonical map

ci B = H'"™ is on-to.

Let b € H!

Then, by Reisz’s theorem, 3 f € H* 3 h(f) = {f. /) ¥ fF€ H'

Let Afy = x, we claim that c(x)=h (ie.,) g, =h

Now, g,.(f) = flz) = {xz} if Af=Z
= {ﬂf-ﬁrﬂﬂ
=(f.h)
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NOTES Therefore, g, = h

Thus, H is a reflexive space.

Result: 10.1.3 A separable normed space X with a non separable dual

space X' cannot be reflexive.

Proof:!' is separable by the known result,

(i.e.,) The space ¥ with 1 < p = 4uois separable.
The dual space of (I")'= =

Where I* is not separable

This implies that i’ is non-reflexive space.

Lemma:10.5 (Existence of a functional) Let Y be a proper closed

subspace of a normed space X. Let xy € ¥ —¥ be arbitrary and
& = tafy,, 1P = xgl
The distance from x, te ¥.Then there exists an # € x' such that

IFfl =1 FAl¥)=o0forallyey, Flx,)=38§

Proof: Let us consider the subspace Z is improper subspace of X spanned

by Y and x,, define on Z a bounded linear functional f by,
flz)=Fflyt+ax)=ad yEY

Every z € Z= span (3 {x,}) has unique representation
z=vta¥, FEY

Clearly, the linearity of f can be seen from the above argument.

Also, since Y is closed,

Self-Instructional Material &> 0,s0that f £ L. Nowa =0 gives fly] =0 forallyEY

For @ = 1 and y=0, we have f{x,) = 8
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We show that fis bounded. & = & gives f(z)=0.
Let @ = @ and —(1/a)¥ € ¥, we obtain

|f(z)l = |eld = lalinfe, 17— x5l
<la|-25-]

=|ly + ax;ll

That is, |f{z}] = [l=]k

Hence f is bounded and |I£]] = 1.

Claim: [|f]| = 1. By the definition of an infimum, Y contains a sequence

(v,) such that ||¥, —xgll = d.let 2, =7, — %z Then we have,

flz,) =—d with @ = —1.

Also, Ifll = supaez 222
seg Hl

Hence [Ifll = 1
ga that ||Fl = 1.
Theorem: 10.6 (Separability) If the dual space x’ of a normed space x is

separable, then x itself is separable.

Proof: We assume that x' is separable. Then the unit sphere,

¥ = {f \Ifll = L}subsetofx’

Also contains a countable dense subset, say (). Since £, € &*, we have
£ = sepg=, £ (20 = 1

By the definition of supremum we can find points x_ € X of norm 1 such

that,

1
JAESIE

91

Functional Analysis

NOTES

Self-Instructional Material



Functional Analysis

NOTES

Self-Instructional Material

Let Y be the closure of span (x,). Then y is separable because Y has s
countable dense subset, namely, the set of all linear combinations of the x,,
with coeffecients whose real and imaginary parts are rational.

We show that Y=X. suppose ¥ = x. Then, since y is closed, by the above

lemma there exists an f € x' with,
7l = 1. Fiy) = gforally €Y, Flxg) =8

Forally in Y. since, x,, €y, we have f(x,) =@ and fro all n,

] =

= 16, Ce )l — | £ () — £

Where, ||xR|| =1,
In-fllz3

But this contradicts the assumption that (£,) is dense in U’ because f is

Hence,

itself in 7" and also | f]] = 1.

Hence the proof.

10.4 EXERCISE

1. If a normed space X is reflexive, show that X* is reflexive.
2. Show that a Banach space X is reflexive iff its dual space X'is
reflexive.

3. Prove that if f is a linear functional on the Hilbert space X, with null
space N, then f is continuous iff N is a closed subspace.

4. Prove that a closed subspace of a reflexive Banach space is reflexive.
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UNIT XI: RIESZ’S THEOREM

Structure

11.1 Introduction

11.2 Objectives

11.3 Riesz’s Theorem

11.4 Sesquilinear Form (or) Function

11.5 Riesz’s Representation Theorem

11.6 Adjoint Operator

11.7 Properties of Adjoint Operators

11.8 Classification of Bounded Linear Operator
11.9 Exercises

11.1 INTRODUCTION

In this unit we will introduce the basic concepts such as sesquilinear form
and adjoint operators and also highlights the basic properties of adjoint
operators. We will discuss the most important theorems of this unit is
Riesz’s theorem and Riesz’s representation theorem. Some useful results
for adjoint operator will be discussed and then we classify the bounded

linear operator are described.

11.2 OBJECTIVES

Students will able to

To understand more about sesquilinear form and adjoint operator.
Describe the basic properties of adjoint operator.
Determine the classification of bounded linear operator.

To solve related results.

11.3 RIESZ’S THEOREM

Theorem: 11.3.1

Let H be a Hilbert space. For every bounded linear functional § on H,

there exists unique z € & such that f{xJ = {x,z} ¥x € H and ||F[| = ||zl
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Proof:

Case (1): f = @, then obviously, we choose z = 0.
Case(2): F =i
Then B = @ and the null space M(f} is a closed subspace of H.
By a theorem, we have B = N(f) + N(f)*
w N(F)* = @ (otherwise H = N(f) = £ = 0 =+=)
Choose zy € N(f)* such that z, =0
Let ¥ = f(x)zy— f(zylx; fora given x € H
Claim: ¥ € N(f)
FV) = FF(x)zg— flzg)x)

= f(x)f(z0) — Fzp)f(x)

=0
= FENF)= Wa,i=0
Now, & = {V, zy} = {f(x]zy— flzgdx, 2y}

= flx){zgzg} — F(Zo)ix Zo}

= flaghbwagh _ o Flagd
= flx) =g = Wi %ol

We take z = Pt Ezﬁgﬁ, then z £ H and f(x] = {x, 2} ¥x € H.

lzgll®
To prove uniqueness of this z,
Letz,,z, €E H 3 f(x) ={x.z,}=&x, 2} ¥x EH
=b{x,zu_—z:}= 0 Y¥xe H.
= In particular, for x = z; —z,, we get

{zl—z:,zl—z:}=ﬂ = |Izl_z:|l =0 =z =1
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Since f'is a bounded linear function

T roal L lrel_ laadl P
Ifll=x€ & = = = = ||z|]

x =0 17 I | = 5] (il

From the schwarz inequality,
|FCx)] = [€x.zkl = ll=lle]]
= [IFll = =l

= LAl = ll=ll

11.4 SESQUILINEAR FORM (OR) FUNCTION

Definition: 11.4.1

Let H, and H, be Hilbert spaces. A function fi: Hy X Hy — K 1s called a

sesquilinear form if

(O)h(xy + 20,¥) = h(x¥) + hxy¥) Vxpxy €H,¥ € H,y
(tt) h{ax,¥) =a hix,y) Yxe€H, ,yEH, a €K

() ieCroyy + yo) = Rlry ) + Blryg) Ve € Hyy,y, € H,
(trIh(x.ay) = @Ghlx,¥) Yx€H,¥EH,a€EK

Clearly every inner product is a sesquilinear.

