ALAGAPPA UNIVERSITY

[Accredited with ‘A+> Grade by NAAC (CGPA:3.64) in the Third Cycle
and Graded as Category-I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI - 630 003

Directorate of Distance Education

B.Sc. [Information Technology]
VI - Semester
129 64

LAB: NET PROGRAMMING

Author:
Dr. Preety Khatri, Assistant Professor-SOIT IMS, Noida

"The copyright shall be vested with Alagappa University"

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fithess for any particular use.

VIKAS®

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.

E-28, Sector-8, Noida - 201301 (UP)

Phone: 0120-4078900 ¢ Fax: 0120-4078999

Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
* Website: www.vikaspublishing.com e Email: helpline@vikaspublishing.com

Work Order No. AU/DDE/DE 12-27/Preparation and Printing of Course Materials/2020 Dated 12.08.2020 Copies - 500

SYLLABI-BOOK MAPPING TABLE

LAB: .NET PROGRAMMING
Syllabi

BLOCK 1

1. Building Simple Applications, Observe and Draw Visual. NET IDE Layout and Hands on Practice to Create, Save and
Open the Project.

2. Working with Intrinsic Controls, Control Arrays, Sub Procedures and Functions.

BLOCK 2

3. Application with Multiple Forms

4. Application with Dialogs

5. Application with Menus

6. Application using Data Controls

7. Application using Common Dialogs

BLOCK 3

8. Drag and Drop Events, In-Built Functions, Mathematical and String Functions
9. Database Management

10. Creating ActiveX Controls

11. Database Object (DAO) and Properties

12. Active Data Objects (ADO) and OLE DB

BLOCK 4

13. Database: Bounded and Unbounded Mode, Connecting to the Database, Retrieving a Recordset, Creating a Query
Dynamically, Using a Parameterized Query, Using Action Queries - Adding Records, Editing Records, Closing the
Database Connection

BLOCK 5
14. Simple Application Development
(i) Library Information System
(i) Students Mark Sheet Processing
(iii) Telephone Directory Maintenance
(iv) Gas Booking and Delivering
(v) Electricity Bill Processing
(vi) Bank Transaction
(vii) Pay Roll Processing
(viii) Personal Information System
(ix) Question Database and Conducting Quiz
(x) Personal Diary

Lab:.NET Programming

NOTES

Self-Instructional
Material

INTRODUCTION

The .NET Framework, pronounced as ‘DOT NET’ is a software framework
developed by Microsoft that runs primarily on Microsoft Windows. It includes a
large class library called Framework Class Library (FCL) and provides language
interoperability (each language can use code written in other languages) across
several programming languages. Programs written for NET Framework execute
in a software environment (in contrast to a hardware environment) named the
Common Language Runtime (CLR). The CLR is an application virtual machine
that provides services, such as security, memory management, and exception
handling. As such, computer code written using .NET Framework is termed as
the ‘Managed Code’. FCL and CLR together constitute the .NET Framework.
FCL provides the user interface, data access, database connectivity, cryptography,
web application development, numeric algorithms, and network communications.
Programmers produce software by combining their source code with .NET
Framework and other libraries. The framework is intended to be used by most
new applications created for the Windows platform. Microsoft also produces an
Integrated Development Environment (IDE) for NET software called Visual
Studio.

This lab manual, DOT NET Programming, contains several programs
based on DOT NET programming which includes building simple applications,
observe and draw Visual. NET IDE layout and hands on practice to create, save
and open the project, working with intrinsic controls, control arrays, sub procedures
and functions, application with multiple forms, dialogs, menus, data controls,
common dialogs, drag and drop events, in-built functions, mathematical and string
functions, database management, creating ActiveX controls, Database Object
(DAO) and properties, Active Data Objects (ADO) and OLE DB, connecting to
the database, retrieving a record set, creating a query dynamically, parameterized
query, action queries, simple application development, such as library information
system, students mark sheet processing, telephone directory maintenance, gas
booking and delivering, electricity bill processing, bank transaction, pay roll
processing, personal information system, etc.

In addition, it will help students in coding and debugging their DOT NET
programs. The manual provides all logical, mathematical and conceptual programs
that can help to write programs easily. These exercises shall be taken as the base
reference during lab activities for students.

Lab:.NET Programming

BLOCK I : LAB .NET PROGRAMMING

This block will cover the following topics:
1. Introduction of NET framework and VB.NET IDE. NOTES

2. Create, save and open the project.

3. Work with intrinsic controls, control arrays, Sub Procedures and functions.
Introduction to NET

NET is a software framework which is designed and developed by Microsoft.
The first version 1.0 of the NET framework came in 2002. .NET is also defined
as XML web services platform which allows to build .NET applications, through
which users can interact with the internet using wide range of smart devices like
tablets, smart phones etc. It is a virtual machine for compiling and executing
programs written in various languages like C#, VB.NET, etc. .NET allows building
and integrating the web services and which comes with different set of tools like
Visual Studio to fully develop and build those applications.

There is a large variety of programming languages available on the NET
platform, for example VB.NET and C# which is used to build applications for
Windows, phone, web, etc. It provides a lot of functionalities and also supports
industry standards.

NET Framework

NET framework is a software platform. It is a language-neutral environment for
building applications and developing .NET experiences that can easily operate
within it. When developed applications are deployed, these applications will target
NET and will execute wherever .NET is implemented instead of depending on a
particular Hardware/OS combination. The components that make the .NET
platform are collectively called the NET framework. The .NET framework is a
managed as well as a type-safe environment for developing and executing various
applications. The NET framework manages all kinds of program execution for
example, how to allocate the memory for the storage of data and instructions,
managing execution of the application, granting permissions to the application,
reallocation of memory etc. Basically, NET framework is designed for cross-
language compatibility, which is an application written in VB NET may reference
a DLL file written in C#. A VB.NET class might be derived from a C# class or
vice versa. The NET Framework consists of various components, some important
components are:

a) Common Language Runtime (CLR)
b) Class Libraries
¢) Common Language Specification (CLS)

Self-Instructional
Material 1

Lab:.NET Programming

NOTES

Self-Instructional
2 Material

a) Common Language Runtime (CLR)

The CLR is an execution engine of .NET which provides the environment to run
the program. CLR can manage the execution of programs. It also provides core
services like memory allocation, code compilation, thread management, garbage
collection etc. The software version of .NET is actually the CLR version. CLR is
the virtual machine component of the .NET framework. It is the run-time
environment in the .NET framework that runs the codes. . It also helps in code
management. The code that targets the runtime is known as the managed code and
code that doesn’t target to runtime is known as unmanaged code. It helps in
making the development process easier by providing the a variety of services like
thread management, remoting, memory management, robustness, type-safety etc..
CLR is responsible for managing the execution of .NET programs instead of any
NET programming language.

b) Class Libraries

Class library is another component of .NET framework that is designed to integrate
with the CLR. It provides the program access to runtime environment. The class
library consists of classes, interfaces, namespaces and value types that can be
used in the applications created in VB .NET and visual studio .NET. It contains
the number of classes that serves the following functions:

1. It provides the base and user-defined data types.

2. It supports the exceptions handling.
3. It helps in managing I/O and stream operations.
4. Itallows access to data.
5. Ithels in creating the Windows-based GUI applications.
6. It supports in creating the web services.
7. Itisuseful in creating the web-client and server applications.
Common Language Infrastructure (CLI)
VB.NET c# Eg:;'u':‘gi";
Common Language Specification (CLS)
Common Type System (CTS)
.NET Framework Class Library (FCL)
ASP.NET WinForms Console
ADO.NET .NET Remoting
Common Language Runtime
(JIT, GC, security manager and other features)

Fig. 1.1 .NET Framework

¢) Common Language Specification (CLS)

The CLS describes a set of rules and constraints that are common in different
languages which runs in .NET framework. If we want the code which we write in
a language to be used by programs in some other languages, then it should remain
in CLS. It defines the minimum standards that .NET language compilers must
confirm to ensure that any source code compiled by a.NET compiler and that
code interoperate with the other language. Developers are building applications
using the NET framework due to following features:

1. To increase the performance

To improved reliability

To provide mobility support

XML web service support

To increase the developer productivity

To provide an environment that integrate with existing systems

Ease of deployment

® N kWD

To provide powerful security

9. Flexible data access
Basic Requirements to Install Visual Studio

The minimum requirements of a system for installing visual studio are:
1. RAM: 256 MB (Recommended)
2. Operating System: Windows 2000 or Windows XP
3. Processor: Pentium 11450 MHz
4. Hard Disk Space: 3.5 GB (Includes 500 MB free space on disk)

Visual Basic .NET

Visual basic .NET provides the easiest and most productive language and tool for
building Windows and web applications. It comes with improved visual designers,
a powerful integrated development environment (IDE) and increased application
performance. It also supports creation of applications for internet-enabled and
wireless hand-held devices. There are various features of VB.NET as follows:

a) Building Web-based Applications

With the help of VB.NET, we can build web applications using the shared web
form designer. You can double-click and write code to respond to events. There is
an enhanced HTML editor for working with complex web pages. We can also use
IntelliSense technology and tag completion, or choose the WY SIWY G editor for
visual authoring of interactive web applications.

Lab:.NET Programming

NOTES

Self-Instructional
Material 3

Lab:.NET Programming

NOTES

Self-Instructional
4 Material

b) Powerful Windows-based Applications

VB.NET provides the features like forms designer, an in-place menu editor and
automatic control docking and anchoring. VB.NET provides new productivity
features for building robust applications very quickly. With the help of IDE
environment, VB.NET provides automatic, fast formatting of code, improved
IntelliSense, an enhanced object browser and XML designer.

¢) Improved Coding

You can code faster and more effectively. A multitude of enhancements to the
code editor, including enhanced IntelliSense, smart listing of code for greater
readability and a background compiler for real-time notification of syntax errors
transforms into a rapid application development (RAD) coding machine. You can
tackle any data access scenario easily with ADO.NET and ADO data access.
The flexibility of ADO.NET enables data binding to any database, as well as
classes, collections, and arrays, and provides true XML representation of data.
Seamless access to ADO enables simple data access for connected data binding
scenarios. Using ADO.NET, VB.NET can gain high-speed access to MS SQL
Server, Oracle, DB2, Microsoft access, and more.

d) Simplified Deployment With VB.NET

With the help of VB.NET, we can build applications more rapidly and maintain
them very efficiently. Web auto-download and XCOPY-deployment of Windows-
based applications combine the simplicity of web page deployment and maintenance
with the power of rich and responsive Windows-based applications. Side-by-
side versioning provides multiple versions of the same component to live safely on
the same machine so that applications can use a specific version of a component.

e) Direct Access to the Platform

VB.NET provides direct access to the platform. It enables developers can have
full access to the capabilities available in .NET framework. The new Windows
service project template enables to build real Microsoft Windows NT services.
Developers can easily program system services including performance counters,
file system and event log.

f) Full Object-Oriented Constructs

VB.NET provides full object-oriented constructs. You can create enterprise,
reusable-class code using full object-oriented constructs. Structured exception
handling provides a global error handler and eliminates spaghetti code. Language
features consists of full implementation encapsulation, polymorphism and
inheritance.

VB Language

Visual basic is very popular language for its friendly working environment and it
clearly states how widely used for developing applications. VB.NET is an extension
of visual basic programming language having various features in it. VB.NET was
designed to take advantage of the .NET framework runtime environment and
base classes. It comes with power packed features that simplify application
development. The changes from VB to VB .NET ranging from the change in
syntax of the language to the types of projects and also depends on the way of
designing applications. Following are the points which elaborate advancement
fromVBto VB.NET.

¢ One of the major changes from VB to VB .NET is that it is based on the
concept of object-oriented.

e We can now create classes and objects, and also derive classes from other
classes.

o It provides the advantage of code reusability with OOP.
e VB.NET supports multithreading,

e VB.NET adds console applications (that run in the DOS version) to it apart
from Windows and web applications.

e VB.NET supports all OOP features i.e. abstraction, inheritance,
polymorphism and encapsulation.

e Representing data in XML format allows us to send large amounts of data
on the internet. It reduces network traffic when communicating with the
database.

e VB.NET requires declaration of all the variables by default before using
them.

e Web development is now an integral part of VB.NET making two major
types of applications i.e. web forms and web services.
e VB.NET supports structured exception handling using Try...Catch...Finally.

e Various controls can be added to the toolbar which make application
development more efficient.

e VB.NETuses ADO.NET, a new data handling model to communicate with
databases on local machines or on a network and also it makes handling of
data on the internet easy.

e Datain ADO.NET is represented in XML format and is exchanged in the
same format.

Namespaces

A namespace is a collection of various classes. The namespace with all the built-in
VB functionality is the system namespace. The VB applications are developed

Lab:.NET Programming

NOTES

Self-Instructional
Material 5

Lab:.NET Programming

NOTES

Self-Instructional
6 Material

using classes from the .NET system namespace. All other namespaces are based
on this system namespace.

e System: It includes necessary classes and base classes for commonly used
data types, events and exceptions.

o System.Collections: 1t includes classes and interfaces which define
collection of objects such as queues, list, arrays, hash tables etc.

o System.Globalization: It includes classes that specify culture-related
information.

o System.lO: It includes classes for data access with Files System.NET that
provides interface to protocols used on the internet.

o System.Diagnostics: It includes classes that allow to debug our application
and to step through our code.

o System.Threading: 1t includes classes and interfaces to support
multithreading.

e System.Data: It includes classes which lets us handle data from data
sources.

o System.Data.OleDb: 1t includes classes that support the OLEDB .NET
provider.

e System.Security: It includes classes to support the structure of common
language runtime security system.

o System.Data.SqlClient: It includes classes that support the SQL Server
NET provider.

o System.Drawing: It provides access to drawing methods.

o System.Reflection: It includes classes and interfaces that return information
about types, methods and fields.

o System.Windows. Forms: It includes classes for creating Windows based
forms.

o System.Web: It includes classes and interfaces that support browser-server
communication system.

e Web.Services: It includes classes that let us build and use Web services.

o System.XML: It includes classes for XML support.
Console Applications

Console Applications are command-line oriented applications that allow us to
read and characters from the console. Console applications are written in code
and are supported by the System.Console namespace. The console applications
are executed in the DOS.

An Example of Console Application

Create a folder in C drive with any name and make sure the console applications
which you open are saved there. The default location where all the .NET applications
are saved is C:\Documents and Settings\Administrator\My Documents\Visual
Studio Projects. The new project dialogue looks like the Figure 2.

T —————————]
[oot (e Pt e —"] 1) R PSR »
fostalion Tamplates an i * | Type: Vesual Basic
gl Virdews Forms Application Visual Basc
4 Visusl Bagic = & preptet foe seating a command-lne
‘Windows vy apphicatson
Wi @'| VPF Application Vsl By
Dfice
Cleud 'S Console Apphication Wisual Basc
Feporiing s
ShareP ot .;“ﬂ Class Libeary Wisual Bazc
¥
Sherbght
Test Bl PG| WoF Browses Appication Visusl Base
WCF
3 —_
Witk lom ¥g| Empty Project Visual Basc
Viswl C#
I =+ —
VeuilC J0| Windows Service Visusal Basc
Visul Fr L
b Y% WPFC G f Libw, Wisuast B
Ak ustom Controf Library sl Brsc
Test Projects Vi
i 1 ._
e Temiphates P_‘ WPF User Comtrol Librasy Visual Bxcc 5
MName Consolefipplicationt
Lecatior userr Bocumenerivash studie 2iprojects . | Browse. |
Solutsan name Camtoledpplicetionl o | Cieate dicectony {or solution
Add th source control

Fig. 2 Starting Console Applications

The following code is an example of a console application.
Module Modulel
Sub Main ()

System.Console.Write (“"Running program with Console
Application”)

End Sub
End Module

Modulelwb X

[(General) ~ | £ (Dedlarations)

ElModule Modulel

= Sub Main()
System.Conscle.Writef"Running program with Console Application")
End Sub

End Module

When, you run the code by selecting Debug’!Start from the main menu or
by pressing F5 on the keyboard. The result “Running program with Console
Application” is displayed on a DOS window. Alternatively, you can run the program
using the VB compiler (vbc). To do that, go to the Visual Studio.NET command
prompt on selecting from Start’!Programs’! Visual Studio.NET’! Visual Studio.NET
Tools’!Visual Studio.NET Command Prompt and type: c:\examples>vbc
examplel.vb.

Lab:.NET Programming

NOTES

Self-Instructional

Material 7

Lab:.NET Programming

NOTES

Self-Instructional
8 Material

The result “Running program with Console Application” is displayed on a
DOS Window as shown in the screenshot given below.

I L A B=E==)

Running program with Console fApplicationPress any key to continue . . .