Definition: 11.4.2

A sesquilinear form is said to be bounded if

IM =@ = |kx, ¥)| = Mi=lllxl
¥ x € Hy ,» € Hy, the norm of h is defined by
sup

SR
IR]] = x € Hl,}rEf:Fz%: x € Hy,y €Hy |R(x,5)l
x20,yz20 lixll = 1. ll¥ll=1
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NOTES
Theorem: 11.5.1

Let H,,H, be Hilbert spaces. If h: H, ¥ H, — K is a bounded sesquilinear

form, then there exists unique bounded linear operator s: H, — H, such

that

h(x,¥) = {sx,7% ¥(x.y) € B, X Hy with [Ik]] = [Is]].

Proof:

For each x € H, define g,: H, = K by g,(¥) = k(= ¥) ¥y €H,
Claim: g_ is a bounded linear functional on H,

Let ¥, € H, and a, # € K be arbitrary

a.(ay, +8yv) = k(x.ay, + Br)

= ﬁh{.‘r,jﬂj + E’I{.‘{.}’:j

= qhlx, ¥, ) + fR(x.v,)
= agyy) + Fae ()
=~ g, 1s linear
Now for every ¥ € Hy, g, (¥)| = [A{= )| = IRl ¥l
= llg.ll = lIAllllx|l = oo
= g, 1s bounded.

Then by Riesz’s theorem, there exists unique z in H, such that

8.(¥) = {2} ¥yreH,

Then, we can define =: Hy — H, by zx =z, where z € H is obtained as

before.
Self-Instructional Material
Claim: s is a linear map

Let xy,x; € Hyand e, S EK
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If gx, = =, and 2%, = =, then we show that 2(ax, + fx.] = az, + fz..

For v € H,,

Eﬁxl-lﬁx"{y} = &’!m'. + gxﬁ«'y}

= ak(x,,y) +fh(x, )
= &g, (¥) + £g.,(¥)
= &y, 2} + Fly. )
= {y.azy} + {3, fz3)
= {¥, az, + Gz}

slax, + fixy] = ez, + fz,.

Claim: ||s]] = 1%/l

: It ., i Il
Ikl = * € Hyy € HyBewll - p ¢ g sy € H, Bl
r Oy 0 el =g e g el

- :ﬁf il _ _llsl®
x = 0,80 = ﬁll.rllllrll sl

m [lexll = |1R1ell

= sl = &l e o . (1)

SUP STFF

x:ﬁﬁ,?iﬁ = ellloAl — ,\,:EEE :.éﬂ Ils.rllllﬂl

FLE
< XxE€EH,YEH, lﬁlllll.ljllg | =] [— (2)
2020

From (1) and (2), we have ||s|l = |l&/l and hence s is a bounded linear

operator such that
h(x,¥) =¢sx, v} Yx€EH,yEH,
suppose there exists sy, 8, € H, such that
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Functional Analysis {5‘1, .}F:(‘ = ft.{x,r‘?' = {5‘:,.}?} Yx € Hl’-? € Hr:

NOTES
=smr=sr YrEH

=5‘l=5':

11.6 ADJOINT OPERATOR

Definition: 11.6.1

Let T:H, x H, be a bounded linear operator, where H,,H. are Hilbert

spaces.

The adjoint operator T* of T is defined by a bounded linear operator
T": Hy » H satisfying {T'x,») ={x,T"¥) ¥ WxE€H,y €H..
Theorem: 11.6.2

For every bounded linear operator T:H, x Hy adjoint operator T of T

exists

and it is unique. Further [IT[| = [IT*]].

Proof:

Define a sesquilinear form fi3 i, ¥ M, = K by

Rl x) =l Tx}¥vr €H, = €H,.
Claim: h is a sesquilinear form,
(1) Lety,w €EH; af €K, x €H,
k(e + By, x) = taxr + Bye, T}
= wlyy, Pak+ By, T}
= ah(y, x) + Bh(yy, x)
(i) Letx,,x, € H, aof €K, vEH,

Self-Instructional Material EI-‘:_}F,- @ex, + ﬁ_’,‘f nj - {_}F,T{[IXJ_ + ﬁxnji

98



= &y, T:"’j} + g{yr T-”‘"E}
= &(y. Tx,) + £y Txy)
~ h is a sesquilinear.

Claim: [|&]| = [IT]|

[Biedl l6wEacll

—xCH ve B0 . e g e g lTal

IRl = € B3 € Bauturr = x € S0 € Sy pouy
x=z0y=0 xELFEO

_ x?;f | ¢ Tl
- L sl
rEdse=20

= ITxll= Al

= 2l & 8] o (L)

sup
Ikl = % € Hy,¥ € Hy gt > x € 3 € H;

Tl
= Al = IT|l = o=
= h is a bounded sesquilinear form.

Then by Riesz’s representation theorem, there exists a unique bounded

linear operator

T*: H, % H, , such that

h(y,x) = (T y.x} Y¥EH, x€EH,
tee.{w Tx} = {T"v.x} Y¥E€E H,x€H,
= (Te.yr={eT% YyreH, . xeH,

From [I7*(| = [IRIl — ITII.
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NOTES Let X and Y be inner product spaces. If §: X — ¥ is a bounded linear

operator
Such that
(1)de, v =0 Wx € ¥ amd v ¥, then Q=0.

(#)@x,xk =T ¥xe ¥, then Q=0 provided X=Y and X is a complex

inner
Product space.

Proof:
({){gx.¥i=0 ¥YxEX,¥EY
= {@x, Jxt=0%xEX
= ||[@x||*=0vxr X
= Qx=0%¥x€EX
= Q=0
(if) Leta € Cand x,y €X
0 = {@(ax +y),ax + ¥}

= {aQx + @y, ax + y}

= |a| *{@x, x} + al@x,y} + al@yx} + {@y. v}
= ai{@x, ¥} + @@y xi=0
For @ =i, {{Qx, vk —({Qwr.xk =0
= (@%FF = (@1 v v (1)
Fora =1, {Qry}+{dwrx}=0

Self-Instructional Material = {qxr }}—} = — {Q ¥ .‘I-}

= (@y.x} = —{@r.x}
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= {Qy.x} =0

By case (i), we get Q=0.

11.7 PROPERTIES OF ADJOINT OPERATORS

Theorem: 11.7.1

Let H, and H, be Hilbert spaces. Let T: H, —+ &, and §:H, = H, be

bounded linear operators and ‘a’ be a scalar. Then
(4T "y x} = {y.Tx} YY¥E Hyx € Hy
(ENS+TI" =511

() (aT)" = aT*

(iw)T* =T

(@rerl= It = Tl

(vE)T*T = GIFFT = 0

(vt} (ST)" = T*S* provided H, = H,

Proof:

(i) By definition of T*, we have

iTx, 3 ={x, Ty} Yy € H, x€H,

Applying complex conjugate operator on both sides we get

{Toe, ¥} ={x,T*y} VyEH,x€H,
= {y, Tx} = (T y,x} VYye€EH, x€H,
(i) Let ¥€ Hy and x € H,
(5 + )% xk = {r (5 + T
= {y. (Sx + Tx))

= {y.Sxp+ G Tx}

= (I ak+ AT vl
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={5'y + T*y,x)
=5 +T)nx)
A EFFTIT=E01T
{iif) Lety € Hy and x € H,
{{@S)y xk = {3, (@S)xk = (s, a(Sx))
= &y, Sx} = E{S Fx} = {BS "y, x}
= (uF)" = uF"
(tv){T*"x, v} = €x, T™yk YWY EH,,x €E H,
= (T yx}={y.T"x} ¥y EH,x EH,
We also have {T*yx} = {3 Tx} ¥y € Hy,x € H
= (T 2= {y,Tx} Yy E Hyx EH,
(v)First shew that T"T:H, = H,, TT":H, = H,
ITx|* = {Tx, Tx} = {x, T Tx}