Explanation

See the first line, here we are creating a VB Module and Modules are designed to
hold code. The code which we write should be within the module. Next line starts
with Sub Main () which is the entry point of the program. The third shows that we
are using the Write method of the System.Console class to write to the console.

How to Comment the Code?

In VB.NET, comments start with a single quote (‘) character and the statements
following that are ignored by the compiler. Comments are generally used to define
that what is going in the program. It also provides an idea about the flow of the
program. The general form looks like this:

Dim I as Integer

‘declaring an integer

Visual Studio .NET IDE

Visual Studio.NET IDE (Integrated Development Environment) provides the
environment for developing the .NET based applications which come with various
features. Visual Studio .NET IDE is an upgraded version of all previous IDE’s by
Microsoft. It provides many options and includes many features which simplify
application development. Following the the important features of IDE.

1. IDE is Customizable: It can be customized based on your preferences and
this can be done using My Profile settings. You can set the IDE screen the
way you want and you can also filter the help files based on the language of
your choice or set the way the keyboard behaves.

2. One IDE for all .NET Projects: It provides the same environment for
developing all types of .NET applications. Applications can range from
single windows applications to complex one.

3. Built-in Browser: The IDE have a built-in browser that helps to browse Lab:.NET Programming
internet without launching another application. With the help of built-in-
browser, you can look for source codes, online help files, additional resources
etc.

4. Option to choose from Multiple Programming Languages: VS.NET provides
various options to choose from multiple programming languages. You can
also integrate multiple programming languages in one .NET solution and
edit that with the IDE. You can choose the programming language of your
choice to develop applications based on your expertise in that language.

You can open the VS.NET using the steps i.e. Start’! Programs’!Microsoft Visual
Studio .NET’!Microsoft Visual Studio.NET. The start page also allows us to select
from the most recent projects.

NOTES

MVISuEﬂ Studio 2010 Professicnal

Get Started ~ Guidance and Resources Latest News

It

Connect To Team Foundation Server
B
[F] Open Project.. e : % What's New in Visual Studio 2010
Learn about the new features included in this release.

Welcome. Windows Web Cloud Office SharePoint Data

on
lew Project...

Recent Prolects Visual Studic 2010 Overview
! s New in .NET Framework 4

3 co

& ConsoleApplication2

New in Visual C#

leApplication2
Customize the Visual Studio Start Page

& WindowsApplicationd
[¥] Close page after praject load Creating Applications with Visual Studic
[¥] Show page on startup

The Integrated Development Environment (IDE) is shown in the screenshot
given below. It shows the interface with which we actually work with. In this IDE,
there is toolbars towards the left side along with the Solution Explorer window
towards the right.

~ Solution Explorer

HEEEEE
a2 Forml =G ‘5| WindowsApplication5

=d| My Project

=] Formlyb

Forml.vb™ Forml.wvb [Design]*

&
2
3
2
g
2
g
&
o
=)
2
3
&

New Project Dialogue Box

The New Project dialogue box is used to create a new project which shows the
name the project and also shows it’s location on the disk where it is saved. The

Self-Instructional
Material

Lab:.NET Programming

10

NOTES

Self-Instructional
Material

default location on the hard disk where all the projects are saved is
C:\DocumentsandSettings\Administrator\MyDocuments\VisualStudioProjects.

There are various templates under project types. Some are given below:

1.

Windows Application: It is used to create standard windows based
applications.

. Web Control Library: It is used to create user-defined controls for the

web.

. Windows Control Library: It is used to create our own windows controls,

where you group some controls, add it to the toolbox also.

4. Console Application: It is used to create command line based applications.

5. Class Library: It is used to provide functionality similar to Active X and

8.

DLL by creating classes that access other applications.

. ASP.NET Web Application: It is used to create web-based applications,

create web pages, web applications and web services using IIS.

. Windows Service: They are designed for special purpose and will keep

running and come to an end only when the system is shut down.
ASP.NET Web Service: It is used to create XML web services.

Solution Explorer Window

The Solution Explorer window provides an overview of the solution with which
we are working and lists all the files in the project as shown below.

Solution Explorer 1
=g 2| EES
72| WindowsApplication5
=d| My Project
=] Formlwh

Server Explorer Window

The Server Explorer window is a great tool and it provides drag and drop feature.
With the help of server explorer, it is easy to work with databases. If we drag and
drop a database table onto a form, VB .NET automatically creates connection
and command objects which are required to access the table.

Server Explorer »= [X
S
It Data Connections
a "-!_., Servers
A imsitd3-PC
gHil SharePoint Connections

Intellisense

Intellisense is responsible for the boxes that open when we type the code. It
provides a list of options which make language references easily accessible. It
helps us to find the required information.

Private Sub TextBoxl TextChanged(ByVal sender As Sy
TextBo
. End R Tyt -
End Clas-vIiﬁ TextBox
¢ TextBoxl
¥ TextBoxd _TedChanged
= TextFarmatFlags
“t¢ TextRenderer
“# TextureBrush

“t% TextWriterTracelistener
FY TheaaAdima
Common | All |

Code Designer Window

Code Designer window is used to edit and write code. This window will open,
when we double-click on a form or any control. This is the place where we write
all the code for the application. The right box allows us to select the part of code
that we want to work on and the left box allows us to select the object’s code we

Lab:.NET Programming

NOTES

Self-Instructional
Material

11

Lab.:.NET Programming are working with. The “+” and “-” boxes are used to display code that is created

in VB.NET.

| 4" lexdBod ~| # lextChanged

NOTES =Public Class Forml

= Private Sub Forml_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

= Private Sub TextBoxl_TextChanged(Byval sender As System.COhject, ByVal e As System.EventArgs) Handles TextBoxl.

End Sub
End Class

Properties Window

Properties window can be used to set properties for various objects at design
time. The properties window can be viewed by pressing F4 on the keyboard or
by selecting View’!Properties Window from the main menu. For example to change
the name, text, font, font size, color etc. of various controls like textbox, button
etc. which can be done easily using the properties window.

Properties

12

Self-Instructional
Material

sil= 120
GeneratebMemk True -
HideSelection True
Imebode MoControl

= Lines String[] Array

I Location 154, 69
Locked False

= Margin 2333
MaximumSize 0,0
MaxLength 32767

= MinimumSize 0,0
Maodifiers Friend
Multiline False
PasswordChar
ReadOnly False
RightTolLeft Mo E
ScrollBars Mone (M
SheortcutsEnabl True

> Size 100, 20
Tablndex o
Tab5top True
Tag
Text

Command Window

You canadd new item to the project, add new project and so on using the command
window. The command window that is given below displays all possible commands
with file. You can view the command window by selecting View’!Other
Windows’!Command Window from the main menu.

T T TR Lab:.NET Programming

»File.add

File.AddExistingProject
File.AddExistingWebSite

File AddMewProject
File.AddMew\WebSite
File.AddProjectfromSourceControl
File.AddSelectedProjectstoSourceCol
File.AddSolutiontoSourceControl

e

With the help of class view window, you can find a member of a class. The class
view window presents projects and solutions in terms of the classes they contain
and the members of these classes. The class view can be access through view’!class
view. The class view window displayed all the methods and events for the controls
which were available on the form.

NOTES

Class View Window

Class View * O x
P A B
|<Search} ~ [=

a =y References
Microsoft.VisualBasic
rmscorlib

System

System.Core
Systermn.Data
Systern.Data.DataSetExtens
System.Deployment
System.Drawing
Systerm.Windows.Forms
Systern.Xml

EUQUUUQUEUQ

System.Xml.Ling
- {} WindowsApplicationd

il 1 | :

Output Window

The output window as show below is used to displays the results of building and
running applications.

Output > X

Show output from: | Build '|| @ | i -w‘ R ‘ =
—————— Build started: Project: WindowsApplications, Configuration: Debug x86 ------

WindowsApplication -> c:\users\imsit@9\documentsivisual studio ZBIB\prD]E(ts\\randuwsﬂppllcatlnnﬁ\hlnduws;\ppllcatlm F|
========== Build: 1 succeeded, @ failed, @ up-to-date, @ skipped ==========

m b

Self-Instructional
Material 13

Lab:.NET Programming

14

NOTES

Self-Instructional
Material

Object Explorer Window

The object explorer window lists all the objects in our code and gives us access to
them. You can view the object explorer window by selecting View’!Other
Windows’!Object Browser from the main menu. Or it can be access through
view’lobject browser.

[Object Broweser Forrnd ook

Forml . ok [Desigr]

A
L
]
']

Lototobatotitotac

cscormprhgd
CustormbAdarshalers [2.0.0.0
CustormbAarshalers [4.0.0.0
IEExecRaermote

IEH o=t

1
1

ODEHost

ISy rmWirapper [2.0.0.07]

ISy rmWirapper [4.0.0.07
PrAicrosoft.Build

Plicroscoft.Build. Conwversicon. 3.5
rlicrosoft.Build. Conwversicn.ord .0
rlicrosoft.Build.Engine [2.0.0.01
rdicrosoft.Build.Engine [3.5.0.0]
Plicrosoft.Build.Engine [4.0.0.01

by
v

Toolbox Window

The toolbox window provides access to all components and controls. This window
consists of various tabs like components, data, window forms, general etc. Data
tab displays tools for creating datasets and making data connections. The Clipboard
Ring tab displays recent items stored in the clipboard and allows us to select from
them.The Windows Forms tab displays tools for adding controls to forms. The
General tab is left empty by default. The Clipboard Ring tab displays recent items
stored in the clipboard and allows us to select from them.

Toolbox R
= All Windows Forms >
4 Common Controls
e Pointer
Button
CheckBox
CheckedListBox

m

ComboBox

DateTimePicker

Label
LinkLabel
ListBox
ListWiew
MaskedTextBox
MonthCalendar
=] Motifylcon
(B MumericJpDown
== PictureBox
2 ProgressBar
(O] RadiocButton
25 PRichTexdBox
abll TextBox
L ToolTip
Hr TreeView
__'_] WebBrowser
4 Containers

e Pointer

&= FlowLayoutPanel

Windows Forms

In VB .NET forms are based on the System. Windows.Forms namespace and the
form class is System. Windows.Forms.Form. These forms are the base on which
we develop and build our entire user interface. The form class is based on the
Control class and it allows it to share many methods and properties with other
controls. As shown below windows forms, it displays window form application.
Once you click OK, then a new Form opens having title, Form1, towards the top-
left side of the form. It also consists of close buttons, maximize, minimize towards
the top right of the form. The main area of the form in which we work is called the
Client Area. It’s in this client area in which we design the user interface leaving all
the code to the code behind file.

New Project e —
Recent Templates | .NET Framework 4 X | Sort by: | Default |
Installed Templates =

) . _¥B| Windows Forms Application Visual Basic |
4 \izual Basic = =
Windows " | Windows Forms Application
Web | ¢ WPF Application
Office
Cloud g Conscle Application Visual Basic
Reporting ?
SharePoint -Va| Class Library Visual Basic
Sikverlight =
=l == 2 | : |
Test | vg| WPFEBrowser Application Visual Basic
WCF
-
Workilgw Ya| Empty Project Visual Basic
Vigual C2
V!sual it V8| Windows Service Visual Basic
Visual F# ;
Other Project Types X X X
#Va WPF Custorn Control Library Visual Basic
Database | 4 = £ |
Test Proiects - -
DR e Ees |15_—. WPF User Control Library Visual Basic g
Mame: WindowsApplicationl
Location: chusersidocumentsivisual studio 20104 projects -
Solution name: WindowsApplicationl I

The Figure below shows that how a window form look like.

=l Forml = IEI_I;M;h

Lab:.NET Programming

NOTES

Self-Instructional
Material

15

Lab:.NET Programming

16

NOTES

Self-Instructional
Material

Working with Intrinsic Controls

There are two types of controls in VB i.e. intrinsic and extrinsic. Intrinsic controls
are the built-in controls that cannot be changed or removed from the toolbox. You
can use them from the toolbox. The Table 1 below lists the intrinsic controls.

Table 1 The visual basic 6 intrinsic controls

Controls Description

Label It displays the text on a form.

Frame This control Serves as a container to other controls

CheckBox It enables the users to select or deselect from an option.

ComboBox This control allows the users to add a new value or select from
a list of items.

HscrollBar It allows scrolling horizontally from a list of data in another
control.

Timer It allows the program to perform actions in real time, without
user interaction.

DirListBox It enables to select a directory or folder.

Shape Reflect a shape on a form.

Image It displays images on a form.

OLE Container It enables you to add the functionality of another Control
program to your program.

PictureBox It can serve as a container and displays images on a form.

TextBox It is used to display text and also enables users to enter or edit
new or existing text.

CommandButton Used to initiate actions.

OptionButton It allows users select one choice from a group.

ListBox It allows users to select from a list of items.

VscrollBar It helps in scrolling vertically through a list of data in another
control.

DriveListBox Used to select a disk drive.

FileListBox Selects a file.

Line Displays a line.

Data Used to connect to a database.

Adding and Removing Controls

Double-clicking and by drawing are the two ways to add controls on a form.
Whenever you double-click an icon on the toolbar, the associated control appears
on your form. You can put it wherever you want it, when you draw a control on
your form. Following are the steps to draw a control on a form.

1. Click on the control’s toolbox icon.

2. Whenever you move the mouse on your form the pointer shapes as crosshair
instead of an arrow. Now click and hold the button at the position where
you want the control to go.

3. Drag the mouse based on your choice.

4. When the control is in the proper size, let go of the mouse button.
Following are the steps to remove a control from a form.

1. Select the control you want to delete.

2. Press the Delete key.

You can also delete a control by right-clicking from the context menu that appears
and select delete.

Data Types in VB .NET

There are various data types in VB .NET based on their type and size as shown
below.

Data Type Size in Bytes Description

Boolean A Boolean type True or False
depends on the

implementing platform

Byte 1 byte Byte Range start from 0 to 255 (unsigned)

Char 2 bytes Char Range start from 0 to 65535 (unsigned)

Date 8 bytes Date range can be 0:00:0 (midnight) January 1, 0001 to

11:5959 PM of December 31, 9999.
Integer 4 bytes -2,147,483,648 to 2,147,483,647 (signed)
Long 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
(9.2...E + 18) (signed)
Object Object size based It can store any type of data defined in a variable of type
on the platform Object

such as 4 bytes in
32-bit and 8 bytes
in 64-bit platform

SByte 1 byte -128 to 127 (signed)
Short 2 bytes -32,768 to 32,767 (signed)
Single 4 bytes -3.4028235E + 38 to -1.401298E-45 for negative values;
And for positive value: 1.401298E-45 to 3.4028235E + 38.
String String Datatype It accepts Unicode character from 0 to approximately 2
depend on the billion characters.
implementing
platform
Decimal 16 bytes Range from 0 to +/-
79,228,162,514,264,337,593,543,950,335
(+/-7.9...E+28) without any decimal point;
And 0 to +/-7.92281625142264337593543950335 with 28
position to the right of the decimal
Double 8 bytes -1.79769313486231570E+308 to -4.94-65645841246544E-

324 for negative values;
4.94065645841246544E-324 to
1.79769313486231570E+308, for positive values

Access Specifiers
Access specifiers are used to specify how a variable, method, class can be used.
Some of the access specifiers are given below:

¢ Public: It provides a variable public access, i.e. there is no restriction on
their accessibility.

¢ Private: It provides a variable private access, i.e. they are accessible only
within their declaration content

Lab:.NET Programming

NOTES

Self-Instructional
Material 17

Lab:.NET Programming

18

NOTES

Self-Instructional
Material

¢ Protected: It provides a variable accessibility within their own class or a
class derived from that class.

¢ Friend: It provides a variable friend access i.e. they are accessible within
the program that contains their declaration.

¢ Protected Friend: It provides a variable both protected and friend access.

e Static: It makes a variable static i.e. the variable will hold the value even
the procedure in which there declaration ends.

¢ Shared: It means a variable can be shared across many instances and not
associated with a specific instance of a class or structure.

¢ ReadOnly: It makes a variable only to be read and cannot be written.
Variables

Variables are used to store data and each variable has a name. VB.NET needs
variables to be declared before using them. Variables are declared with the Dim
keyword. Dim stands for Dimension. For example:

Imports System.Console

Module Modulel

Sub Main ()

Dim a,b,c as Integer

‘declaring three variables of type integer

x=20

y=30

Z=X+y

Write (“Sum of x and y is” & z)

End Sub
End Module
Modulel.wib 2= % T (8] o5 8 1
il iGeneral
Imports System.Console
—Module Modulel

EL Sub Maind)
Dim %, Yy, T As Integer
‘declaring three wariables of type integer
2
1=
X o+ oy
Write{"Sum of x and y is™ & =z}

B
o

End Sub

| End Module
1

The output of the above code is shown below:

B CAWindowshsystem32iomd.exe |£‘&J

Sum of x and y is5BPress any key to continue . . .