= [lxllIT*T=ll = DT Tlllel*
Tl < T Tl
NTN = STTTT e e (1)
TP = Ir el = IFiel = Irne
= lITI* = lIT*7Il
Next, [[T*9l|* = (T "y} = { TT
= lFlTrFl = [IHHE=Tiil

= [Tl = T Tyl
Tl =TTl

= IT*I* = lITT*ll

ITI* = ITT*ll (stnce T = N[}
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= IT T = 7P
= ITI* = lITT*ll = [IT*Tll
()T =0=2|ITTl=0= ITl=-¢=T =0
(vit}istyc HFyand x € H|
LST) e xd = {3 (ST} = {37 3(Tx])
= {5y, Txp = (T *($"p).x} = (F*(3"¥)x}
=I5y x
= ($T)* = T*§*
Problems:
(1) Prove that @* = @and I* =1
Sofutio:
Let B, and H, be Hilbert spaces,
For x € H, and ¥ € H,
(0%, k= {0k = {y, O} = 0.
= 0'y=0 V¥yeEH,
= 0" =
Let H be a Hilbert space
For x, ¥ € H, {¥",x} = ¥ Ex} = {yx} = (x, 7)

= "=

11.8 CLASSIFICATION OF BOUNDED LINEAR

OPERATOR

Definition: 11.8.1

Let T: & — H be a bounded linear operator, where H is a Hilbert space

(f) T is said to be self-adjoint if ' = ¥'*
(if) T is said to be unitary if T* =T~

(it} T is said to be normal if T'T* = T'*T
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NOTES (i) If T is unitary then T is bijection
(i) If T is self adjoint then T is normal
{#)If T is unitary then T is normal
Theorem: 11.8.2

Let H be a complex Hilbert space. T:H — H is self adjoint iff {Tx,x} is

real wx € H.

Proof:

Assume that T is self adjoint

=T =7"

aTx xt = {x, T} = x, Tx} = {Tx,x} ¥x € H
& €Tx.x}isreal Wx € H

Conversely, assume that {Tx,x) is real ¥x € H
= €Tx, X} = (Tx,2X} = (0, T e vee e (1)

Be definition of adjoint operator {T'x,x} = ix, T *x}f¥x & B
Using (1), ¢x, Tx}k= ¢x, T xk v € H

= x, (T—T")x} =0 Y €H
Byalemma, - T"=¢=T=T"

Therefore T is self adjoint.

Theorem: 11.8.3

Let {I',} be a sequence of self adjoint operators from H into H. If T}, = T
as # — @@ in B(H,H)

Self-Instructional Material Proof:

=Tl =IT—T,+ T, — T, "+ T,"—T"ll
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21T -T 0+ IT, - T,"l+ IT," = Tl
=IT - Tl + [I(T, — T)"I
=ZFr-T /|- Carn— e
=IT-T¥l=0=T=T*
Theorem: 11.8.4
Let T and S be self adjoint operators on H , TS is self adjoint iff TS=ST
Proof:
TS is self adjoint &= TS = (T5)*
= TE=F"T" =TS8 = 8T
Theorem: 11.8.5
Let U and V be unitary operators on a Hilbert space. Then ¥Wx € H
(a) Uis isometry. fug.[|Ux]| = [lxl. ¥x €&
(&)u~" is unitary (or) &* is unitary.
(¢) UV is unitary.
(dI¥l=1iFR=0.
Proof:
(a)lluxl|® = {Ux, Ux} = (x, U"Ux)
= (o, U™ U} ={x, 2} = [lx]|?
Therefore |JHx |l = [|x]l
()&=t is obviously bijection and (U=~ = &
= (Ut =U=U"=(U1)"
= (&4 =u= (g~ = u~!is unitary

(eI (LYY (V] = (U VN UV)
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NOTES
=V =1

Therefore UV is unitary.

Nemdl _

sup
(@illFl=x€ ﬂw—

- O

1

Theorem: 11.8.6

Let T be a bounded linear operator on a complex Hilbert space H. T is

unitary iff
T is isometry and onto.
Proof:
Assume that T is unitary
Then T is a bijection and T is an isometry.
= T is isometry and onto.
Conversely, assume that T is isometry and T is onto
T is isometry = [|Tzll = |lxll Yx € H
= T is one-to-one
Therefore T is a bijection
Forx e ¥,
T Tx, xk = {Tx, Tx}
= 17|l
= [lx|I?
= {x,x}

=¥ xYxEH

Self-Instructional Material

(T T—Nxxi=0, Yx€H

106



T'T—F=0=T"T=]

Now, IT*= TT*}
=TT*TT"*)
=T(Tr*mr
=rnr
=7T"t=1

~T is unitary.

11.9 EXERCISES

(1) Let H be a Hilbert space and let ¢ be non zero continuous linear

functional on H. Let M = ker({¢) . Show that M has codimension one.

(2) Let g € M* be a unit vector such that any y € H can be written as

¥ = Ag +=z where z € M. Define x = ¢(glg. Show that x is such that
@(y) = (yx) ¥y eH.

(3) Let H be a Hilbert space and let &: B =+ K be a unitary operator. Show

That U is an isometry. f.e, [IEx|l = |lx]|l ¥x € H.
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UNIT XII: ADJOINT OPERATOR IN
NORMED SPACES

Structure

12.1 Introduction

12.2 Objectives

12.3 Hahn-Banach Theorem for Real Vector Space
12.4 Adjoint Operator in Normed Spaces

12.5 Relation between Adjoint Operator T* and Hilbert Adjoint
Operator T*

12.6 Matrix

12.7 Baire’s Category Theorem

12.8 Uniform Boundedness Theorem
12.9 Exercise

12.1 INTRODUCTION

This chapter contains the basis of more advanced theory of normed and
banach spaces without which usefulness of these spaces and their
application would be rather limited and also discuss the most important
theorem of this chapter is Hahn Banach Theorem. It is an extension of
linear functional on vector spaces, it also gives an example related to this
theorem. Some useful results for ad joint operator will be discussed and
eventually give the proof of category theorem and uniform boundedness

theorem.

12.2 OBJECTIVES

Student will able to understand

Relation between adjoint operator and Hilbert adjoint operator.
Identify which number is first and second category. How to extend
linear functional on vector space.

12.3 HAHN-BANACH THEOREM FOR REAL VECTOR
SPACE

Let X be a real vector space and P be a sub linear form on X (i.e.,
P X — K with

Plx+v) 2Pzl +ply) Y.y EX. Plax) = aP(x], x€X). IfZis a
subspace of X and fi:Z-—=K is a linear functional satisfying
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Flx) £ P(x)¥ x € Z then there exists a linear functional 1 X — K such

that f{x) — f(x)¥x € Zand fiz) = P(x)¥x € X.
Proof:

LetE =

E(g,’bﬁg}} r D glis @ subspace ef X with 2 = ©(g), g:T(g) —+
R ts linear, g(x) = f(x) ¥x € Z and g(x) = P(x) ¥x € D(g)}

We define a partial order relation << on E by (g, D(g,)) <« (g, D(g.)) if
T(gy) =D(gy) and gy (x] = go (] ¥x € T(g).
Claim: << is a partial order relation on E.

First we note that E = @ ((f.z)] € E)
Clearly,
(o.9(@)) « (8.9(a)) ¥ (g.D(g)} € E

It (g, 9lg)) « (g Dlg)Jand (g, D@} (g, D(g)) then
gy S T(g), Dl(g) & D(gy)

= T(g) = T(g)

= g (x) = g,{x) ¥x € Blg)= Tg)

= §,=0:

“ (g D)) = (g g }

Let (g, Dig,)} « (g2 ©(g2)} and (g, D(g,)) < (g5 D(g5))
= D{g) S D(gy) and Dg,)  Dlgy)

= ©lg) = D(a,)

If z € Tx(g,) then g, (x} = g, (x) and gy (x) = gy(x)

= g,(x) = g(x) ¥reDig)

w 4 is a partially ordered relation on E.
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Let C be a chain in E.  Then define ®gy) = Ui qc)e (@] and
Golx) = g(x)if x € D(g]¥GEC.

Claim: (g, ©(gg)} € E

Letx, ¥ € T(g,) and . f ER

x € D(gy) and y € T(gy) for some (gy, T(gy)). (g2 ©(g2)) € €.

Since C is a chain, without loss of generality assume that

(91 D(g) } = (g0 D(gy))}
= T(g) € Dlg])and g, (x) = g,(x) ¥x € T(g)

= ax+ £y € D(g,) and gylax + gy) = gy (ex+ £y]

ag,(x) + £ g,(¥)
= agylx) + 5 g,(¥)

. @ 18 linear and (g, ] is a subspace of X containing Z.

By definition, g, is an extension of g% (g, ©{g)) € € and hence it is an

extension of f with gz = P.

s (go (g} EE

Clearly, (gy. ®{gg)) is an upper bound of C.

By Zorn’s Lemma, E has a maximal element say {(#, D(f)).s
Claim: ©(f} = X, otherwise there exists ¥; € XD (7).

Put? ={v+ay1¥e “E‘r{?},c;::e E}

Define gy: ¥; — R by g, (¥ + @) = f(¥) 4 ac for any scalar c.
Clearly, g,is a linear functional and g,is an extension of f.

Since ¥, 1s a subspace of X containing %{f)

To prove that {g,.¥.) € E, we have to show that g, (x} £ P(x) ¥x € V.
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Let ¥,z € D(f] be arbitrary.

Fly)- f(2)=fly-1)
= Ply—1) ¢ (o)) e B
=Pyty—r—=
EP(y+y) F Py —2)

- Ply+y)= Py, -2+ f(z2) wrzed(f)

v ;g(ﬂ (f' (¥)— P(y+ }1}1) =_ E&gm (P{—}rl -+ f{z})

}'E‘E{f}( -f(y) + P(y'l'ﬁ:l) IE%‘&'}( —F(z) — B(—y, — z})

mf .
Choose C between ye ‘.""::f} 1—f{y} + Ply+ }'J) and

re o) (-F@ - B - 2)

~=fZ) =P~y -2 2C = —f¥) + Py +3)
Claim: g, (v + ay,) £ P(y +ay,) ¥reD(fjanda e K
Case:(i) @ <0

Putz=yfain f(z} P( 3 = =¢

= —f(yfa) - P(-y, —¥lal =

Multiply on both sides by —a.

= af (v/a) - (~a)B(—y, - ¥/a) £ —aC

= f(y) — Playy + 3) = —ac

= gy +ay) =Ff(¥)+aC= P(yr+ay)

Case:(il)) a@= @
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Gy + o) = () =) = P) = Py + 0ry)
Case:(iil) @ = @
In ¢ = —f(¥) + P(yr+ 3, replace y by ~.
€= —fy/al+ Ply/a+y)

Multiply by & on both sides, we get
aC = —f(3) + B(yr+ay)

a1y Vay) = F(3) | aC 2Py | ayy)
o (g ) € B with ":Ei’J.-' ?1:; By {i‘{‘ ,fi'.?'{f;j and ¥} 2 ?"{fj

This is the contradiction to the maximality of {£,@{#))in E.

o ’Etc?}=2f'.

« F:X = Ris arequired extension of f.

12.4 ADJOINT OPERATOR IN NORMED SPACES

Let X and Y be normed spaces. If T € B({X,¥) then define T*:¥" — X" as
follows. (T*g)x = g(Tx), ¥x € X and ¥g € ¥'. First we note that if

fe T* gthen fe X*, Clearly fx— k.

Let xy,x, €EX and o, f £k

f(ax, + £xy )=(T"g] (@x, + Bx; )
=g(T (@x, + Bxa)
=g(aTx, + fTx, ) (stwce T g linear )
=ag(Tx )+ Bg(Tx,) (since g is linear )
—a(T g(x )+ B(T @ (xy))
=af(x,) + £f(xq)

« fis linear
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)T g () =le(Tx)=H g W10 T M=l g 0T 00 2 ]
= fis bounded and || £l g Il T Il

~fex'

Theorem:12.2.1

Let X and Y be normed space if T, S € B(X,¥) thea

DT+ 5) = To 4 5%
it)(al)"=al"

(TS = B T when X = V'
ivi["=IwhenX =Y

V(T L) = (T Tt exists in B(X,Y)
Proof:

i) Let g€ ¥* and xE X be arbitrary
(T +3)°g)x =g(Tx+Sx)

= g(Tx)+g(Sx)

=T g(x)+ 5°g(x)

=T+ 5%} g(x)

2 (T+5)'=T"+5°

i) (@T)"g(x) = g(aT(x)}
= gla(Tx)} = a(g(Tx))
= a(T"g)(x) = (aT g (x))
= (aT)" = aT*
iii) ((T5)*@)(x)=g((T5)(x))
= g(7(32)} = (T*g)(5x)
=(5°(T*g)}x) = ((5°T)g}(x)
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= (T5)" = 5°T*

v) (£ gl(x) = glix)

= g(x) = (Ig)(x)

=I'=1

v) =17 = (TT~4)°

= (T74pre

== =T ) = (T

= {T?J—l = {T-l}?

12.5 RELATION BETWEEN ADJOINT OPERATOR T*
AND HILBERT ADJOINT OPERATOR T*

Let H,, H, be Hilbert spaces and T: #; — ¥, be bounded linear.

If ApH{—H, is the operator defined by A4,(f) =2z where
flz) === xz>%x€H, and || zll=Il £I| and A,:H = H, such that
Ay(g) = w, where g(y) == y,w > ¥y € H; and ||w ||=I| g Il then we

claim that
AT AT =TT
Now, for = € H,,
< Ta,w = g(Tx) = (T"g(x)
=< x,z =< x, AT AT w =
where z is such that {T*g){x) == x,z = ¥x € H, and
w is such that g(¥) =< ¥, w = ¥y € H,
Since z = A, (T"g) = A, (T A7 A,9) = (AT 47" ) (w)

o AT AT =T"
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12.6 MATRIX

If T:R* =+ R" is a bounded linear operator and E = {&,,8,, ...&,} be a

basis of R™. Let the matrix representing T with respect to E is T = (Iﬂ{).