Arrays

Arrays are the collection of variables of similar data types. Arrays are programming
constructs that store data and allow us to access them by numeric index or subscript.
Arrays in Visual Basic.NET inherit from the Array class in the system namespace.
Arrays help us create shorter and simpler code in many situations. All arrays in VB
are zero based i.e. index of the first element is zero and they are numbered
sequentially. The number of array elements must be specified by indicating the
upper bound of the array. The upper bound is the number that indicates the index
of'the last element of the array. An array can have one dimension (linear arrays) or
more than one (multidimensional arrays). Arrays are declared using Dim, ReDim,
static, private, public and protected keywords. The dimensionality of an array
refers to the number of subscripts used to identify an individual element. In visual
basic, we can specify up to 32 dimensions. Arrays don’t have fixed size in visual
basic. Consider an example given below:

Imports System.Console
Module Modulel

Sub Main ()

Dim fruit(5) As String

‘declaring an array

fruit (0) = “Apple”

fruit (1) = “Banana”
fruit (2) = “Orange”
fruit (3) = “kiwi”

fruit (4) = “Guaua”

fruit (5) = “Pomegranate”

‘storing values in the array

WriteLine (“Name of the Fruit in the second location” & “
“Wg fruit(2))

‘displaying value from array
End Sub
End Module

Lab:.NET Programming

NOTES

Self-Instructional
Material

19

Lab:.NET Programming

NOTES

Self-Instructional
20 Material

TSRS Modulel vb

i (General) - | i (Declarations)

Imports System.Conscle
SiModule Moduleld
= Sub Main()
Dim fruit(5) As String
‘declarin

g an array

fruit(®) = “Apple”
fruit(l) = "Banana™
fruit(2) =
Ffruit(3) =
fruit(4) =
fruit(5) = "Pomegranate”
'storing wvalues in the array
WriteLine("Name of the Fruit in the second location™ & ™ " & fruit(2))
‘displaying wvalue from array

End Sub
End Module

The output of the above code is given below:

B C\Windowshsystem32icmd.exe | =| B -&J

MHame of the Fruit in the second location Orange
Press any key to continue . . .

mn w

Reinitializing Arrays

We can change the size of an array after creating them. You can use ReDim statement
to change the number of elements in an array. The ReDim statement assigns a
completely new array object to the specified array variable. The following lines of
code demonstrate that the code reinitializes the Test array declared above.

Dim Test (15) as Integer

ReDimTest (20) as Integer

‘Reinitializing the array
When using the Redim statement all the data contained in the array gets lost. If you
want to preserve existing data when reinitializing an array, then you should use the
Preserve keyword which is given below:

Dim Test () as Integer={2,4,6}

‘declares an array an initializes it with three members

ReDim Preserve Test (20)

‘resizes the array

Multidimensional Arrays

All arrays which were mentioned above are one dimensional or linear array. There
are two kinds of multidimensional arrays supported by the NET framework i.e.
rectangular arrays and jagged arrays.

Rectangular arrays

Rectangular arrays are arrays in which each member of each dimension is extended
in each other dimension by the same length. We declare a rectangular array by
specifying additional dimensions at declaration. The following lines of code
demonstrate the declaration of a multidimensional array.

Dim rectArray (4, 2) As Integer

‘declares an array of 5 by 3 members which is a 15 member
array

Dim rectArray(,) As Integer = {{2, 1, 4}, {5, 7, 9}, {12,
10, 14}}

‘setting initial values
Jagged Arrays

Jagged Array is also multidimensional array in which the length of each array can
differ. This array can be used is to create a table in which the number of columns
differ in each row. Say, ifrow1 has 3 columns, row?2 has 3 columns then row3 can
have 4 columns, row4 can have 5 columns and so on. The following code

demonstrates the concept of jagged arrays.
Dim fruit(2) () as String
‘declaring an array of 3 arrays
fruit (0)=New String () {“apple”, “"banana”,”orange”}
‘initializing the first array to 3 members and setting
values
fruit (1l)=New String () {“kiwi”,”Pomegranate,
"guaua’”, “banana”}

‘initializing the second array to 4 members and setting
values

fruit(2)=New String () {“apple”,”banana”,”kiwi”,

oo

"guaua’”, "“orange”}

‘initializing the third array to 5 members and setting
values

Methods

A Method is a procedure which is built into the class. Methods are series of
statements which are executed when called. Methods allow us to handle code in
an organized fashion. There are two types of methods in VB.NET i.e. those that
return a value (called functions) and those that do not return a value (Sub
Procedures). Both of them are discussed below.

Sub Procedures

Sub procedures are methods that do not return a value. Sub Main (), the starting
point of the program itself'is a sub procedure. Every time when the Sub procedure
is called the statements within it are executed until the End Sub is encountered.

Lab:.NET Programming

NOTES

Self-Instructional
Material

21

Lab:.NET Programming

22

NOTES

Self-Instructional
Material

The control is transferred to Main Sub procedure automatically which is called by
default when the application starts execution. Consider the example given below:

Module Modulel

Sub Main ()
‘sub procedure Main () is called by default

Display ()
‘sub procedure display () which we are creating

End Sub

Sub Display ()
System.Console.WritelLine (“"Program by using Sub
Procedures”)

‘executing sub procedure Display ()

End Sub
End Module

Modulel wb™ > et T8V -

[E Modulel - &5 (iDe
SModule Modulel
=] Sub Main()
"zub procedure Maing) is called by default
Display()
"sub procedure
End Sub

we are creating

= Sub Display()

System.Conscle.WriteLline ("Program by using Sub Procedures™)
"executing sub procedure Display()
End Sub

End Module

The output of the above code is given below:

¥ CA\Windows\system32icmd.exe

Program by using Sub Procedures
Press any key to continue . . .

Functions

Function is a method that returns a value. Functions are used to evaluate, calculate
and transform data. Declaring a function is similar to declaring a sub procedure.
Functions are declared with the Function keyword. Consider the following example

code:

Imports System.Console

Module Modulel

Sub Main ()

Write (“Sum is” & ™ “ & Add())
‘calling the function

End Sub

Public Function Add() As Integer

‘declaring a function add

Dim i, j As Integer

‘declaring two integers and assigning values to them

i = 40
3§ = 30

Return (i + j)

‘performing the sum of two integers and returning it’s

value

End Function

End Module

#5% Modulel

« Add

Imports System.Conscle
—iModule c lLel

=] Sub 1 1;1(_5

1ling the function

= Public Function Add() As Integer
"declaring a function add
Dim i, § As Integer

"declaring two integers and assigning

i = ae
i = 3e
Return (i + 3F)

‘performing the sum of two integers

End Functieon

End Module

The output from above code is given below.

ite("Sum is" & " " & Add())

values to them

and returning i

walue

B C:\Windowsisystem32icmd.exe

Sum is 7@Press any key to continue - - -

=

m|»

Lab:.NET Programming

NOTES

Self-Instructional
Material

23

Lab:.NET Programming

24

NOTES

Self-Instructional
Material

BLOCK 2

This block will cover the following topics:
1. Working with forms and dialogs.

2. Working with menus, data controls and common dialogs.
Working with Forms

Before starting to work with form, you must know about the properties of window
form.The default properties of the form can be found by selecting View’!Properties
Window or by pressing F4 on the keyboard. Some of the properties are:

e Appearance: Appearance is used to make changes to the appearance of
the form like background color, background image etc.

e Layout: With the help of layout, we can set the location of the form,
maximize, minimize size of the form.

e Behavior: The behavior property is used to enable or disable the form by
setting the property to True/False.

¢ Form Event: The default event of a form is to load event which looks like
this in code given below:

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load End
Sub

You can write code in the load event of the form just like you write for all
other controls. An example is given below:

You can run the Form by pressing F5 on the keyboard or by selecting
Debug’!Start from the main menu. When you run a blank form with no controls on
it then nothing is displayed.

sl Forml = | E] | e

Now, add a TextBox and a Button to the form from the toolbox. After
adding the TextBox and Button, you can run the program. The output window

displays a TextBox and a Button. But when you click the Button nothing happens. Lab: .NET Programming
So to do the event for the button, get back to design view and double-click on the
button.

Public Class Forml

Inherits System.Windows.Forms.Form

NOTES

ANY

#Region ™ Windows Form Designer generated code

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As _ System.EventArgs) Handles Buttonl.Click

End Sub
End Class

You can write the code TextBox 1. Text=""This is Window Form “ in the
Click event of the Button and run the application. When you click the button the
output ““ This is Window Form “ is displayed in the TextBox.

Another way is that you can also use the MessageBox functions to display
text when you click on the Button. So for that place a Button on the form and
double-click on that to open its event. Write this line of code, MsgBox (“This is
Window Form).

It looks like the given below in the code.

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As _ System.EventArgs) Handles Buttonl.Click

MsgBox (“This is Window Form %)
End Sub
When, you run the form and click the Button, a small message box displays,
“Welcome to Forms”. The output is given below:

; WindowsApplicatio...

This is Window Ferm

Button

Self-Instructional
Material 25

Lab:.NET Programming

NOTES

Self-Instructional
26 Material

Adding a New Form to the Project

You can add a new form to the existing project. For adding a new form, with the
solution explorer, just right-click on the project name in solution explorer and
select Add’! Add Windows Form. After adding a new form, you need to set the
new form as Startup object. To do that, right-click on the project name in solution
explorer window and select properties which displays the Property Pages window.
On this window click the drop-down box which is labeled as Startup Object. This
will displays all the forms available in the project.

Solution Explorer - 2
=t Te]] =

¥ Build .}pplicationB
i yect
Rebuild \rb
Clean
4% Publish...
S Mew Item... Ctrl+Shift+ A Add K
22 Existing Rern... Shift+ Alt+ A Add Reference...
4 Mew Folder Add Service Reference...
=] Windows Form... 5; View Class Diagram
& User Control... Debug 4
3] Component.. j Add Project to Source Control...
] Module... % cut Ctrl+X
% Class... p !

You can select the form which you want to be displayed, when you run the application
and click Apply. So, when you run the application, the form you assigned as
Startup object will be displayed.

Working with Multiple Forms

In visual Basic .NET, we can work with multiple forms. For example, take three
forms in your application Form1, Form2 and Form3. Now drag a buttons form
the toolbox on Form1 andForm2. Now, we want to open Form2 when a button
on the Forml1 is clicked and when we clicked the button on Form2, Form3 will
displayed. Double click on Button1 on Form1 and place the code given below in
the click event of the button. The code for that is given below:
Public Class Forml
Dim F2 As New Form2
"creating a reference to Form2

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)Handles Buttonl.Click

F2.Show ()
End Sub
End Class

Object Browser Form3.vb [Design] FormZ.vb LGB Form2 vb [Design]

¥ Buttond -| # Click

ElPublic Class Forml

Dim F2 As New Form2
'creating a reference to Form2
=] Private Sub Buttonl Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Buttonl.Click
F2.Show()
End Sub
End Class

After that, Double click on Buttonl on Form?2 and place the code given
below in the click event of the button.
Public Class Form?2
Dim F3 As New Form3

"creating a reference to Form3
Brivate SbB ol (lickBEL sedr 2s Seemoiet, BiEL e s SeenRatfoyHrdes Bitol (ick

F3.Show ()
End Sub
End Class
Object Browser Form3.vh [Design] Form2.vb ¢ QEdiiRy:] Form2.wb [Design]
= =
[(General -| i iDedlarations) -
ElPublic Class Form2 ES

Dim F3 As Mew Form3
'creating a reference to Form3
=] Private Sub Buttonl_Click(ByVal sender As System.Cb
F3.Show()
End Sub
End (lass‘ I
=

T, Byval e As System.EventArgs) Handles Buttonl.Click

The output of the above code is given below:

VB.NET Dialog Box

A dialog box is a temporary window that accepts user response with the help of
keyboard or mouse to open, save a file, for alert messages, print, color etc. VB.NET
dialog box is used to create interaction between the user and the application. The
dialog box appears in a form when the program needs to interact with users, like

an alert message, when an error occurs, when the program requires immediate

Lab:.NET Programming

NOTES

Self-Instructional
Material

27

Lab:.NET Programming

28

NOTES

Self-Instructional
Material

action, acknowledgment from the user etc. VB.NET Dialog box inherits the
CommonDialog class and overrides the RunDialog() method of the base class
which is used to create the PrintDialogbox, Font Dialog box, OpenFileDialog
box, Color. When the dialog box calls its ShowDialog() method,
the RunDialog() method is automatically called in a window form.

There are various ShowDialog() method in the Windows Form.

OK: It returns a DialogResult.OK, when the user clicks the OK button
of the Dialog box.

Ignore: It is used when a user clicks on the Ignore button to return the
DialogResult.Ignore.

Abort: It is used when a user clicks on the Abort button to return the
DialogResult.Abort value.

Cancel: It returns DialogResult.Cancel, when a user clicks on the Cancel
button of the Dialog Box.

No: It returns DialogResult.No, when a user clicks on the No button of
the Dialog box.

None: It is used to return nothing when the user clicks on the None
button, and the dialog box is continued running.

Yes: It returns DialogResult. Yes, when a user clicks the Yes button of
the dialog box.

Retry: It returns a DialogResult.Retry, when a user clicks on the Dialog
Box Retry button.

There are various types of commonly used dialog box controls in the VB.NET
that are given below:

1. Color Dialog Box: It allows the user to select a color from the predefined
colors or specify the custom colors.

2. OpenFile Dialog Box: It allows the users to select a file to open and
allows the selection of multiple files.

3. Print Dialog Box: It allows the user to print documents by selecting the
printer and setting of the page printed through the Windows application.

4. Font DialogBox: It allows the user to select the font size, font, style and
color to be applied to the current text selection.

Consider an example given below:

Dialog.vb

Public Class Dialog

Private Sub Dialog Load(sender As Object, e As E
vantArgs) Hardles MbBase.Toed Butanl Text = "Click MY 'St the rare of attn

Me.Text = “clickmdoutton” /' Set the title nare for the Windows Form
Buttonl.RackColor = Color.Aqua ' Background color of the button

End Sub
Private Qb Buttanl Click(sender As (oject, e As EventArgs) Hardles Buttonl.Click
Dim resultl As DialogResult = MessageBox.Show (“Do you like
VB.NET programming language?”’, “Tnportant Questian”, MessageBo®uttans. YesNo)
End Sub
End Class

(LB Forml.vb [Design]

[EtGeneran -[i (Declarations)
clPublic Class Dialog
= Private Sub Dialog_Load(ByVal sender As Object, Byval e As EwentArgs) Handles MyBase.Load

Buttonl.Text = "Click Me™ 'Set the name of button

Me.Text = “clickmebutton™ ' Set the title name for the Windows Form

Buttonl.BackColor = Color.Aqua ' Background coler of the button
End Sub

] Private Sub Buttonl Click(ByWal sender As Object, ByVal e As FventArgs) Handles Buttonl.Click
Dim resultl As DialogResult = MessageBox.Show("Do you like VB.NET programming language?”,
"Important Question”,
MessageBoxButtons.Yesho)
End Sub
End Class

After clicking on Click Me button, the output produced is shown below:

a—l clickrmebutton e — =1 SIS | Fest oo
=
e = As Object
T = name ol
= e
Important CQuaesticm ——_TA_I

Do wou like WB.MRET programmuiaing language?T

L wes i | Mo |

VB.NET Menu Control

A menu is located on the menu bar. It consists of a list of various commands.
Menus are made of Menultem objects that represent individual parts of a menu.
MainMenu is the container for the Menu structure of the form. By using the
MainMenu control, you can create a main menu object on your form. The figure
given below shows the dragging of Menustrip Object to the Form.

o WindowsApplication11 - Microsoft Visual Studic
File Edit Wiew Project Build Debug Tearn Data Test Tools Window Help

A= el G| H a9 - -] b |[Debug -l = S e BBl B - o
SR = s S |[aE o d) ESE A | o 3Drgie 2| 2 BT S ek | [EH B] A

Toolbox ~ >
= Containers -
L Pointer

B FlowlLayoutPanel

Forml wib™ Formil.vb [Design]® ><

Yogjoa). ;\r |

== | <2

GroupBox

71 Panel

[=] sSplitContainer

= TabControl

= TableLayoutPanel

enus & Toolbars

LY Pointer

= ContexthMenuStrip
= PlenuStrip

StatusStri
PMenuStrip
=S ToolStie | yerdion 4.0.0.0 from Microsoft Corporation
=5 ToolStrip] MET Component
=t Displ i 1 o =
> isplays application cormmands and options groupe:
k_ Broiinkee by functicnality.