Denote x by (8,85, wer 8 )5 ¥ = T = (50, War ceer iy )

i
Le)n= Z Twdp » J=L1Z,...m
k=1

Let F = (f, far [ ) be the dual basis of E.
t.e.) fy€ R® and fi(e;} = &, ¥ i} € {12, ]}

NOW,':T *fﬁji-‘xj = ff'ET-'ﬂ = f;EF:I = .1‘}(22- 11 &)

2
=z?}'rs.f:r{ﬁkj =1
k=1

=

= z I.F.lk- g
k=1

'z g Frolx)
k=1

Since  filxl= f, = (L, 8 e) =L, 8 File) = 5

=5 T*f} - Z:m fk. ’ﬂ!'}’ =12...1%
k=l
L
. Tra n
. The j* column of T} 'Fi" which is the 75" row vector of T
il

=TF=TF
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Thoerem:12.2.2

Let X be a normed space and Y be a proper closed subspace of X. If
XZgEX\Y and & = _?n;ff | ¥ — xg || then there exists f €X' such that
FrEl=0¥rel. flx,J=80and | flI= 1.
Proof:
Let Z be the subspace of X generated by Y and x,,.
(t.e) E={r4+axy:ac K ve¥}
Define fy:Z2 =K by fi(r+axy) =ad ¥y+ax,€Z
Clearly fis linear and fi(¥] = @ ¥y e Y, filx,) =4
Claim: | £ l=1
Let z € &, Then z = 3 + @xy forsome y €Y and @ €K

0 if a=0

|£i(z)] = lal& = [ |ﬁ|:rz"? lv—xgll if@=0
= lal 1 === xg
= -y —axgll
=l ¥+ axy =l = ||
=21 f1=1

tnf

Since § =E" EY

| % — x, Il, there exists a sequence (y,} in ¥ such that

Letz, =3, —xy thenz, €Z ¥YrneEN,and fi(z,)=—& ¥YuEMN.

_ o oswp |pall, fegh 5
Now, Iﬂ“ Dtz Z Il = ller I Izl =1 asn—+oo

=lAl=1

21£1=1
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~ By Hahn-Banach theorem,

There exists £ € x* such that f(x) = fi(x)¥x € Z and || £ =1 £ Il.

For this f, we have f(y) =0 ¥y € ¥ and f(xy) =8and | flI= 1.
Theorem:12.2.3

Let X be a normed space. If x'is separable then x is separable.

Proof:

Let W={f e X1|| Fll=1}

Since X' is separable , W is also separable Then W has a conutable dense
subset say {f e € M}. Since || £, =11 £, > 1/2 Then there exists
x, €X =l =y = 1 and | £ (x, )] = %‘fﬂ & . Let Y be the closure of all
finite linear combination of {x,} (or) the closure of span of {x,,}.

Then Y is separable.
Claim: Y=X
Suppose Y= X Then choose x5 € ¥4& and by previous theorem there
exists £ € X' 3l fll= 1 f¥)=0%y € X and f(xy) > 0
For this f, We have f(x, )=0 ¥ € M
ZRSEMI I AENIEZIRENES JEN]
= Fxa 2 fo=F M 2, I=N f, = Fll¥n €N
This is contradicts the fact that {f :: € M} is dense in X’
=~ Y=X
~ X 1s separable.
Definition:

Let (X, d) be a metric space and MZ ¥

i) M is said to be nowhere dense in X if int M = .

i) M is said to be of first category (or Meager) if M is countable

union of nowhere dense sets.
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iii) M is said to be of second category (or non-meager) if cannot be

written as a countable union of nowhere dense set.

12.7 BAIRE’S CATEGORY THEOREM

If (X,d) is a complete metric space then X is second category.
Proof:
Suppose X is not a second category. Then X=IJ_, M, Where each 3, is

nowhere dense set. Since A, is nowhere dense in X .HTJ_ = X
.EFTH_G is a nonempty open set in X Then there exists p, & ﬁT.LG and a radius
0<ay = =.B, = Blpy,8) S M,

Since BT._.# X and JIT_ does not contain any nonempty open set , JIT: does
not contain & {F‘J.ri:"} is a non empty open subset of X. Then there exists
an open ball By = B(py,&,) 3:By & My I']EF(;EJ_,.EE"} and @ = 8, = 1/2°
Proceeding like this, at the k™ stage we find an open

ballB*B (py.8,) = My, NB (pk,i,,"‘} and 0<g, = 27%

Claim: {p, } is a Cauchy sequence in X.

For m<n,

()

d{ﬁm’pm-l:l.:l + dﬁpmf'pm-l-l:l + -+ dipﬁ—ll'pﬁ:l < #'l' o .m.l_-J.:L‘E
2m pRomel Euf;ﬂ im Efﬂﬁ;‘fn ER=——= Et;zs'm —r-ﬂ

=~ {p,} 1s a Cauchy sequence in X.
Since X is complete there exists pg X sp, = park = &
Now for m<n we have

B = B(pm,%am} and hence d(p,,.p,)<1/2 &,,

= () 2 F (P rin) T Fpgr) <12 8y +d(p,,p)
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Allowing % —+ 2@ we have

A(fo o B)E T 8y < B, D0 € B(Be8,) = B, YM EM
Since B,, &= Eﬁfm € M then

—peM,, Vin€ H

=pE ([Tr=y M, )"

=P (Un=y My)

=p & Ug=, M =X

Which is a contradiction

-~ X is a second category

12.8 UNIFORM BOUNDEDNESS THEOREM

Let X be a banach space and Y be a normed space. If {T, } be a sequence
of bounded linear operators from X onto Y=: for each x& X there exists
€, = 0 || Tyx |= ¢, ¥n € N then there exists c>03: || T, l|£ € ¥z € M.
Proof:

For each 4, is closed set

Since 4, = N&, @7t ([-kk]) where g (z)=ITxll and
¥x € X and ¥u € M and each ¢ is continuous we have 4, is a closed
set.

Claim: X=147, 4,

Let x€ X then there exists ¢, = @ =:|| T, |= ¢,%n € M then there exists
keM3:k=cx

=2 x|l Ev¥re N

SxEA,

=x € Ugz, A

X =UR A,

Since X is complete by using Baire’s category theorem

= X is second category
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Functional Analysis Then there exists &k, € M 3: int ﬂ_k@ Then there exists r>0 such that
NOTES

B(xy . r)&= Agg

Let xe X with x# 10 be arbitrary

e
Put z=xq + Tl

o 1
Then || 2= x, |I= :||.ar||<r

=z € Blxgr)

[zl
a=& a}

A Tx =T, (2 ! Jivaen
= ii;:—;H(II T (z—xg)ll¥meN
S22 (I Tz |~ T2 I ¥R €N
225 (ky+kJ¥nEN

=Cl x| ¥n €N

Where C=@fc.}

Al T, lE C¥neN

12.9 EXERCISE

1. Find a meager dense subset of R.

2. Find all rare sets in a discrete metric space in X

3. Let X be a normed space and X' its dual space. If Xz {0} show that

X' cannot be {0}.
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UNIT XIII: STRONG AND WEAK
CONVERGENCE

Structure

13.1 Introduction

13.2 Objectives

13.3 Strong and Weak Convergence

13.4 Convergence of Sequences of Operator and Functionals
13.5 Exercise

13.1 INTRODUCTION

This chapter will be discuss the different types of convergence. This yields
greater flexibility in the theory and the application of sequences and series
and also give a some important results of this different types of
convergence. It is useful to develop the application of investigation of

spaces is often related to that of their dual spaces.

13.2 OBJECTIVE

Student will able to understand

Relation between strong and weak convergence.
How to use orthonormal sequence in Hilbert space.

Easily differentiate uniformly and strong operator convergence.

13.3 STRONG AND WEAK CONVERGENCE

Strong Convergence

Let X be a nor med space. A sequence (x,) in X is said to be strong
convergent if ||x -x||—0 as n—oo for some x €X. This x is called the
strong limit of (x,,).

Weakly Convergence

Let X be a nor med space. A sequence (x,) in X is said to be weakly

convergent if f(x ) —f(x) as n—woo for each fe x” for some x € X. In this

case x is called weak limit of (x,) and its denoted by x Zx
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Lemma

Let {x,) be a weakly convergent sequence in a nor med space. Then
1) The weak limit of (x,) is unique.

ii) Every subsequence of (x,,) is weakly converges to same limit.

iii) (|| |]) is bounded.

Proof

. w w . ..
1) Suppose x, =x as n—oe and x, =¥ as n—oo since the limit of

convergent sequence in k is unique. We get f(x)=g(x) ¥ fe x' then x=y.

ii) Let x, S x as n—oo and (x5, ) be a subsequence of (x,,). We have
f(x,)—f(x) asn—wo ¥ fex'. Since f':xﬁ‘a} be a subsequence of f(x,). f
(x4, ) = f(x) as k=20,

iii) we know that of xe ¥ and g (f) =f(x) ¥ fe x" then g, € x' and
llg.| |=lx]|. Since xﬂ,ﬁx asn—oo and f(x,)—=f(x) asn—ow ¥n € N.
There exists g > @ 3t |f(x,)| £ ¢ ¥n€N, This implies that | G, |

< ¢ ¥m€ N. Then by uniform boundedness theorem there exists ¢>0
3:[| gy, |l <c ¥n € N. Then ||gxﬂ|| < ¢ ¥Yn€N. Therefore || x| is

bounded.

Results

Let X be a normed space and {x,,) be a sequence in x.
a)lf x, = xasn — oo then r, Z ¢ asnoon.

b)Converse of a) is not true.

¢)If dim X< oo, then converse of a) is true.
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Proof:

a)If x_ = x asw— @, then ||:xﬂ_ —Hfll — @ qz 1 = @ for each fe x'.

| £oe,,)—f)1=[f(x,, )| < [[]] [, — 2]l >0 as n—eo

=>f(x,,)—f(x) asn—w ¥ f€ x°'

= Xy S x asn—o.

b) Let H be a Hilbert space with an orthonormal sequence {g,}. We claim
that e, @ asn—om.

Let fe H* By Riez’s theorem there exists z € H such that f(x)= <x, z>

¥ xeH.
By using Bessel’s inequality.

= seprr P swasn —+w
><gpz>—+0arn—+

>fle,) =G asn — ®@

= &, % ¢ as n—oo.
But {g,} does not strongly convergent in X.
|8 —8mll® =< e —8p > 8,—2.>
= <g, 8, T =N, 8, =g, 6, e, e, >
=2
|leg=egll = 42 does not convergent to 0 as m, n—ce
= {&,} 1s not a Cauchy sequence and hence it is not a convergent sequence.
c) Assume that dim X =K and {z, z; ,z;Z; ..z} be a basis of X. Let

LG
Ay =+ x as nN—aoo.
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Since x,,, ¥ € X, we write

nr

By = inn F o nisy tooeF agins, o oam et oot @l

1if L=}
Qif i

fi.fy o fri} are corresponding dual basis of x'.  fix,) = filx) as

If f2X = K are defined by f,{zdj=l Then we know that {

n—wm¥ji= 123 ..k

ﬁﬂ}ﬁnl—)ﬂj— as n— @ ‘ff - 1,3,.3-, wonl

Now [lx,,-x|| = || Zity @gn 2, — Ky @zl

= ||Z- e, — )zl

£ Efe. (™ — a]] |1 2]] = © as n—oo
=%, = Tasn — w.

Theorem 13.1.1:

Let X be a Hilbert space and (x,,) be a sequence in X x,, " x as nooo iff

<X, Z =S x,zasn—oo¥reEH

Proof
W
Assume that x, »x asn—oo. Foreachfex',f(x, )= flx)asn — oo.

We know that , if ze # and f(x)= <x,z> %€ H. Then f & g’
Flx,) = f(x)asn —

><x_ ,z>==x,z=asnh—w YzeH

n°

Conversely,

Assume that < x, .z »== x .z >as n—ow Yz H. we want to prove
W

that x, = x asn—co

Let f € H'. By using Riez’s theorem if z& # such that f(x) = < x, z >

YxeH

< X, I F=E X, I 2 AS N0
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= flx,) = flxlasn — w
W

:.':.ﬂ_ =+ .x as n—ooo,

Theorem 13.1.2:

Let X be a normed space and (x,,) be a sequence in X. x, Zx asnow
iff a) (x,) is bounded and b) for every total subset M of =’

f(x,) =+ flx)asn = 0¥ f € M.
Proof

w . .
If x,—x as n—wooby previous lemma we have proved that a) (x,,) is

bounded space and b) holds from the definition of weak convergent.

Conversely, We assume that (a) and (b) holds. Let f € x' be given

Since span of M is dance in X' then there exists a sequence (f;) in X’

such that £, =+ f as} = oo fn X",
For a given & = @ there exists j, such that || £, — fl< /34
Where k > sup {||x,,|I, [Ix/|}
Since f(x,) = f(x)asmn— ¥ f € M and f;, € span M,
Fi (xg) = f;, (%] as n—co.
For some a > @ there existzww €N 2 |f; (x5) — 7, (x)I< ¥/5
Fornz N,
e, )-F001 £ 1£e) = f, Ged + £, (xa) = £, () + £, (x) = Fx)|
= |flaegd — F, Crgd| + 1, Cargd — £ L) | + |5, (= F ()

< |IF = F |l %415, G-, Cead HI£, = £ I

<SRty ==

L
Hence f(x,)— f(x)asn— o> x, —x asn—co.
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Functional Analysis 13.4 CONVERGENCE OF SEQUENCES OF
NOTES OPERATOR AND FUNCTIONALS

Definition

Let T

2

T € B(X,Y) vt € N where X and Y are normed space.
i) (T,) uniformly operator converges to T if || T,,-T||—0 as n—co.

i) (T,) strongly operator converges to T if || T x-Tx||—0 as n—woo for

each xe X,

iii) (T,) weakly operator converges to T if |[f{( Tx)-f(Tx)||—0 as n— oo for
each xe X for every fe ¥,

Result

Let X and Y be normed space . T,,, T € B(X,Y) ¥n € &.

( Ty) uniformly operater converges to T =(T,) strongly operator
converges to T=)( T,) weakly operator converges to T.

Proof

Let x € X be arbitrary

If || T,-T||—0 Then if || T,x-Tx||= || T,—T|| = @ as n—uo.

For each f e ¥* |[f( T,2)-f(Tx)|| <[[fl] T,,x-Tx||—0 asn—oo.
Remark

Converse of above results is not true.

Counter example

(T,) strongly convergences to T but (T,,) does not uniformly operator

convergences to T.
Solution

Self-Instructional Material Take X=Y =i : For eachn eEN define

Tr:-':.-rﬂ,-'f:,:Ea....-}:(oao’o----Oa -'fn-n.;'fniz,......_) Vx; € 5
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Prove that (T is linear

a
1Tz, % %5, Iz = (Zizaes 7l 5

= |[(xy x5 25, ]2

=|T,ll< 1

— [ a il g |1 Tt eehl
T ||[=Sup = he g
|| JJ|| p |x||=. le”'_'.