Lab:.NET Programming

NOTES

Self-Instructional
Material

29

Lab:.NET Programming

30

NOTES

Self-Instructional
Material

After dragging, Menustrip control on the form, you can create menu items by
typing a value into the “Type Here” box on the menubar as shown below.

sl Forml (===
I 1L]

To create a separator bar, just right click on menu and go to
insert’!Separator.

a5 Formil o =R

ToolStripMenulteml
L L viewcose

Insert Menultem
£ cCut ComboBox ‘
L5 Copy Separator ‘
. Paste labll TextBox
» Delete

After doing the above steps, double click on each menu item and write the
code. When clicking a menu item, the program shows a messagebox as shown
below.

Public Class Forml

Private Sub ToolStripMenulteml Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ToolStripMenulteml.Click

MsgBox (“Working with MenuStrip Control”)
End Sub
End Class

Formlwb X

| (Generan -] £itDedlarations) =
FPublic Class Forml +

= Private Sub ToolStripMenuIteml Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Toold |
MsgBox("Working with MenuStrip Control®)
End Sub
End Class

The output of the above code is shown below:

T e Forml || |
TeclStriphfMenulternl
WindowsApplicationl3
Working with MenuStrip Control
Ok

Application with Data Controls

1. Write a program to demonstrate the implementation of various data
controls in ASP.NET using VB.

Step 1: Create a ASP.NET based web project using following steps:
File—>New—Project—>ASP—-NET Empty Web
Application—DataControls—Ok.

Step 2: Right click on data controls in Solution Explorer, Add Windows Forms,

name the form as:
* DataView.aspx
 formView.aspx
* GridView.aspx

* ListView.aspx

As shown in Solution Explorer below:

| = Solution Explorsr

@ o-2ad@ o#

A

- = oo

Search Selution Explorer (Cri+;

& My Project
ﬁ Account

B pp Dita

i fpp Start

il Content

i Images

i Seripte

&) Aboutaspr.

&) DataVicw aspl
&1 Defaultas
.{'ﬂ DetzilsView.aspx
favicon.ico

&) formnview.aspc

&1 Globalasax

.Jg:l Gridview.aspx
&1 ListView.aspr
o packages.config
B Site Master

1 Web.config

- 1 X

Do

'

Sofution Explorer Team Bxolorer | Class View

Step 3: Open each data control form to implement their functionality as shown

below:

a. DataView.aspx

Lab:.NET Programming

NOTES

Self-Instructional
Material 31

Lab:.NET Programming

32

NOTES

Self-Instructional
Material

Step I: From Menu, Click on Table and then click Insert Table as per the
requirements:

Step I1: From ToolBox select and insert into any of the table cell or anywhere on
the form the DataView Control.sb

Step I1I: Click onr arrow sign appears after you click over DataView Control in
DataView.aspx and click on choose data source to link with this DataView Control
as shown below:

DetailsView.aspx Data\fiew.aspx L8 formview.aspx.vb « -

DataView Demo

asp:datalist
Name: abc [j‘ Datalist Tasks

Customer PH:0 Auto Farmat..,

Customer Type: abe
== Choose Data Source: | SqlDataSourcel I=l
(Mone)
E‘a Sourcel
<Mew data source...»

x0qioo) Jai0jdxg Janag

Name: abe
Customer PH: 1
Customer_Type: abe Property Builder...

_ Edit Templates

Name: abe —
Customer PH:2
Customer Type: abe

Name: abe
Customer PH:3
Customer_Tvpe: abc

Name: abe
Customer PH:4
Customer Type: abe

—0—0

Step I'V: Select datasource from the database you have created using (say)
SQLServer. Follow the steps as and when prompted to fullfil connection with
desired data source in database.

Step V: Here in this case the database selected contains five rows with three
columns as shown in figure above:

Step VI: Before you build the project you need to specify the server to host the
project. In order to does that click on project from Menu bar, click DataControl
properties option.

Step VII: Click on Web from the options displayed on the left side of the form
displayed. Go to Start Action tab, choose specific page to start your project to
run. From Servers tab select “Use Visiual Studio Development Server”, check
“Auto-Assign Port”.

Step VIII: Build the project.
Step IX: Specify the browser to display the outcome of the project.

Step X: If project builds without errors the resultant display will be loaded into a
browser specified by the programmer say FireFox in this case.

The Design of DataView.aspx will look like the figure shown below:
m TataCortols - Microsoft Yisual Studio

FLE EDT VW PROMECT BLLD DEBUG TEAM FORMAT TABLE TOOLS TEST ARCH
(@ o - - P Firefox - Debug - | A _ (MewTline Syl - ["

DataCortols™ fomview.aspravb List¥iew.aspx

DataView Demo

Name: abc
Customer PH: 0
Customer_Tvpe: abe

e

Name: abe
Customer PH: 1
Customer_Tvpe: abe

Neme: abe
Customer PH- 2
Customer_Tvpe: abe
Name: abe
Customer_PH: 3
Customer Type: abe

Name: abe
Customsr PH. 4
Customer_Type: abe

| SolDataSource - SalDatasaurcel
i

B Decign | @ Spht |« Sowrce |

DataView.aspx source code will look like as given below:
<style type="text/css”>
.auto-stylel {
width: 100%;
height: 378px;
}
.auto-style?2 {
width: 251px;
}
.auto-style3 {
width: 86px;
}
.auto-styled {
width: 67px;
}
</style>
<p>
<tableclass="auto-stylel”>
<tr>

Lab:.NET Programming

NOTES

Self-Instructional
Material

33

Lab:.NET Programming

34

NOTES

Self-Instructional
Material

<tdclass="auto-styled”> </td>

<tdclass="auto-style2”>DataView Demo</
strong></td>

<tdclass="auto-style3”> </td>
</tr>
<tr>
<tdclass="auto-styled”> </td>
<tdclass="auto-style2”> </td>
<tdclass="auto-style3”> </td>
</tr>
<tr>
<tdclass="auto-styled”> </td>

<td class="auto-style2”><asp:datalist
runat="server” DataSourceID="SglDataSourcel”>

<ItemTemplate>
Name:

<asp:Label ID="NamelLabel” runat="server”
Text='<%# Eval (“Name”) %>’ />

Customer PH:

<asp:Label ID="Customer PHLabel”
runat="server” Text='<%# Eval (“Customer PH") %>’ />

Customer Type:

<asp:Label ID="Customer TypeLabel”
runat="server” Text='<%#Eval (“Customer Type”) %>’ />

</ItemTemplate>
</asp:datalist>
</td>
<tdclass="auto-style3”> </td>
</tr>
</table>

</p>
<asp:SglDataSource ID="SglDataSourcel” runat="server”
C onnweoc¢ctionS¢tr ing-=2"=x125%535

ConnectionStrings:CustomerDetailConnectionString %>"
SelectCommand="SELECT * FROM [Cust Det]”></
asp:SglDataSource>

<%@ Page Language="vb” AutoEventWireup="false”
CodeBehind="DataView.aspx.vb?”

Inherits="DataContols.DataView” %>
<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml”>
<head runat="server”>

<title></title>
</head>
<body>

<formid="forml” runat="server”>

<diwv>

</div>
</form>
</body>
</html>
DataView.aspx.vb
‘Programto implement DataView Control in ASP.NET
PublicClass DataView
Inherits System.Web.UI.Page

Protected Sub Page Load (ByVal sender As Object, ByVale
As System.EventArgs) HandlesMe. Load

End Sub
EndClass
Step 4: After successful build and start the output window obtained is shown in
figure below:

| Incebo B DataViewamgs X |
& & 3 ocahostst
DataView Dema

Hapne Saaf
Customer_PH: 765850
Customer_Type: A4

Name: Irshad
Custamer PH: 11343
Costomer_Type: AB

Mame Yazis
Cusomer_PH: 43678
Customer Type: AC

Hame Rameez
Customer PH: 7864354
Custamer_Type: AD

Mame. Zahid
Custamer_PH: 798870989
Customer_Type: Ad

AL [e [Cllv=] Al

Lab:.NET Programming

NOTES

Self-Instructional
Material 35

Lab:.NET Programming

NOTES

Self-Instructional
36 Material

Similarly the other DataControls can be used to implement their functionality
in your ASP.NET web project.

2. Write a program to use FormView data control.

Step 1: Follow similar steps as discussed above for DataView Control. However,
instead of DataView Control you need to Use FormView Control from toolbox.

Step 2: Choose data source for FormView Control and design the windows from
“formview.aspx’ as shown below:

sual Studio

FILE EDIT VIEW PROJECT BUILD DEBUG TEAM FORMAT TABLE TOOLS TEST ARCHITECTURE ANALYZE W

B - I B-a ke B Firsfox - Debug - 8 _ - (Default - B
'I.',w DataView aspx.vb DataView.aspx DataContols™ formview.asprvb ListView.aspx Gridview.aspxvb

5 "Thogy]

1;2 FormView Control Demo

i

g Name: abc

T Customer PH: 0

Customer_Type: abc

SglDataSource - SqlDataSourcel

Source code of formview.aspx is given below:
formview.aspx

<%@ Page Language="vb” AutoEventWireup="false”
CodeBehind="formview.aspx.vb?”
Inherits="DataContols.formview” %>

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml”>
<head id="Headl” runat="server”>
<title></title>
<style type="text/css”>
.auto-stylel {
width: 100%;
}
.auto-style2 {
width: 368px;
}
</style>
</head>
<body>
<formid="forml” runat="server”>
<div>
<tableclass="auto-stylel”>
<tr>

<td> </td>

<td class="auto-style2”>FormView Control
Demo</td>

<td> </td>

</tr>

<tr>
<td> </td>
<tdclass="auto-style2”> </td>
<td> </td>

</tr>

<tr>
<td> </td>

<tdclass="auto-style2”>

<asp:FormView ID="FormViewl” runat="server”
DataSourceID="SqglDataSourcel” Height="78px">

<EditItemTemplate>
Name:
<asp:TextBox ID="NameTextBox"”
runat="server” Text='<%# Bind (*Name”) %>’ />

Customer PH:

<asp:TextBox ID="Customer PHTextBox”
runat="server” Text='<%# Bind (“Customer PH") $>' />

Customer Type:

<asp:TextBox ID="Customer TypeTextBox”
runat="server” Text='<%# Bind (“Customer Type”) %>’ />

<asp:LinkButton ID="UpdateButton”
runat="server” CausesValidation="True” CommandName="Update"”
Text="Update” />

§nbsp;<asp:LinkButton
ID="UpdateCancelButton” runat="server”
CausesValidation="False” CommandName="Cancel” Text="Cancel”

/>
</EditItemTemplate>
<InsertItemTemplate>
Name :

<asp:TextBox ID="NameTextBox"”
runat="server” Text='<%# Bind (“Name”) $>' />

Customer PH:

<asp:TextBox ID="Customer PHTextBox”

Lab:.NET Programming

NOTES

Self-Instructional
Material

37

Lab:.NET Programming

38

NOTES

Self-Instructional
Material

runat="server” Text='<%# Bind (“Customer PH") %>’ />

Customer Type:

<asp:TextBox ID="Customer TypeTextBox”
runat="server” Text='<%#Bind(“Customer Type”) %>’ />

<asp:LinkButton ID="InsertButton”
runat="server” CausesValidation="True” CommandName="Insert”
Text="Insert” />

snbsp;<asp:LinkButton
ID="InsertCancelButton” runat="server”
CausesValidation="False” CommandName="Cancel” Text="Cancel”
/>
</InsertItemTemplate>
<ItemTemplate>
Name :

<asp:Label ID="NamelLabel” runat="server”
Text='<%# Bind (“Name”) $>' />

Customer PH:

<asp:Label ID="Customer PHLabel”
runat="server” Text='<%# Bind (“Customer PH") %>’ />

Customer Type:

<asp:Label ID="Customer TypeLabel”
runat="server” Text='<%#Bind (“Customer Type”) %>’ />

</ItemTemplate>
</asp:FormView>

<asp:SglDataSource ID="SglDataSourcel”
runat="server” ConnectionString="<%$
ConnectionStrings:CustomerDetailConnectionString %>"
SelectCommand="SELECT * FROM [Cust Det]”></
asp:SglDataSource>

</td>
<td> </td>
</tr>
</table>
</div>
</form>
</body>
</html>

Code behind formview.aspx that is formview.aspx.vb is given below:

‘Implementation of FormView DataControl in asp.net using
VB

Public Class formview
Inherits System.Web.UI.Page

Protected Sub Page Load(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Me.Load

End Sub

Protected Sub SqglDataSourcel Selecting(sender As
Object, e As SglDataSourceSelectingEventArgs) Handles
SglDataSourcel.Selecting

End Sub
End Class

Step 3: Build and run the project. The output generated is shown in figure below:

localhostBi32fommvienasps X

LA @ lowlhost G032/

FormView Control Demo

Name: Saif
Cuatomer PH- 763890
Customer_Tvpe. AA

Note: FormView data control displays only a single row retrieved from the linked
data source into the browser window as shown above.

3. Write a program to use GridView data control.

Step 1: Follow similar steps as discussed above for DataView Control. However,
instead of DataView Control you need to Use GridViewControl from toolbox.

Step 2: Choose data source for to be linked with GridView Control and design
the windows from “Gridview.aspx” as shown below:

m DataContols - Micrasoft Visual Studio Quick Launch
HLE EDIT VIEW PROJECT BUILD: DEBUG TEAM FORMAT TAE
ARCHITECTURE AMNALYZE WINDOW HELP

Qe - 8 - g =] f P Firefox ~ Debug - A

DataContols* formview.aspx Gridview.aspx* & X « ¥

GridView Demo
GridView Demo

xoqiee) siopdyg sanag

Name Customer_PH Customer_Type

abc 0 abc L

abe |1 abc

abc |2 abc

abc 3 abe

| asp:5qlDataSource? SqlD ataSourcel abc
SqiDataSource - SqIDataSn-urc £

Lab:.NET Programming

NOTES

Self-Instructional
Material 39

Lab:.NET Programming

40

NOTES

Self-Instructional
Material

Source code of Gridview.aspx is given below:
‘Gridview.aspx

<%@ Page Language="vb” AutoEventWireup="false”
CodeBehind="Gridview.aspx.vDb?”
Inherits="DataContols.Gridview” %>

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml”>
<head runat="server”>
<title></title>
<style type="text/css”>
.auto-stylel ({
width: 100%;
}
.auto-style2 {
width: 206px;
}

</style>
</head>
<body>
<form id="forml” runat="server”>
<div >
<asp:Label 1ID="Labell” runat="server”

Text="GridView Demo” ></asp:Label>

<table class="auto-stylel”>
<tr>
<td> </td>

<td class="auto-style2”><h3>GridvView
Demo</h3>

</td>
<td> </td>
</tr>
<tr>
<td> </td>
<td class="auto-style2”> </td>
<td> </td>
</tr>
<tr>
<td> </td>

<td class="auto-style2”>

<asp:GridView ID="GridViewl”
runat="server” AutoGenerateColumns="False”
DataSourceID="SqglDataSourcel”>

<Columns>

<asp:BoundField DataField="Name”
HeaderText="Name” SortExpression="Name” />

< asp:BoundVField
DataField="Customer PH” HeaderText="Customer PH”
SortExpression="Customer PH” />

< asp:BoundVField
DataField="Customer Type” HeaderText="Customer Type”
SortExpression="Customer Type” />

</Columns>
</asp:GridvView>
</td>
<td> </td>
</tr>
</table>

<asp:SglDataSource ID="SglDataSourcel”
runat="server” ConnectionString="<%$
ConnectionStrings:CustomerDetailConnectionString %>"
SelectCommand="SELECT * FROM [Cust Det]”></
asp:SglDataSource>

</div>

</form>
</body>
</html>

Code behind Gridview.aspx that is Gridview.aspx.vb is
given below:

‘Gridview.aspx.vb

‘Implementation of GridView DataControl in asp.net using
VB

Public Class Gridview
Inherits System.Web.UI.Page

Protected Sub Page Load(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Me.Load

End Sub

Protected Sub SglDataSourcel Selecting(sender As
Object, e As SglDataSourceSelectingEventArgs) Handles
SglDataSourcel.Selecting

End Sub
Protected Sub GridViewl SelectedIndexChanged (sender

Lab:.NET Programming

NOTES

Self-Instructional
Material

41

Lab:.NET Programming

42

NOTES

Self-Instructional
Material

As Object, e As EventArgs) Handles
GridViewl.SelectedIndexChanged

End Sub
End Class

Step 3: Build and run the project. The output generated is shown in figure given
below:

localhostE03l Dndviewane X

€ localhoste (32 Cricviewase we B0

GridView Demo

GridView Demo

Name [Customer PH|Customer Tvpe
Saif [T63E00 |AA
Irshad |12343 AH
Yaer [43873 AC
Rameez| 854354 AD
(Zahid [TOEETORED [AA

4. Write a program to use ListView data control.

Step 1: Follow similar steps as discussed above for DataView Control. However,
instead of DataView Control you need to Use ListViewControl from toolbox.

Step 2: Choose data source for to be linked with ListView Control and design the
windows from “ListView.aspx™ as shown below:

ﬂ TSy P L B itk Lz

FIE ENT VEW PROIECT BUED [EBUG TEAM GORMAT TABEE TOOLS TEST ARCHTECTURE AMALEE WREOW HED
O-0 B-@Ha W -0 ecfr- Obug - B Pewintnetyk - 01| food) - Delmt- BV ASE-R .

iew s ah” Gk DuteCorkols" o aprah Formemasm” OlakaView mip Dt esprvh Litemiimpr” & K #
¥

T List\iew Dema

Name: abc Name: abc Name: dbc Name: abe Tame: abe Narne: abe Name: abc MName: abc
Customer PH; 0Customer PH: 1Customer PH: 2 Custon JCustomer PH; 410 er_PH: 5 Customer PH; & Customer PH:
Customer_Type: Customer_Type:/Customer_Type: Customer_Type: Custome:_Typ tome:_Type: Customer_Type: Customes_Typ
abic ahi abe Al abi Al i A0

Sqlatabomes - Geflsteiuresl

Source code of ListView.aspx is given below:
‘ListView.aspx

<%@ Page Language="vb” AutoEventWireup="false”
CodeBehind="ListView.aspx.vb?”
Inherits="DataContols.ListView” %>

<!DOCTYPE html>
<html xmlns="http://www.w3.0rg/1999/xhtml”>
<style type="text/css”>

.auto-stylel {

width: 100%;
}
.auto-style2 {
width: 374px;
}
</style>
<p>
<table class="auto-stylel”>
<tr>
<td> </td>

<td class="auto-style2”>ListView Demo</
strong></td>

<td> </td>
</tr>
</table>
</p>

<asp:listview runat="server” DataSourceID="SglDataSourcel”
OnSelectedIndexChanged="Unnamedl SelectedIndexChanged”>

<AlternatingIltemTemplate>

<td runat="server” style="background-color:
#FAFAD2;color: #284775;”>Name:

<asp:Label 1ID=”"Namelabel” runat="server”
Text='<%# Eval (“Name”) %>’ />

Customer PH:

<asp:Label ID="Customer PHLabel” runat="server”
Text='<%# Eval (“Customer PH"”) %>’ />

Customer Type:

<asp:Label ID="Customer TypeLabel”
runat="server” Text='<%# Eval (“Customer Type”) %>’ />

</td>
</AlternatingItemTemplate>
<EditItemTemplate>

<td runat="server” style="background-color:
#FFCC66;color: #000080;”>Name:

<asp:TextBox ID="NameTextBox” runat="server”
Text='<%# Bind (“Name”) %>’ />

Customer PH:

<asp:TextBox ID="Customer PHTextBox”

Lab:.NET Programming

NOTES

Self-Instructional
Material

43

Lab:.NET Programming

44

NOTES

Self-Instructional
Material

runat="server” Text='<%$# Bind(“Customer PH”) %>’ />

Customer Type:

<asp:TextBox ID="Customer TypeTextBox”
runat="server” Text=’'<%# Bind(“Customer Type”) %>’ />

<asp:Button ID="UpdateButton” runat="server”
CommandName="Update” Text="Update” />

<asp:Button ID="CancelButton” runat="server”
CommandName="Cancel” Text="Cancel” />

</td>
</EditItemTemplate>
<EmptyDataTemplate>

<table style="background-color: #FFFFFF;border-
collapse: collapse;border-color: #999999;border-
style:none;border-width:1lpx; ">

<tr>
<td>No data was returned.</td>
</tr>
</table>
</EmptyDataTemplate>
<InsertItemTemplate>
<td runat="server” style="">Name:

<asp:TextBox ID="NameTextBox” runat="server”
Text='<%# Bind (“Name”) %>’ />

Customer PH:

<asp:TextBox ID="Customer PHTextBox”
runat="server” Text=’'<%# Bind(“Customer PH") %>’ />

Customer Type:

<asp:TextBox ID="Customer TypeTextBox”
runat="server” Text=’'<%# Bind(“Customer Type”) %>’ />

<asp:Button ID="InsertButton” runat="server”
CommandName="Insert” Text="Insert” />

<asp:Button ID="CancelButton” runat="server”
CommandName="Cancel” Text="Clear” />

</td>
</InsertItemTemplate>
<ItemTemplate>

<td runat="server” style="background-color:
#FEFFBD6;color: #333333;”>Name:

<asp:Label ID="Namelabel” runat="server”
Text='<%# Eval (“Name”) %>’ />

Customer PH:

<asp:Label ID="Customer PHLabel” runat="server”
Text='<%# Eval (“Customer PH") %>’ />

Customer Type:

<asp:Label ID="Customer TypeLabel”
runat="server” Text='<%# Eval (“Customer Type”) %>’ />

</td>
</ItemTemplate>
<LayoutTemplate>

<table runat="server” border="1" style="background-
color: #FFFFFF;border-collapse: collapse;border-color:
#999999;border-style:none;border-width:1lpx; font-family:
Verdana, Arial, Helvetica, sans-serif;”>

<tr id="itemPlaceholderContainer”
runat="server”>

<td id="itemPlaceholder” runat="server”></
td>

</tr>
</table>

<div style="text-align: center;background-color:
#FFCCo66; font-family: Verdana, Arial, Helvetica, sans-
serif;color: #333333;">

</div>
</LayoutTemplate>
<SelectedItemTemplate>

<td runat="server” style="background-color:
#FFCCo66; font-weight: bold;color: #000080; ”>Name:

<asp:Label 1ID="NamelLabel” runat="server”
Text='<%# Eval (“Name”) %>’ />

Customer PH:

<asp:Label ID="Customer PHLabel” runat="server”
Text='<%# Eval (“Customer PH") %>’ />

Customer Type:

<asp:Label ID="Customer TypeLabel”
runat="server” Text='<%# Eval (“Customer Type”) %>’ />

</td>
</SelectedItemTemplate>

Lab:.NET Programming

NOTES

Self-Instructional
Material

45

Lab:.NET Programming

46

NOTES

Self-Instructional
Material

</asp:listview>

<asp:SglDataSource ID="SglDataSourcel” runat="server”

’” [}

C onnweoction St r ing = < % S
ConnectionStrings:CustomerDetailConnectionString %>"
SelectCommand="SELECT * FROM [Cust Det]”></
asp:SglDataSource>

<head runat="server”>
<title></title>

</head>

<body>
<form id="forml” runat="server”>

<div>

</div>
</form>
</body>
</html>
Code behind ListView.aspx that is ListView.aspx.vb is given below:

ListView.aspx.vb

‘Program to demonestrate the use of ListView DataContol
in asp.net

Public Class ListView
Inherits System.Web.UI.Page

Protected Sub Page Load(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Me.Load

End Sub

Protected Sub Unnamedl SelectedIndexChanged(sender As
Object, e As EventArgs)

End Sub
End Class

Step 3: Build and run the project. The output generated is shown in figure given
below:

M ootk BTN Db angs X lacalhoot£032 LintYimw.asps X | - -

[lecaltcet 1611 Ty

List View Dhemo

[MName: saif Mame: Irshad " [mame: vasi Mame;
\Customer_PH: 765800|Customer_PH: 123 gstomer_PH: A5678|Cu mier_FH. 7864354 Custor
[Customar_Type: AA |Customer_Typa: AB omer_Type: AC [Customner_Type: ADF |Gy

Ramaez :Nr'llll!'!. Zahid | '
PH: 708270080
ner_Type: AA l

Common Dialog Controls

There are various built-in dialog boxes which can be used in Windows forms.
These dialog controls are used for various tasks like opening files, saving files,

providing choices for colors, printing a page, page setup, fonts etc. All of these
dialog box control classes is inherited from the CommonDialog class and override
the RunDialog() function of the base class to create the specific dialog box. The
RunDialog() function is automatically invoked when a user of a dialog box calls
its ShowDialog() function. The ShowDialog method is used to display all dialog
box controls at run-time. It returns a value of the type of DialogResult enumeration.
The values of DialogResult are given below:

¢ Yes —when user clicks a Yes button, returns DialogResult. Yes.

e Abort —when user clicks an Abort button, returns DialogResult. Abort
value.

e Cancel — when user clicks a Cancel button, returns DialogResult.Cancel.

Ignore —when user clicks an Ignore button, returns DialogResult.Ignore.

No —when user clicks a No button, returns DialogResult.No.
OK —when user clicks an OK button, returns DialogResult.OK.
Retry —when user clicks a Retry button, returns DialogResult.Retry.

None ” returns nothing and the dialog box continues running.

The following diagram shows the inheritance in common dialog class.

CommonDialog

FontDialog FileDialog PrintDialog

ColorGialog PageSetupDialog

OpentileDialog SaveFileDialog

All these classes have subsequent controls that could be added from the toolbox
during design time. You can include relevant functionality of these classes either by
instantiating the class programmatically or by using relevant controls to your
application.

When you drag the control onto the form or double click any of the dialog
controls in the toolbox, it shows in the component tray at the bottom of the Windows
Forms Designer.form. Following are the commonly used dialog box controls.

e SaveFileDialog: 1t allows the user to specify the name of the file to
save data.

e OpenFileDialog: 1t allows the user to select a file to open.

Lab:.NET Programming

NOTES

Self-Instructional
Material

47

Lab:.NET Programming

48

NOTES

Self-Instructional
Material

e ColorDialog: It represents a common dialog box that displays available
colors along with controls that enable the user to define custom colors.

e FontDialog: It prompts the user to choose a font from among those
installed on the local computer. It lets the user select color, font size and
font size.

o PrintDialog: 1t lets the user to print documents by selecting a printer
and choosing which sections of the document to print.

Lab:.NET Programming

BLOCK 3

This block will cover the following topics:

1. Work with drag and drop event, inbuilt functions, mathematical and string NOTES
functions.

2. Understand the ADO.NET data architecture
3. Create ActiveX controls
4. Active Data Objects (ADO) and OLE DB

Drag and Drop Event

Basically in drag and drop event, it is a pointing device gesture in which the user
selects a virtual object by “grabbing” it and dragging it to a different location or
onto another virtual object.

Consider an example of drag and drop operation. For this, just create a
VB.NET windows application, and then design a form with drag and drop and
control & event procedure. To enable drag & drop for text, first you have to place
two textboxes and set allow drop property of a second text box to true and after
that write the code as given below:

Private MouseIsDown As Boolean = False ‘variable declaration

Private Sub TextBoxl MouseDown (ByVal sender As Object,
ByvVal e As

System.Windows.Forms.MouseEventArgs) Handles
TextBoxl.MouseDown

‘Set a flag to show that the mouse is down.
MouseIsDown = True
End Sub

Private Sub TextBoxl MouseMove (ByVal sender As Object,
ByvVal e As

System.Windows.Forms.MouseEventArgs) Handles
TextBoxl.MouseMove

If MouseIsDown Then

‘Initiate dragging.

TextBox1.DoDragDrop (TextBox1.Text, DragDropEffects.Copy)
End If

MouseIsDown = False

End Sub

Private Sub TextBox2 DragEnter (ByVal sender As Object,
ByvVal e As

Self-Instructional
Material 49

Lab:.NET Programming

50

NOTES

Self-Instructional
Material

System.Windows.Forms.DragEventArgs) Handles
TextBox2.DragEnter

‘Check the format of the data being dropped.

If (e.Data.GetDataPresent (DataFormats.Text)) Then
‘Display the copy cursor.

e.Effect = DragDropEffects.Copy

Else

‘Display the no-drop cursor.

e.Effect = DragDropEffects.None

End If

End Sub

Private Sub TextBox2 DragDrop (ByVal sender As Object,
ByvVal e As

System.Windows.Forms.DragEventArgs) Handles
TextBox2 .DragDrop

‘Paste the text.
TextBox2.Text = e.Data.GetData (DataFormats.Text)
End Sub

From the above code, it can be seen that the DoDragDrop method is called
in the MouseMove event and the MouseDown event is used to set a flag, which
shows that the mouse is down. In the MouseMove event, the MouselsDown flag
is set to False. You can handle the drag in the MouseDown event also. Dring this
every time a user clicks the control, and then no-drag cursor would be displayed.

The GetDataPresent method checks the format of the data being dragged
in case of DragEnter event. In our case it is text, so the Effect property is set
to Copy, which in turn displays the copy cursor. The GetData method is used to
retrieve the text from the DataObject. In case of DragDrop event it also assigns it
to the target TextBox.

The example code given below draggs a different type of data and provides

support for both cutting and copying. For these just add two picturebox controls
and write the code given below:

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As

System.EventArgs) Handles MyBase.Load
‘Enable dropping.
PictureBox2.AllowDrop = True

End Sub

Private Sub PictureBoxl MouseDown (ByVal sender As Object,
ByVal e As

System.Windows.Forms.MouseEventArgs) Handles
PictureBoxl.MouseDown

If Not PictureBoxl.Image Is Nothing Then
‘Set a flag to show that the mouse is down.
m MouseIsDown = True

End If

End Sub

Private Sub PictureBoxl MouseMove (ByVal sender As Object,
ByvVal e As

System.Windows.Forms.MouseEventArgs) Handles
PictureBoxl.MouseMove

If m MouseIsDown Then
‘Initiate dragging and allow either copy or move.

PictureBoxl.DoDragDrop(PictureBoxl.Image,
DragDropEffects.Copy Or

DragDropEffects.Move)
End If
m MouseIsDown = False
End Sub

Private Sub PictureBox2 DragEnter (ByVal sender As Object,
ByvVal e As

System.Windows.Forms.DragEventArgs) Handles
PictureBox2.DragEnter

If e.Data.GetDataPresent (DataFormats.Bitmap) Then
‘Check for the CTRL key.

If e.KeyState = 9 Then

e.Effect
Else

DragDropEffects.Copy

e.Effect = DragDropEffects.Move
End If

Else

e.Effect = DragDropEffects.None
End if

End sub

Private Sub PictureBox2 DragDrop (ByVal sender As Object,
ByvVal e As

System.Windows.Forms.DragEventArgs) Handles
PictureBox2.DragDrop

Lab:.NET Programming

NOTES

Self-Instructional
Material

51

Lab:.NET Programming

52

NOTES

Self-Instructional
Material

‘Assign the image to the PictureBox.

PictureBox2.Image = e.Data.GetData (DataFormats.Bitmap)

‘If the CTRL key is not pressed, delete the source picture.

If Not e.KeyState = 8 Then

PictureBoxl.Image = Nothing

End If

End Sub
The AllowDrop property for the second PictureBox control is set in
the Form1 Load event. In both the DragEnter and DragDrop events, the code
checks to see ifthe CTRL key is pressed to determine whether to copy or move
the picture.

el Drag and Drop e ||
Dragging a Text

Target

Simple Drag Drop control|

Dragging a Picture

= [|

Fig. 1 Control before being dragged to a target

L D) Cirery [| By |
Dragging = Text

Simple Drag Drop control

Simple Drag Drop control

Dragging = Picture

—

Fig. 2 Control after being dragged to a target

VB.NET Inbuilt Functions

Built-in functions are used for manipulating text as well as for carrying out
mathematical operations. These are used to format data in user-defined and
standard styles. Basically, there are two types of functions: the MsgBox() function
and the InputBox() function.

1. MsgBox () Function

The MsgBox is used to generate a pop-up message box which prompts the user
to click on a command button. For example:

yourMsg=MsgBox (Prompt, Style Value, Title)
Prompt will display the message in the message box. The St yle Value is used
to find what type of command buttons appear on the message box. Title
argument will display the title of the message board.

Table 1 Style Values

Style Value Named Constant Buttons Displayed
0 vbOkOnly Ok button
1 vbOkCancel Ok and Cancel buttons
2 vbAbortRetrylgnore Abort, Retry and Ignore buttons.
3 vbYesNoCancel Yes, No and Cancel buttons
4 vbYesNo Yes and No buttons
5 vbRetryCancel Retry and Cancel buttons

In the second argument, we can use named constant in place of integers to make
the programs more readable. For example:
yourMsg=MsgBox (“Click OK to Proceed”, 1, “Startup Menu”)
and
yourMsg=Msg (“Click OK to Proceed”. vbOkCancel,”Startup
Menu”)
Both the codes given above are same. The table below shows the value, named
constant and buttons.