= [Tt il Where €og1 =(0,0,0.....1,0)

Il i'n.ﬂ.”s

S | [
||“r|.+1.||'.'.

= ||Tllz 1
=T, ] =1 ¥n € N.

Let (x,) € * be arbitrary

Now, | |TR{.'I;{:I||: il | 1K1 L S SPp— |:

=LiEas | * —0asn—o
=T (xedl] = @ azm — 0

=T (x) = 0asn = @

But || T, ||=1 for every n€ & = || T,|| does not converges to 0 as n—co,

Therefore (T,) strongly operator converges to zero but not uniformly

converges to zero.
Example 2
Let X=Y=[* Define T,1 [* =% by T, (%, %5%5 u.)

=(0,0.......0,2 xg,...... ) Wz € N. Clearly ¥n € N

Claim: (T,)) weakly operator converges to zero. Let x, € I* and f € [* By

riesz’s theorem =, & I* such that f(3,)=E%, ¥ 2. ¥y, € 1

(T ()= | ey XieFasie |
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Functional Analysis P o =
£ (Eim e e Bz |zl

NOTES

i
= || (xe)ll2 E=1|Z_;|'};—>G€- oF I — o

(T, (xy)) —w asn — w = (T,) weakly operator converges to zero. But

(T,,) denote strongly operator converges to zero.
consider ey = (1,88, ) € I*
For norm [T, &y — T8yl = ll€ss1 — sl
= xf_E does not converges to 0 as n—a

Hence our claim holds.
Lemma

Let X be a banch space and Y be a normed space. If ¥, € E(X,¥) and

(T,,) strongly operator converges to T then T € B(X, ¥).

Proof:

Foreverye X, T,x = Txasu—+ wint
= (Tyx) is bounded in Y for each x€ X

By using uniform boundedness theorem

c=0such that |T,|| = € ¥ € N.
=|Tx[[=|| lim Tx | = lm ||T,|
= lm|| Ty[|ll=l] = x| vxex
Therefore T € B(X,¥).

Definition:

Let £, € X'¥n € M. we say that (f,) Weak® converges to fin X' if for

Self-Instructional Material each xg ¥, -ﬁz{x} —}‘f(X) as n— Q.
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Theorem13.2.2:

Let X and Y be banach space T\, € B(X,¥) ¥n€N. (T, be strongly

operator converge to T iff

A)||T, || is bounded
B) (T, x) is Cauchy in Y for each x belongs to total subsets of X

Proof

If (T,) strongly operator converges to T

= A) and B) holds (obviously)
Assume A) and B)

Let MZ ¥ be a total set

= span of M is dense in X.

Letx € X using A) choose c>0 suchthat || T || <=C¥m€HN
Choose y € span M , such that || x-y || < 5 ............ (D
Since y £span M using B) (T,y) is Cauchy in Y.

Given g = @ there exists ¥ € M 3: || T,x — T, ¥/ <§

For et € K

< TRl %=yl + 24 1T 1] ly=x]

~(T,x)1s Cauchy in Y

Since Y is complete, (T,x) is converges in Y.

129

Functional Analysis

NOTES

Self-Instructional Material



Functional Analysis 13.5 EXERCISE

NOTES

1. Show that any closed subspace Y of a normed space X contains the

limits of all weakly convergent sequence of its elements.

2. Let A be a set in a normed space X such that every nonempty subset of

A contains a weak cauchy sequence. Show that A is bounded.

3. A normed space X is said to be weakly complete if each weak Cauchy
sequence in X converges weakly in X. If X is reflexive, show that X is

weakly complete.

Self-Instructional Material
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UNIT XIV: OPEN MAPPING THEOREM

Structure

14.1 Introduction

14.2 Objectives

14.3 Open Mapping Theorem
14.4 Closed Graph Theorem
14.5 Exercise

14.1 INTRODUCTION

This chapter concerned with open mappings. These mappings such that the
image of every open set is open set and also discuss with bounded linear
operator is an open mapping. Then will prove the closed graph theorem
and also give examples of related the open and closed graph theorem. It is
important closed graph theorem which states the sufficient conditions

under which a closed linear operator on a banach space is bounded.

14.2 OBJECTIVE

Student will able to understand

Compute the mapping between the any two spaces.
Identify by which one is surjective, injective and continuous
mapping.

Differentiate Bounded and closed linear operator.

14.3 OPEN MAPPING THEOREM

Let X and Y be Banach spaces. If T is a bounded linear operator from X

onto Y then T is an open mapping.

Proof:

First we prove the following lemma.

Lemma:

If X and Y are Banach spaces and T € B(X , Y) is onto then T(B(0,1))

contains a neighborhood of 0 in Y.
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Proof of the lemma:

Let Bg=B(0,1)and B,=B(0,27") ¥u €N

Claim:1 T (B, Contain on open ball 5

Let x € X. If k = 2||=], then % € B, and hence x € kB, = X = 5z, kB,
Since T is linear and onto we have,

Y=Tx)=T(UKB) = UETE,,

Since Y is complete by Baire’s category theorem int FT(B,) = ¢ =K int

T(B,)=¢=ImtT(B,)=¢

Let 33, € It T'(B,)
Then g = @ 3: B = B(y8) = T(B,)
Claim 1 is holds.

Claim:2 For each ng M, T(F,) contains a neighborhood ¥, of o.

Using claim 1 , we have B*-3, = B(0,8] & T(B,] -¥,, First we show

that

T(B,) -y & T(Bg). Let ye T(B,) -3, Theny+y, € T(5,)

We Know that y, € T(E,] also. Then there exists (z,) and {w,) From

By

1w

Tz, =¥+ 3y,asn=» o, Tw, =3+ y,asn— cwin T(B,).

=>T(z,-¥,) =Tz,-Ty, = ¥+ — ¥~y as n— oo and

nJ

I zey 150 D Hly <Y 414 =1

=z, ¥, E E‘r_; YRneEn

=yET(By)
= T(B)) - yg &= T(By)

= B(o,2)& T(Ey)

=2""B(o,¢) € 2°T(By) = 2 "T(By)
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=T(2™"B,) =T(B,) ¥uecH
Ifv,=B(0, 5), Then V)€ T(B,), ¥neN.
+ Claim 2 is holds.
Claim:3 T(&;) Contains a neighborhood of 0.

_ . . .
Letye T(B,). For ;>O there exists x, € By = | ¥ — Txy |= 3

=>y-Tx, € KLET(B

For §>0 there exists x, € B : || ¥ — Ty — Ty I|= g

Proceeding like this at them™ stage there exists x, € B, such that

|I }F - T.'EJ_— T.‘H: _—Ee— T.‘X’R |IF;::

af+L

¥—Tx, —Tx, —-—Tx, € V., © T(B,)
+. Claim 3 is holds.
Claim4: Let§ = x, +x, +-+x, Yue N
(5, is a Cauchy sequence in X.
Forn>m, || §, = 5, 1=l Limpmsy g |l
2 ZRema | Ze I
< ZRemsagf
<2;‘=mu£§; ::m-—J',._—? Oasn— @
« (&,] is cauchy in X.
Since X is complete there exists X€ X s, =+ x ag 1 — @
Now, Tx=T (ﬂlll_ﬂ: 5)= F}E‘;;T g =¥
Since || s, 1=l 2y + x5+ Fx, D=0 2y 1|+ 2y | -+ 2, I

<1+ 14+ 104+ 1o
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< Zk=1 lfgk = l,xfz = XE By
= y=Tx€ T'(B,) Since yg m is arbitrary mﬁ T(Bg)
Using claim 3 ¥ £ m
& T'(By) contains a neighborhood of O.

Proof:

Let U be an open subset of X. To prove T (U) is open in Y, let y, € T(LF)
Then y5 = Txy for some x5 € U,
Since U is open in X there exists rz @ 2 B(xpr) & &
From the lemma we have B(O,;) =V, € T(B(0,1))
Now we claim that B(y,, =) ST(U)
B(yy, T)= 2 + 7 B0,
C Txy+ rT (B(0,1))
= T(xy+ rB(D1))
=T(B(xg 7))
cT(U)
« T(UFT is open in X
=T is open map.

Remark:

If X and Y are topological spaces, if f: X—Y 1is one to one and onto , f
is open then F£~*: ¥ = & is continuous.

Definition: (Product of two normed spaces)

Let X and Y be normed spaces, Clearly X ¥ is a vector space with
respect to addition and scalar multiplication defined by

(g 3 ) (g, ¥2)=(y + x5, 37 +72)

Alx,y) = (Ax, Ay) (27 (20, 7). (XY)EXKY , A€ K(Ker()

Define |L|l: X®¥ — Bby || (x5) I=0x || +1l ¥ | ¥(x,¥) € XXY
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Claim:
l.]] is anorm on X% ¥
DM Gey) =020 41 7l ¢ ¥(xy) € XxY
i) ey I=0 iff Jxl+lyl=¢ iff Jfxi=01xl=0 iff
x=0,y=0 iff (x,y)=(0,0).
i) I A3} | =1l (A, A3} 1= 1 Ax | +11 Ay U= [AICH 2 0 1 3 11)
=1l Ce. @) 0
W) I (e Mg y) IFD Gy + 200 +3) IFD (g +22) I
Gtmllslz I+l 1+l 3 0+l 3% 1=
I Gy ) Il #0 Cegows )

II.ll isanorm on X¥ ¥ .

Definition:

Let D(T) be a subspace of a normed space X and Y be a normed space. A

linear operator T:D(T)— ¥ is said to be a closed linear operator of its
graph.

gr={{x,Tx):x € D(T)}isclosed in ¥ x ¥.

14.4 CLOSED GRAPH THEOREM

Let X and Y be banach spces and D(T) be a closed subspace of X. if
T:D(T)— ¥ is closed linear then bounded.

Proof:

We know that X»¥ is a normed linear space with
x| +1l ¥ 1=l (x.5) | W(x.¥) €X x¥. First we show that ¥ x¥ is a
banach space of X and Y are banach spaces. Let (x,.3,)€X X ¥ be a
Cauchy sequence in ¥ ¥. Given g = @ there exists

NE N =1 (x,.55) — (T ¥p) 1= e ¥imn = N

2z =3l HlH—rul=a¥mun= N

=="'”-"f;t;;_-"'f;;,nq = &l Yo~ Fm = & Wi, = N
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= (x,) and (3,) are Cauchy sequence in X and Y respectively. Since X

and Y are complete , there exists XEX, F €¥ Zhay, = x, 5, T yasn—+ @

in
= || (2w ) = (2.7) 1=l 2 — 2 || +1 37 — ¥ | = @ as w— o0,
= (x,.7,) converges in X x ¥

- X ® ¥ is a banach space.

Define the projection map P:geT) = ¥

P((x,Tx))=x ¥ix,Tx) € &(T")

Claim: P:g(T)— X isabijection.

If x € X then (x,TX)€ @ (T) and P(x,Tx) =x

= P iz onte.

If P(x,Tx)=P(y,Ty) then x =y
= (%Tx) = (nT)

- P 1S one to one

Claim: P is bounded
I (T, T) 1=l x =0 2 | 41 T =N {x T}

« P1s bounded.

Clearly P is a linear map.

Sine (T} is a clsed subspace of X x ¥, @(T) is also a banach space.
+ By open mapping theorem

= p~* is continuous

Le) I plx) = M || x || ¥x € X, for some M>0

| Tx =l & |+ Tx =l (x.Tx) I=ll p~*(x) =M | x| ¥xEX.
- T is bounded.

Theorem:14.2.1

Let X and Y be normed space and B(T Jbe a subspace of X . A linear

operator T:E(T) — ¥ is closed linear iff T has the following property.
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Whenever x, =%, Tx,—+¥ as n—+ow with x_ €I(T! we have
x € T(T) and Tx=y.

Proof:

T is a closed linear = g(T) is closed in X ® ¥ «<swhenever z_, € g(r) and
z, —zinX¥ %¥aesn— wthen z, € g(r] &= whenever

(2. Tx,)— (x,¥lagn— o in X X ¥ and

%, EP(T)¥n, x € P(T)and y=Txe= whenever

x, =%, e, - vasw —w and x, € D(T) ¥ then x € 2(T) and Tx=y.
Examples:

1. Closed linear operator need not be a bounded linear operator.
Solution:

Let X = Y=C([0,1]) and BT’ = The set of all continuously differentiable
function on [0,1]. Clearly (I} is a subspace of X. we know that the

differential operator 70 is not bounded.

To prove B is closed on (T ).

Let x, € P{TI¥nx, wxand z, = yagy = @, Since (x.,) is
uniformly converges on [0,1] and (x,(£)}) converges for any t€ [€,1] by
theorem x* = AQ}E x;, =¥ Since (x,) converges uniformly to y and x is
continuous ¥t € M.

= = x' IS continuous

=x € P(T) and y=x'

&4 s closed linear.

2. Bounded linear operator need not be a closed linear operator.
Solution:
Let X be a normed space and E¥7) be a dense proper subspace of X.

I(T) be adense proper subspace of X.
i.e) B(T) & ¥ and BIT) =X.
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If T = D(T] — x igthe identity operator then T is bounded. But T is not
closed. Let xe X%®(T'l. Then there exists (x,) is & (T'] 3: x, = x as
n— oo, Since T is continuous Tx, = Tx asi — w. But x€ D{T) =T is

not closed.
Theorem:14.2.2

Let X, Y be normed spaces, BT} = ¥ and T be a bounded linear operator
from I T)mze ¥. Then
i) If (T} isclosed, Then T is closed
i) If T is closed and Y is complete then T T} is closed.
Proof:
i) Let x, € D(T) 2: x, = x and I'x, — ¥ asn — w. Then
xE FT:I and T is continuous implies Tx, =+ Tx as n— w
= Tx =y Tisclosed.
ii) Letx € ﬁ Then there exists a sequence (x,,) from
B(T) 2ux, —rasn— @

Claim:

(Tx,,) is Cauchy in Y. For every m,ng M.

| Tx, =Tz, IZNIT Il x, —x, |- Qasm,n— @

# (T'x,) is Cauchy in Y

Strnice y is complete (Tx,) converges. Since T is closed by a

theorem x& (T} and lﬁ}l Tx,=Tx =2 D(T) SD(T)= B(T)is
—uE

closed.

14.5 EXERCISE

1. Let X and Y be banach spaces and T:X— ¥ an injective bounded linear
operator. Show that T~ R(T} — X is bounded if and only if R{T} is
closedinY.

2. Show that an open mapping need not map closed sets onto closed sets.

3. Let X and Y be normed spaces. If T,:X = ¥is a closed linear operator
and Ty £ B{X,¥) show that T, 4+ T} is a closed linear operator.
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