Value | Named Constant Button Clicked
1 vbOk Ok button

2 vbCancel> Cancel button

3 vbAbort Abort button

4 vbRetry Retry button

5 vblgnore Ignore button

6 vbYes Yes button

7 vbNo No button

Lab:.NET Programming

NOTES

Self-Instructional
Material

53

Lab:.NET Programming

54

NOTES

Self-Instructional
Material

The example below shows the interface which is to be drawn with a label and
three command buttons.
S M B
i e | eme [riiiiiiiiiiin
R Mt Test |EEEEEEEEEEEEEEEE
Write the following code for test button.
Private Sub Test Click()
Dim testmsg As Integer
testmsg = MsgBox (“Click to test”, 1, “Test message”)
If testmsg = 1 Then
Display.Caption = “Testing Successful”
Else
Display.Caption = “Testing fail”
End If
End Sub
Test message
Click to test
Cancel I
After clicking the test button, the message shown below will appears.
Test message
Click to test
Cancel I
After clicking Ok button, the message “Testing successful” will be displayed and
after clicking on the cancel button, “Testing fail” will be displayed. There are various
types of icons that can be displayed.

Value Named Constant Icon
16 vbCritical Q
3 vbQuestion \?)
7
48 vbExclamation i ! 5
64 vbInformation (p

Consider the example given below:
Private Sub test2 Click()
Dim testMsg2 As

Integer testMsg2 = MsgBox (“Click to Test”, vbYesNoCancel
+ vbExclamation, “TestMessage”)

If testMsg2 = 6 Then

display2.Caption ="Testing successful”
ElseIf testMsg2 = 7 Then
display2.Caption = “Are you sure?”
Else display2.Caption ="Testing fail”
End If

End Sub

Output:

Test Message

i ! E Click to Test

2. The InputBox() Function

An InputBox() function display a message box where the user can enter a value
or amessage in the form of text. For example:
myMessage=InputBox (Prompt, Title, default text, x-
position, y-position)
myMessage is data type which is declared as string. Here, the message input
by the users is default-text displays the default text that appears in the
input field where users can use it as his intended input. Tit 1e dislays the title of
the Input Box. Prompt is the message displayed normally as a question asked.
x-position and y-position is the position or the coordinate of the input box. Consider
an example given below:

Lab:.NET Programming

NOTES

Self-Instructional
Material

55

Lab:.NET Programming

56

NOTES

Self-Instructional
Material

Private Sub OK Click()
Dim userMsg As String

userMsg = InputBox (“What is your message?”, “Message Entry
Form”, “Enter your messge here”, 500, 700)

If userMsg <>”"" Then

message.Caption = userMsg

Else

message.Caption = “No Message”
End If

End Sub

After clicking the OK button, the message will be displayed and after clicking the
cancel button, “No message” will be displayed.

Mezzage Entry Form I

WWhat iz nour mezzage’?

Cancel I

Mathematical Functions

In VB.NET, math functions are stored in System.Math namespace. The namespace
is used to import Math functions. The functions built into Math class can be applied
to calculate square roots, logarithm values, trigonometry etc. Consider an example
given below:
Imports System.Console
Imports System.Math
Module Modulel
Sub Main ()
WriteLine (“Sine 60 is” & ™ Y & Sin(60))
‘display Sine60 value

WriteLine (“Square root of 72 is ™ & ™ “ & Sqrt(72))
‘displays square root of 72
WriteLine (“Log value of 14 is” & “ ™ & Log(14))
‘displays the logarithm value of 14
Read ()
End Sub
End Module

Lab:.NET Programming

Modulel wb

{5l (General
Imports System.Conscle
Imports System.Math
SiModule Modulel

= Sub Main() NOTES
Writeline("Sine 68 is™ & " " & Sin(6@))
‘display Sinef8 wvalue
Writeline({"Square root of 72 is " & " " & Sqrt(72))
‘displays square root of 72
Writeline("Log value of 14 is™ & " " & Log(l4))
‘displays the logarithm wvalue of 14
Read()
End Sub
End Module
The output from above code is given below.
ine 60 iz -B.304810621102217
Sguare root of Y2 is H_48528137423857
Log value of 14 is 2.63985732961526
String Functions
String functions are mainly used to edit and manipute the string. Following are the
string functions in VB.
Methods Description
Asc, AscW This method will return an integer value that represents a
character code corresponding to a character.
Chr, ChrW It will return the character associated to a character code.
Filter This method returns a zero-based array having a subset of
a string array on the basis of specified filter criteria.
Format This method will return a string formatted according to
instructions contained in a format string expression.
FormatCurrency It will return an expression formatted as a currency value using
the currency symbol defined in the system control panel.
FormatDateTime It will return a string expression showing date/time value.
FormatNumber It will return an expression in a number format.
FormatPercent It will return an expression in percentage followed by % character.
InStr This method will return an integer that specifies the start position
of the first occurrence of one string in another.
InStrRev This method will return the position of the first occurrence of
one string within another, starting from the right side of the string.
Join It will return a string created by concatenating a number of
substrings.
LCase Converts a string or character to lowercase.
Left This method will return a number of characters in a string from
the left.
Self-Instructional
Material 57

Lab:.NET Programming

58

NOTES

Self-Instructional
Material

Len It will return an integer containing the number of characters in a
string.

LSet This method will return a left-aligned string containing the
specified string adjusted to the specified length.

LTrim It will return a string containing a copy of a specified string
having no spaces.

Mid This method returns a string containing a specified number of
characters from mid.

Replace This method replaces a substring with another with a specific
number of times.

Right It will return a number of characters from the right side of a
string.

Space It will return a string containing a given number of spaces.

StrComp It will return -1, 0, or 1, based on the result of comparison.

StrConv Converts a string as specified.

StrDup It will return a string that contains repeated character a number
of times.

StrReverse This method returns a string in which the character order of a
specified string is reversed.

Trim Returns a copy of string having no spaces.

UCase Converts a string to uppercase.

ActiveX controls

ActiveX controls are objects or COM components that can be used in a web
page or other application that is already programmed by someone else. ActiveX
controls developed for Visual Basic 6.0 and earlier versions can be used to
add features to the toolbox of Visual Studio. You can add ActiveX controls to the
toolbox using the following steps.

1. Click Choose Toolbox Items on the Tools menu. Choose Toolbox dialog
box will appears.

2. Now, click the COM Components tab.
3. You have to select the check box next to ActiveX control and click OK.

The new control appears with the other tools in the Toolbox.

Database Access Objects (DAO)

It is an abstract pattern that provides interface to some types of database. DAO
provides some specific data operations without exposing details of the database
by mapping application calls to the persistence layer. The data needs by the
application is separated in terms of domain-specific objects and data types from
how these needs can be satisfied with a specific DBMS, database schema, etc.

Database object properties

Some of the properties of database objects are:

1. Itis the relatively simple and rigorous separation between two important
parts of an application that can but should not know anything of each other.

2. It can be expected to evolve frequently and independently.

3. Changing business logic can rely on the same DAO interface, while changes
to persistence logic do not affect DAO clients as long as the interface remains
correctly implemented.

4. All details of storage are hidden from the rest of the application.
5. Itacts as an intermediary between the application and the database.

6. They move data back and forth between objects and database records.
ADO.NET

ADO is a Microsoft technology that stands for ActiveX Data Objects. It is
automatically installed with Microsoft IIS. It provides an interface to access data
in a database. There are various applications that require data access while working
with applications. It makes the application to interact with a database. There are
various applications which have different requirements for database access. For
example: VB NET uses ADO.NET (Active X Data Object) as its data access
and manipulation protocol which also enables us to work with data on the internet.

ADO.NET Data Architecture

Data Access in ADO.NET is based on two components i.e. DataSet and Data
Provider.

1. DataSet: The dataset is a disconnected and in-memory representation of
data. It is a local copy of the relevant portions of the database. When the
use of the DataSet is completed, then changes can be made back to the
central database for updating. The DataSet is persisted in memory and the
data in it can be updated and manipulated independent of the database.
The data in DataSet can be loaded from any valid data source like Microsoft
SQL server database, an Oracle database or from a Microsoft Access
database.

2. Data Provider: When the use of the DataSet is completed, then changes
can be made back to the central database. The Data Provider is responsible
for providing and maintaining the connection to the database. Data Provider
is a set of related components that work together to provide data in an
efficient and performance driven manner. The .NET framework currently
comes with two DataProviders i.e. the SQL Data Provider which is designed
only to work with OleDb DataProvider or Microsoft’s SQL Server which
allows us to connect to other types of databases like Access and Oracle.

Lab:.NET Programming

NOTES

Self-Instructional
Material

59

Lab:.NET Programming

60

NOTES

Self-Instructional
Material

Each DataProvider consists of the following component classes:
1. The Connection object provides a connection to the database.
2. The Command object is used to execute a command.

3. The DataReader object provides a forward-only, read only, connected
recordset.

4. The DataAdapter object populates a disconnected DataSet with data
and performs update.

ADO.NET Architecture

Provider Objecis Common Objects

SNET Framwork Data Provider DataSet

Connection DataAdapter o
e
[Setectcommana_ DataRowCoNacton |
W‘]
Lfommee - —
e

DataReadar I
[Detetecommana | DataRalationColiection |

ML
& 1

Fig. 3 ADO.NET Architecture
Component classes that make up the data providers are as follows:

1) The Connection Object

The Connection object creates the connection to the database. Microsoft VB.NET
provides two types of connection classes: the SqlConnection object, which is
designed specifically to connect to Microsoft SQL Server and the
OleDbConnection object, which can provide connections to a wide range of
database types like Microsoft Access and Oracle. The Connection object contains
all of the information required to open a connection to the database.

2) The Command Object

The Command object is represented by two corresponding classes: SqlCommand
and OleDbCommand. The Command objects are used to execute the commands
to a database across a data connection. These can be used to execute stored
procedures on the database, SQL commands, or return complete tables directly.
Command objects provide three methods that are used to execute commands on
the database.

1. ExecuteScalar: Returns a single value from a database query.

2. ExecuteNonQuery: Executes commands that have no return values such
as INSERT,

UPDATE or DELETE.

3. ExecuteReader: Returns a result set by way of a DataReader object.

3) The DataReader Object

The DataReader object provides a read-only, forward-only connected stream
recordset from a database. It cannot be directly instantiated. Instead, The
OleDbCommand.ExecuteReader method returns an OleDbDataReader object.
The DataReader is returned as the result of the Command object’s ExecuteReader
method. The SqlCommand.ExecuteReader method returns a SqlDataReader
object. The DataReader can provide rows of data directly to application logic
when you don’t require keeping the data cached in memory because only one row
is in memory at a time. It provides the lowest overhead in terms of system
performance but requires the exclusive use of an open Connection object for the
lifetime of the DataReader.

4) The DataAdapter Object

The DataAdapter is the class at the core of ADO.NET’s disconnected data access.
The DataAdapter is used either to fill a DataSet or DataTable with data from the
database with its Fill method. A fter the memory-resident data has been manipulated,
the DataAdapter can commit the changes to the database by calling the Update
method. The DataAdapter provides four properties that represent database
commands.

1. SelectCommand
2. DeleteCommand
3. InsertCommand
4. UpdateCommand

Data Access with Server Explorer

VB allows us to work with database in two ways, visually and code. In VB,
server explorer allows us to work with connections across different data sources
visually. The window that is displayed is the Server Explorer lets us create and
examine data connections. Server Explorer can be viewed by selecting ViewaServer
Explorer from the main menu or by pressing Ctrl+Alt+S on the keyboard as shown
below.

Server Explorer » X
2] 1K [T R
| Data Connections

&4 Servers
g4 SharePoint Connections

Lab:.NET Programming

NOTES

Self-Instructional
Material

61

Lab:.NET Programming

62

NOTES

Self-Instructional
Material

In order to work with the Server Explorer, we will work with SQL Server, the
default provider for NET. We will be displaying data from Customers table in
sample Northwind database in SQL Server. For this, we need to establish a
connection to this database. You need to just right-click on the data connections
icon in Server Explorer and select Add Connection that opens the Data Link
Properties dialog which allows you to enter the name of the server you want to
work along with login name and password.

Add Connection 24 =

Enter information to connect to the selected data scurce or click
"Change” to choose a different data source and/or provider.

Data source:
Microsoft SQL Server Database File (SqlClient) | Change... |

Database file name (new or existing):

Mlorthwind.mdf Browse... |

Log on to the server

T Use Windows Authentication

@ Use SQL Server Authentication

User name: =a
Password: (2T AR LR Y]
[T] Sawve my password
I Adwvanced... | I
| Test Connecticn | | O J | Cancel |

To work with a database which is already on the server, you have to select the
option “select the database on the server”. Now, select Northwind database from
the list. After that, click on the Test Connection tab to test the connection. If the
connection is successful, the message “Test Connection Succeeded” is displayed.
When connection to the database is set, click OK and close the Data Link
Properties or add connection. When, you expand the connection node that is (“+”
sign), it displays the Tables, Views and Stored Procedures in that Northwind
sample database. Expanding the Tables node will display all the tables available in
the database.

Server Explorer = 0 X
(2] x| T3 g
4 | 4J Data Connections
4 |k imsitD3-pe.master.dbo
[_1 Database Diagrams
[Tables
[Views
[Stored Procedures
[Functions
[Synocnyms
3 Types
[Assemnblies

In this example given below, we will work with Customers table to display
its data. Now drag Customers table onto the form from the Server Explorer.
Doing that creates SQLConnection] and SQLDataAdapter] objects which are
the data connection and data adapter objects used to work with data. They are
displayed on the component tray. Now, we need to generate the dataset that
holds data from the data adapter. To do that select Data’! Generate DataSet from
the main menu or right click on SQLDataAdapter1 object and select generate
DataSet menu. Dataset dialogbox will open.

Once the dialogbox is displayed, select the radio button with New option to
create a new dataset. Make sure Customers table is checked and click OK.
Clicking OK adds a dataset to the component tray. After that, drag a DataGrid
from toolbox. We will display Customers table in this data grid. Set the data grid’s
DataSource property to DataSet and its DataMember property to Customers.
Next, we need to fill the dataset with data from the data adapter. The code is given
below:

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs)

Handles MyBRase.Load

DataSet.Clear ()

SglDataAdapterl.Fill (DataSet)

‘filling the dataset with the dataadapter’s fill method

End Sub

The output of the above code is given below:

"B rorE | = ==]

Customer_name Customer_id Customer_sddress | =
| Raiesh 101 ' Delhi
[Suresk [102 [Agr=
[Priya [102 | P |
| A [10a | Fenaabad

- Jiva [1os [Patna

= =

Once the application is executed, Customers table is displayed in the data
grid. That is one of the simplest ways of displaying data using the Server Explorer
window.

Microsoft Access and Oracle Database

On working with Oracle, you need to select Microsoft OLE DB provider for
Oracle from the provider tab in the DataLink dialog. The process is similar in
working with Oracle or MS Access but with some minor changes. You need to
enter the appropriate Username and password.

Lab:.NET Programming

NOTES

Self-Instructional
Material

63

Lab:.NET Programming

64

NOTES

Self-Instructional
Material

o

Change Data Source

Data source:

Microsoft Access Database File
Microsoft ODBC Data Source
Microsoft SQL Server

Microsoft SQL Server Compact 3.5
Microsoft SQL Server Database File
COracle Database

=other>

Data provider:

I.NI:_F Framework Data Provider for OLE [v]

] Always use this selection

Description

Use this selection to connect to Oracle
7.2, 8i, 9i or 10g using the native
MSDAORA provider through the MET
Framewwork Data Provider for OLE DB,

[oK | [cancel

BLOCK 4

This block will cover the following topics:
1. Using DataReaders and SQL Server

2. Retrieving, inserting, updating and deleting the records using OleDB provider
and MS access.

Using DataReaders and SQL Server

In this section, will work with ADO.NET objects in code to create connections
and read data using the data reader. The namespace that requires to be imported
while working with SQL Connections is System.Data.SqlClient. Here, we will
check that how to connect by using our own connection objects. We also check
how to use the command object.

Working with SQL Server

The classes in SQL server are discussed below:

a) The SqlConnection Class: This class allows the connection to SQL server
data source. We will use OleDB connection object, when working with
databases instead of SQL Server. The performance of Sqlconnections is
70% faster than OleDB connections.

b) The SqlCommand Class: This class represents a SQL statement or stored
procedure for use in a database with SQL Server.

¢) The SqlDataAdapter Class: This class represents a bridge between SQL
server database and dataset. It includes the Select, Insert, Update and Delete
commands for loading and updating the data.

d) The SqlDataReader Class: The SqlDataReader class creates a data
reader to be used with SQL Server.

DataReaders

A DataReader is a lightweight object which provides forward-only, read-only
data in a very efficient and fast way. Data access with DataReader is read-only, if
we cannot make any changes (update) to data and forward-only, which means we
cannot go back to the previous record which was accessed. A DataReader requires
the use of an active connection for the entire time. We can instantiate a DataReader
by making a call to a Command object’s ExecuteReader command. When the
DataReader is first returned, it is positioned before the first record of the result set.
To make the first record available, we need to call the Read method. If arecord is
available, then Read method moves the DataReader to next record and returns
True. Ifarecord is not available the Read method returns False.

Lab:.NET Programming

NOTES

Self-Instructional
Material

65

Lab:.NET Programming

66

NOTES

Self-Instructional
Material

Program 1: To retrieve data using Select command (to display data from Discounts
table in Pubs sample database).

Imports System.Data.SglClient

Public Class Forml Inherits System.Windows.Forms.Form
Dim myConnection As SglConnection

Dim myCommand As SglCommand

Dim dr As New SglDataReader ()

‘declaring the objects

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As

System.EventArgs)

Handles MyBase.Load

myConnection = New

SglConnection (“server=localhost;uid=sa;pwd=; database=pubs”)

‘establishing connection. you need to provide password
for sgl server

Try

myConnection.Open ()

‘opening the connection

myCommand = New SglCommand (“Select * from discounts”,
myConnection)

‘executing the command and assigning it to connection
dr = myCommand.ExecuteReader ()

While dr.Read()

‘reading from the datareader

MessageBox.Show (“discounttype” & dr (0) .ToString())
MessageBox.Show (“stor id” & dr (1) .ToString())
MessageBox.Show (“lowgty” & dr (2) .ToString())
MessageBox.Show (“highgty” & dr (3) .ToString())
MessageBox.Show (“discount” & dr (4) .ToString())
‘displaying the data from the table

End While

dr.Close ()

myConnection.Close ()

Catch e As Exception

End Try

End Sub

End Class

The above code displays records from discounts table in MessageBoxes.

Retrieving records with a Console Application

Imports System.Data.SglClient

Imports System.Console

Module Modulel

Dim myConnection As SglConnection

Dim myCommand As SglCommand

Dim dr As SglDataReader

Sub Main ()

Try

myConnection = New

SglConnection (“server=localhost;uid=sa;pwd=; database=pubs”)
‘vou need to provide password for sgl server
myConnection.Open ()

myCommand = New SglCommand (“Select * from discounts”,
myConnection)

dr = myCommand.ExecuteReader

Do

While dr.Read()
WriteLine (dr (0))
WriteLine (dr (1))
WriteLine (dr(2))
WriteLine (dr(3))
WriteLine (dr(4))
‘'writing to console

End While

Loop While dr.NextResult ()
Catch

End Try

dr.Close()
myConnection.Close ()

End Sub

End Module

Inserting a Record

Program 2: To insert a record into the Jobs table in Pubs sample database.

Imports System.Data.SglClient

Public Class Form2 Inherits System.Windows.Forms.Form
Dim myConnection As SglConnection

Dim myCommand As SglCommand

Dim ra as Integer

‘integer holds the number of records inserted

Lab:.NET Programming

NOTES

Self-Instructional
Material

67

Lab:.NET Programming

68

NOTES

Self-Instructional
Material

Private Sub Form2 Load(ByVal sender As System.Object,
Byval e

As System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
Byval e

As System.EventArgs) Handles Buttonl.Click
myConnection = New

SglConnection (“server=localhost;uid=sa;pwd=; database=pubs”)
‘vou need to provide password for sgl server
myConnection.Open ()

myCommand = New SglCommand (“Insert into Jobs values 12,’IT
Manager’,100, 300,

myConnection)

ra=myCommand.ExecuteNonQuery ()

MessageBox.Show (“New Row Inserted” & ra)
myConnection.Close ()

End Sub

End Class

Deleting a Record

Program 3: For deleting a record, we will use Authors table in Pubs sample
database to work with this code. Drag a button onto the form and place the
following code.

Imports System.Data.SglClient

Public Class Form3 Inherits System.Windows.Forms.Form

Dim myConnection As SglConnection

Dim myCommand As SglCommand

Dim ra as Integer

Private Sub Form3 Load(ByVal sender As System.Object,
ByVal e

As System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByvVal e

As System.EventArgs) Handles Buttonl.Click
myConnection = New

SglConnection (“server=localhost;uid=sa;pwd=; database=pubs”)
‘yvou need to provide password for sgl server
myConnection.Open ()

myCommand = New SglCommand (“Delete from Authors where

city='0Oakland’” . Lab:.NET Programming
myConnection)
‘since no value is returned we use ExecuteNonQuery
ra=myCommand.ExecuteNonQuery ()

NOTES
MessageBox.Show (“Records affected” & ra)
myConnection.Close ()
End Sub

End Class
Updating a Record

Program 4: For updating a record, we will update a row in Authors table. Drag a
button onto the form and place the following code.

Imports System.Data.SglClient

Public Class Form4 Inherits System.Windows.Forms.Form

Dim myConnection As SglConnection

Dim myCommand As SglCommand

Dim ra as Integer

Private Sub Form4 Load(ByVal sender As System.Object,

ByVal e

As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e

As System.EventArgs) Handles Buttonl.Click
myConnection = New

SglConnection (“server=localhost;uid=sa;pwd=; database=pubs”)
‘vou need to provide password for sqgl server
myConnection.Open ()

myCommand = New SglCommand (“Update Authors Set
city=’'0Oakland’

‘San where city=_

Jose’ “,myConnection)
ra=myCommand.ExecuteNonQuery ()
MessageBox.Show (“Records affected” & ra)
myConnection.Close ()

End Sub

End Class

Self-Instructional
Material 69

Lab:.NET Programming

70

NOTES

Self-Instructional
Material

Using OleDb Provider

The classes of the OleDb provider with which we work are as follows:

1.

The OleDbConnection Class: The OleDbConnection class allows a
connection to OleDb data source. OleDbconnections are used to connect
to most databases.

. The OleDbCommand Class: The OleDbCommand class shows a SQL

statement or stored procedure which is to be executed in a database by an
OLEDB provider.

. The OleDbDataAdapter Class: The OleDbDataAdapter class represents

as an intermediate between OleDb data source and datasets. We use the
Select, Insert, Delete and Update commands for loading and updating the
data.

The OleDbDataReader Class: The OleDbDataReader class creates a
datareader for use with an OleDb data provider. The data is read as forward-
only stream which means that data is read sequentially, one row after another
not allowing you to choose a row you want or going backwards. It is used
to read a row of data from the database.

Program 5: To retrieve the records. In the code below, we are working with
Emp table in Oracle.

Imports System.Data.0leDB

Public Class Forml Inherits System.Windows.Forms.Form

Dim myConnection As OleDbConnection

Dim myCommand As OleDbCommand
Dim dr As New OleDbDataReader ()

‘declaration

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As

System.EventArgs)

Handles MyBase.Load

myConnection = New OleDbConnection

(“Provider=MSDAORA.1;UserID=scott;password=tiger;
database=ora”)

‘MSDORA is the provider when working with Oracle

Try

myConnection.Open ()

‘opening the connection

myCommand = New OleDbCommand (“Select * from emp”,

myConnection) Lab:.NET Programming
‘executing the command and assigning it to connection
dr = myCommand.ExecuteReader ()

While dr.Read()

‘reading from the datareader

MessageBox.Show ("EmpNo” & dr (0))

MessageBox.Show ("EName” & dr (1))

MessageBox.Show (“Job” & dr (2))

MessageBox.Show (“Mgr” & dr (3))

MessageBox.Show (“HireDate” & dr (4))

NOTES

‘displaying data from the table
End While

dr.Close()

myConnection.Close ()

Catch e As Exception

End Try

End Sub

AND CLASS

The above code displays first 5 columns from the Emp table in Oracle.
Inserting a Record

Program 6: Drag a Button from the toolbox onto the Form. When this Button is
clicked the values specified in code will be inserted into the Emp table.

Imports System.Data.OleDb

Public Class Form2 Inherits System.Windows.Forms.Form

Dim myConnection As OleDbConnection

Dim myCommand As OleDbCommand

Dim ra as Integer

‘integer holds the number of records inserted

Private Sub Form2 Load(ByVal sender As System.Object,

ByVal e As

System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByvVal e As

System.EventArgs) Handles Buttonl.Click
myConnection = New

OleDbConnection (“”Provider=MSDAORA.1;User
ID=scott;password=tiger;database=ora”

)
Try

Self-Instructional
Material 71

Lab:.NET Programming

72

NOTES

Self-Instructional
Material

myConnection.Open ()

myCommand = New OleDbCommand (“Insert into emp values
12,’Ben’,’”Salesman’, 300

12-10-2001,3000,500,10 %, myConnection)

‘emp table has 8 columns. You can work only with the
columns you want

ra=myCommand.ExecuteNonQuery ()

MessageBox.Show (“Records Inserted” & ra)
myConnection.Close ()

Catch

End Try

End Sub

End Class

Deleting Records

Drag a Button on a new form and paste the following code.
Imports System.Data.OleDb

Public Class Form3 Inherits System.Windows.Forms.Form
Dim myConnection As OleDbConnection

Dim myCommand As OleDbCommand

Dim ra as Integer

Private Sub Form3 Load(ByVal sender As System.Object,
ByVal e As__

System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
Byval e

As System.EventArgs) Handles Buttonl.Click
Try

myConnection.Open () ID=scott;password=tiger;database=ora”)

myCommand = myConnection = New
OleDbConnection (“”Provider=MSDAORA.1;User

New OleDbCommand (“"Delete from emp where
DeptNo=790220",

myConnection)
ra=myCommand.ExecuteNonQuery ()
MessageBox.Show (“"Records Deleted” & ra)
myConnection.Close ()

Catch

End Try

End Sub

End Class

Updating a Record Lab:.NET Programming

Program 7: Drag a Button on a new form and paste the following code.
Imports System.Data.OleDb
Public Class Form4 Inherits System.Windows.Forms.Form NOTES
Dim myConnection As OleDbConnection
Dim myCommand As OleDbCommand
Dim ra as Integer

Private Sub Form4 Load(ByVal sender As System.Object,
ByVal e As

System.EventArgs) Handles MyBRase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
Byval e

As System.EventArgs) Handles Buttonl.Click
Try

myConnection = New
OleDbConnection (“Provider=MSDAORA.1;User

ID=scott;password=tiger;database=ora”)
myConnection.Open ()

myCommand = New OleDbCommand (“Update emp Set DeptNo=65
where DeptNo=793410", myConnection)
ra=myCommand.ExecuteNonQuery ()
MessageBox.Show (YRecords Updated” & ra)
myConnection.Close ()

Catch

End Try

End Sub

End Class

Data Access using MSAccess

Program 8: In this program, create a database named Emp in Microsoft Access
in the C drive of your computer. In the Emp database, create a table, Table1 with
EmpNo, EName and Department as columns, insert some values in the table and
close it. Drag three TextBoxes and a Button. The following code will assume that
TextBox1 is for EmpNo, TextBox2 is for EName and TextBox3 is for Department.
Our intention is to retrieve data from Tablel in the Emp Database and display the
values in these TextBoxes without binding, when the Button is clicked.

Imports System.Data.OleDb
Public Class Forml Inherits System.Windows.Forms.Form
Dim cn As OleDbConnection

Dim cmd As OleDbCommand

Self-Instructional
Material 73

Lab: NET Programming Dim dr As OleDbDataReader

Private Sub Forml Load(ByVal sender As System.Object,
ByvVal e as _

System.EventArgs) Handles MyBase.Load
NOTES End Sub
Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As__
System.EventArgs) Handles Buttonl.Click
Try

cn = New
OleDbConnection (“Provider=Microsoft.Jet.OLEDB.4.0;

Data Source=C:\emp.mdb; ")

‘provider to be used when working with access database
cn.Open ()

cmd = New OleDbCommand (“select * from tablel”, cn)
dr = cmd.ExecuteReader

While dr.Read()

TextBox1l.Text = dr (0)

TextBox2.Text = dr (1)

TextBox3.Text dr (2)

‘' loading data into TextBoxes by column index

End While

Catch

End Try

dr.Close ()

cn.Close ()

End Sub

End Class

When you run the code and click the Button, records from Table1 of the Emp
database will be displayed in the TextBoxes.

Retrieving a Record

Program 9: Write a code for retrieving records with a Console Application.
Imports System.Data.OleDb
Imports System.Console
Module Modulel
Dim cn As OleDbConnection
Dim cmd As OleDbCommand
Dim dr As OleDbDataReader
Sub Main ()
Try

Self-Instructional
74 Material

cn = New
OleDbConnection (“Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=C:\emp.mdb;

Persist Security Info=False”)
cn.Open ()

cmd = New OleDbCommand (“select * from tablel”, cn)
dr = cmd.ExecuteReader

While dr.Read()
WriteLine (dr (0))
WriteLine (dr (1))

‘writing to console

End While

Catch

End Try WriteLine (dr(2))

dr.Close ()
cn.Close ()
End Sub

End Module

Code for Inserting a Record

Imports System.Data.OleDb

Public Class Form2 Inherits System.Windows.Forms.Form
Dim cn As OleDbConnection

Dim cmd As OleDbCommand

Dim dr As OleDbDataReader

Dim icount As Integer

Dim str As String

Private Sub Form2 Load(ByVal sender As System.Object,
ByVal e As

System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As

System.EventArgs) Handles Button2.Click
Try

cn = New
OleDbConnection (“Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=C:\emp.mdb; ")

cn.Open ()
str = “insert into tablel values (“ & CInt (TextBoxl.Text)
& \\,,Il &

Lab:.NET Programming

NOTES

Self-Instructional
Material

75

Lab:.NET Programming

NOTES

Self-Instructional
76 Material

TextBox2.Text & “',’” &
TextBox3.Text & “')”

‘string stores the command and CInt is used to convert
number to string

cmd = New OleDbCommand (str, cn)
icount = cmd.ExecuteNonQuery
MessageBox.Show (icount)

‘displays number of records inserted
Catch

End Try

cn.Close ()

End Sub

End Class

BLOCK 5

This block will cover the development of following simple applications:
1. Library Information System

. Students Marksheet Processing

. Telephone Directory Maintenance

Gas Booking and Delivering

Electricity Bill Processing

Bank Transaction

Pay Roll Processing

® N oL AW

Personal Information System
9. Question Database and Conducting Quiz
10. Personal Diary

1. Library Information System

Add Books:

Public Class AddBooks
Public NameFrm, NameTo As String

Private Sub Button9 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button9.Click

Me.Close ()
End Sub

Private Sub AddBooks Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load

Call generateyear ()
Call disablethem/()
Call readData ()
Call GroupID Combo ()
End Sub
Sub GroupID Combo ()
Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“Select GroupID
from GroupD”, objcon)

dr = com.ExecuteReader

Lab:.NET Programming

NOTES

Self-Instructional
Material

77

Lab:.NET Programming

78

NOTES

Self-Instructional
Material

While dr.Read
ComboBoxl.Items.Add(dr.Item(0))

End While

dr.Close ()

objcon.Close ()

Catch ex As Exception

End Try
End Sub
Sub generateyear ()

Dim YearNow As Integer

YearNow =

Int (My.Computer.Clock.LocalTime.Year.ToString)
Dim a, b, ¢ As Integer
a = YearNow - 5
b = YearNow
For ¢c = a To b
ComboBox2.Items.Add (c)

Next

End Sub

Private Sub ComboBoxl LostFocus (ByVal sender As
Object, ByVal e As System.EventArgs) Handles
ComboBox1 .LostFocus

ComboBox1.Text = ComboBoxl.Text.ToUpper ()
End Sub

Private Sub Buttonl Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Buttonl.Click

ComboBox3.Text = “Available”
Call enablethem/()
End Sub

Private Sub TextBox2 LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox2.LostFocus

NameFrm = TextBox2.Text

Call Sentence ()

TextBox2.Text = NameTo
End Sub

Sub disablethem()
‘TextBoxl.Enabled =
TextBox2.Enabled =
TextBox3.Enabled =
ComboBox1.Enabled =
TextBox4.Enabled =
TextBox5.Enabled =
TextBox6.Enabled =
ComboBox2.Enabled =
ComboBox3.Enabled =

End Sub

Sub enablethem/()
TextBoxl.Enabled =
TextBox2.Enabled
TextBox3.Enabled =
ComboBox1.Enabled =
TextBox4.Enabled
TextBox5.Enabled =
TextBox6.Enabled =
ComboBox2.Enabled
ComboBox3.Enabled =
TextBoxl.Clear ()
TextBox2.Clear ()
TextBox3.Clear ()
TextBox4.Clear ()

)
)

TextBox5.Clear (
TextBox6.Clear (
ComboBox1.Text = V7
ComboBox2.Text = V7
ComboBox3.Text = V7

End Sub

Sub Sentence ()
Dim a, b As Integer
a = NameFrm.Length
NameTo = “”

For b =0 To a -1

If b = 0 Then

False
False
False

False
False
False
False

False

False

True
True
True
True
True
True
True
True

True

If Char.IsLower (NameFrm(0)) Then

NameTo = Char.ToUpper (NameFrm (0))

Lab:.NET Programming

NOTES

Self-Instructional
Material

79

Lab:.NET Programming

NOTES

Self-Instructional
80 Material

Else
NameTo = NameFrm (0)
End If
Else
If NameFrm(b - 1) = “ Y Then
NameTo = NameTo +
Char.ToUpper (NameFrm (b))
Else
NameTo = NameTo + NameFrm (b)
End If
End If
Next
End Sub

Private Sub TextBox3 LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox3.LostFocus

NameFrm = TextBox3.Text
Call Sentence ()
TextBox3.Text = NameTo

End Sub

Private Sub TextBox3 TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox3.TextChanged

End Sub

Private Sub TextBox4 LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox4.LostFocus

NameFrm = TextBox4.Text
Call Sentence ()
TextBox4.Text = NameTo

End Sub

Private Sub TextBox4 TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles

TextBox4 .TextChanged

End Sub

Private Sub TextBox5 LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox5.LostFocus

NameFrm = TextBox5.Text

Call Sentence()

TextBox5.Text = NameTo
End Sub

Private Sub TextBox5 TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox5.TextChanged

End Sub

Private Sub Button2 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button2.Click

If TextBoxl.Text = “” Then

MsgBox (“Please enter the Book ID!”, 0, %)
Else

Try

If objcon.State = ConnectionState.Closed
Then objcon.Open ()

com = New OleDb.OleDbCommand (Y"INSERT INTO
Books VALUES ('“ & TextBoxl.Text & “',’” & ComboBoxl.Text

& WY, ' & TextBox2.Text & “',’” & TextBox3.Text & “V,’” &
TextBox4.Text & “',’” & ComboBox2.Text & “'‘,’” &
TextBox5.Text & “',’” & TextBox6.Text & “','” &

ComboBox3.Text & “')”, objcon)
com.ExecuteNonQuery ()
Call readData ()
MsgBox (“Saved successfully”, 0, “SUCCESS”)
objcon.Close ()
Catch ex As Exception
MsgBox (ex.Message, 0, “)
End Try
End If
End Sub
Sub readData ()
ListViewl.Clear ()

ListViewl.Columns.Add (“BOOK 1ID”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"GROUP 1ID”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“BOOK NAME”, 310,
HorizontalAlignment.Center)

Lab:.NET Programming

NOTES

Self-Instructional
Material

81

Lab:.NET Programming

82

NOTES

Self-Instructional
Material

ListViewl.Columns.Add (“PUBLISHER”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“AUTHOR”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"EDITION”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“PRICE”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"STATUS”, 90,
HorizontalAlignment.Center)

ListViewl.View = View.Details

Try

If (objcon.State = ConnectionState.Closed)
Then objcon.Open ()

com = New OleDb.OleDbCommand (“SELECT * FROM
, objcon)

A\

Books
dr = com.ExecuteReader
While dr.Read()

Call adddatatolistview (ListViewl, dr (0),
dr (1), dr(2), dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))

End While

dr.Close ()

objcon.Close ()
Catch

‘MsgBox (“Please Refresh”,
MsgBoxStyle.Information, “”)

End Try
End Sub

Public Sub adddatatolistview(ByVal lvw As ListView,
ByVal BookID As String, ByVal GroupID As String, ByVal
BookName As String, ByVal Publisher As String, ByVal
Author As String, ByVal PubYear As String, ByVal edi As
String, ByVal pric As String, ByVal st As String)

Dim 1lv As New ListViewItem
lvw.Items.Add (1lv)

lv.Text = BookID
lv.SubItems.Add (GroupID)
1lv.SubItems.Add (BookName)
1lv.SubItems.Add (Publisher)
lv.SubItems.Add (Author)

lv.SubItems.Add (PubYear)
lv.SubItems.Add (edi)
lv.SubItems.Add (pric)
lv.SubItems.Add(st)

End Sub

Private Sub Button8 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button8.Click

Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

If MessageBox.Show (“Do you really want to
delete?”, “ARE YOU SURE”, MessageBoxButtons.YesNo) =
Windows.Forms.DialogResult.Yes Then

com = New OleDb.OleDbCommand (“"DELETE FROM
Books WHERE BookID='" & TextBoxl.Text & “'%, objcon)

com.ExecuteNonQuery ()
objcon.Close ()

MsgBox (“Deleted successfully”, O,
“SUCCESS”)

End If

Catch ex As Exception

End Try
End Sub
Sub fill list()

com = New OleDb.OleDbCommand (“Select * from Books”,
objcon)

Dim dr As OleDb.OleDbDataReader
dr = com.ExecuteReader
dr.Read()

While (dr.NextResult)

End While
End Sub

Private Sub GroupBoxl Enter (ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
GroupBox1.Enter

Lab:.NET Programming

NOTES

Self-Instructional
Material

83

Lab:.NET Programming

84

NOTES

Self-Instructional
Material

End Sub

Private Sub TextBoxl TextChanged(ByVal sender As

System.Object,

TextBox1.TextChanged

Dim i As Integer
ListViewl.SelectedItems.Clear ()

TextBoxl.Focus ()

Try
If Me.TextBoxl.Text = “” Then
TextBox2.Text = V7
Else
For 1 = 0 To ListViewl.Items.Count - 1
If TextBoxl.Text
ListViewl.Items (i) .SubItems (0).Text Then
ComboBox1l.Text
ListViewl.Items (i) .SubItems (1) .Text
TextBox2.Text
ListViewl.Items (i) .SubItems (2) .Text
TextBox3.Text
ListViewl.Items (i) .SubItems (3) .Text
TextBox4.Text
ListViewl.Items (i) .SubItems (4) .Text
ComboBox2.Text
ListViewl.Items (i) .SubItems (5).Text
TextBox5.Text
ListViewl.Items (i) .SubItems (6) .Text
TextBox6.Text
ListViewl.Items (i) .SubItems (7) .Text
ComboBox3.Text
ListViewl.Items (i) .SubItems (8) .Text
ListViewl.Items (i) .Selected
True
Exit For
End If
Next
End If
Catch
End Try
End Sub

ByVal e As System.EventArgs)

Handles

Private Sub ListViewl SelectedIndexChanged(ByVal

sender As System.Object, ByVal e As System.EventArgs)
Handles ListViewl.SelectedIndexChanged

Dim i As Integer
For i = 0 To ListViewl.Items.Count - 1
If ListViewl.Items (i) .Selected = True Then

TextBoxl.Text =
ListViewl.Items (i) .SubItems (0) .Text

TextBox7.Clear ()
Exit For
End If
Next
ListViewl.Focus ()
ListViewl.FullRowSelect = True
End Sub

Private Sub Button6t Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button6.Click

Try
Dim i As Integer
For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True
Then

TextBoxl.Text = ListViewl.Items (i +
1) .SubItems (0) .Text

Exit For
End If
Next
ListViewl.Focus ()
ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub

Private Sub ComboBoxl SelectedIndexChanged (ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ComboBoxl.SelectedIndexChanged

Call GroupNameCom ()
End Sub

Sub GroupNameCom ()

Lab:.NET Programming

NOTES

Self-Instructional
Material

85

Lab:.NET Programming

86

NOTES

Self-Instructional
Material

Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“Select * from
GroupD”, objcon)

dr = com.ExecuteReader
While dr.Read

If dr.Item(0) = ComboBoxl.Text Then
TextBox7.Text = dr.Item (1)
End If
End While
dr.Close ()

objcon.Close ()

Catch ex As Exception

End Try
End Sub

Private Sub ComboBoxl TextUpdate (ByVal sender As
Object, ByVal e As System.EventArgs) Handles
ComboBox1.TextUpdate

Call GroupNameCom ()
End Sub

Private Sub Button5 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Buttonb5.Click

Try
Dim i As Integer
For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True
Then

TextBoxl.Text = ListViewl.Items (i -
1) .SubItems (0) .Text

Exit For
End If
Next
ListViewl.Focus ()
ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub
End Class
ADD BOOKS [|]
BOOKS DETAIL
BOOK ID EDITION
GROUP ID - PRICE
BOOK NAME STATUS -
PUBLISHER GROUP
AUTHOR -

PUBLISHING YEAR -

Book Details

Public Class BookDetail
Dim sel As Integer

Private Sub ComboBoxl SelectedIndexChanged (ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ComboBoxl.SelectedIndexChanged

Labell.Text = ComboBoxl.Text

Labell.Visible = True

If Labell.Text = “STATUS” Then
ComboBox2.Enabled = True
ComboBox2.Visible
TextBox1l.Visible = False

True

Else
ComboBox2.Enabled = False
ComboBox2.Visible = False

TextBoxl.Visible = True

End If
Call forselect ()
End Sub

Sub forselect ()
If ComboBoxl.Text = “BOOK ID” Then

sel =1
ElseIf ComboBoxl.Text = “BOOK NAME” Then
sel = 2

Lab:.NET Programming

NOTES

Self-Instructional
Material

87

Lab:.NET Programming ElseIf ComboBoxl.Text = “AUTHOR” Then

sel = 3
ElseIf ComboBoxl.Text = “STATUS” Then
sel = 8
NOTES End Tf

End Sub

Private Sub BookDetail Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load

ComboBox2.Visible = False
TextBox1l.Visible = False
Labell.Visible = False
Call readData ()

End Sub

Sub readData ()
ListViewl.Clear ()

ListViewl.Columns.Add (“BOOK ID”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“GROUP ID”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"BOOK NAME”, 310,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“PUBLISHER”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“AUTHOR”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"EDITION"”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“PRICE”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"STATUS”, 90,
HorizontalAlignment.Center)

ListViewl.View = View.Details

sel = 5
‘Call whenclick()
End Sub

Sub whenclick()
Try

While dr.Read()

Self-Instructional
88 Material

Call adddatatolistview (ListViewl, dr(0),
dr (1), dr(2), dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))

End While

dr.Close ()

objcon.Close ()
Catch

‘MsgBox (“Please Refresh”,
MsgBoxStyle.Information, “”)

End Try
End Sub

Public Sub adddatatolistview (ByVal lvw As ListView,
ByVal BookID As String, ByVal GroupID As String, ByVal
BookName As String, ByVal publisher As String, ByVal
author As String, ByVal pubyear As String, ByVal edi As
String, ByVal pric As String, ByVal status As String)

Dim lv As New ListViewItem
lvw.Items.Add (1lv)
lv.Text = BookID
lv.SubItems.Add (GroupID)
1lv.SubItems.Add (BookName)
lv.SubItems.Add (publisher)
lv.SubItems.Add (author)
lv.SubItems.Add (pubyear)
1lv.SubItems.Add (edi)
lv.SubItems.Add (pric)
lv.SubItems.Add (status)
End Sub

Private Sub Buttonl Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Buttonl.Click

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

Select Case (sel)
Case 1

com = New OleDb.OleDbCommand (“select *
from Books where BookID='" & TextBoxl.Text & “'V, objcon)

dr = com.ExecuteReader
Case 2

com = New OleDb.OleDbCommand(“select *
from Books where BookName='" & TextBoxl.Text & “'%, objcon)

dr = com.ExecuteReader

Case 3

Lab:.NET Programming

NOTES

Self-Instructional
Material

89

Lab:.NET Programming

NOTES

90

New OleDb.OleDbCommand (“select *

com =
, objcon)

from Books where Author='" & TextBoxl.Text & “'“
dr = com.ExecuteReader

Case 5
com =

from Books”, objcon)
dr = com.ExecuteReader

New OleDb.OleDbCommand (“select *

Case 8
com = New OleDb.OleDbCommand (“select *
from Books where Status=’" & ComboBox2.Text & “'V, objcon)

dr = com.ExecuteReader

End Select
Call readData ()
Call whenclick()

objcon.Close ()

End Sub

Private Sub ListViewl SelectedIndexChanged(ByVal

sender As System.Object, ByVal e As System.EventArgs)

Handles ListViewl.SelectedIndexChanged

End Sub

sender As

Sub Button6 Click(ByVal
Handles

Private
ByVal e As System.EventArgs)

System.Object,
Button6.Click
Try
Dim i As Integer
For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True

Then
TextBoxl.Text = ListViewl.Items (i +

1) .SubItems (0) .Text
Exit For

End If

Next
ListViewl.Focus ()
ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub

Self-Instructional
Material

Private Sub Button5 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button5.Click

Try
Dim i As Integer
For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True
Then

TextBoxl.Text = ListViewl.Items (i -
1) .SubItems (0) .Text

Exit For
End If
Next
ListViewl.Focus ()
ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub
End Class
BOOK REPORT = ==

SEARCH

SEARCH BY ~| BOOKID [= [sEARCH |

MOVES

Issue Book

Public Class IssueBook

Private Sub Button9 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button9.Click

Me.Close ()
End Sub

Lab:.NET Programming

NOTES

Self-Instructional
Material

91

92

Lab:.NET Programming

NOTES

Self-Instructional
Material

Private Sub PictureBoxl Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub

Private Sub IssueBook Load(ByVal
System.Object,

MyBase.Load

sender As
ByVal e As System.EventArgs) Handles

Call Retrive C()
Call BookID Combo ()
Call readData()
End Sub
Sub Retrive C()
Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“Select CID from
Customer”, objcon)

dr = com.ExecuteReader
While dr.Read
ComboBox5.Items.Add (dr.Item(0))
End While
dr.Close ()
objcon.Close ()

Catch ex As Exception

End Try

End Sub

Sub BookID Combo ()
Try

If objcon.State =

= ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“Select BookID
from Books WHERE status=’Available’”, objcon)

dr = com.ExecuteReader

While dr.Read

ComboBoxl.Items.Add (dr.Item(0))
End While
dr.Close ()
objcon.Close ()

Catch ex As Exception

End Try

End Sub

Sub readData ()
ListViewl.Clear ()

ListViewl.Columns.Add (“BOOK 1ID”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"GROUP 1ID”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“BOOK NAME”, 310,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"PUBLISHER”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“AUTHOR"”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"EDITION”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“PRICE”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“STATUS”, 90,
HorizontalAlignment.Center)

ListViewl.GridLines = True
ListViewl.View = View.Details

Try

If (objcon.State = ConnectionState.Closed)
Then objcon.Open ()

com = New OleDb.OleDbCommand (“SELECT * FROM
Books WHERE status=’Available’”, objcon)

dr = com.ExecuteReader
While dr.Read()

Call adddatatolistview (ListViewl, dr(0),
dr (1), dr(2), dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))

End While

dr.Close ()

objcon.Close ()
Catch

‘MsgBox (“Please Refresh”,
MsgBoxStyle.Information, “”)

End Try
End Sub
Public Sub adddatatolistview (ByVal lvw As ListView,

Lab:.NET Programming

NOTES

Self-Instructional
Material

93

Lab:.NET Programming

94

NOTES

Self-Instructional
Material

ByVal BookID As String, ByVal GroupID As String, ByVal
BookName As String, ByVal Publisher As String, ByVal
Author As String, ByVal PubYear As String, ByVal edi As
String, ByVal pric As String, ByVal st As String)

Dim 1lv As New ListViewItem
lvw.Items.Add (1lv)
lv.Text = BookID
lv.SubItems.Add (GroupID)
lv.SubItems.Add (BookName)
lv.SubItems.Add (Publisher)
lv.SubItems.Add (Author)
lv.SubItems.Add (PubYear)
1lv.SubItems.Add (edi)
lv.SubItems.Add (pric)
lv.SubItems.Add(st)
End Sub
Sub Retrive ()
objcon.Open ()

com = New OleDb.OleDbCommand (“"SELECT * FROM Books”,
objcon)

com.ExecuteNonQuery ()
dr = com.ExecuteReader
dr.Read ()
While (dr.NextResult)
ComboBox1l.Items.Add(dr (1))

End While
objcon.Close ()

End Sub

Private Sub Button2 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button2.Click

Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (YUPDATE Books
SET status=’Rented’ WHERE BookID=’" & ComboBoxl.Text &
A\Y \\\, ObjCOl’l)

com.ExecuteNonQuery ()
objcon.Close ()
Call readbData()

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“"INSERT INTO
Issue VALUES (‘% & ComboBoxl.Text & “',’” & ComboBox2.Text
& ", 1" & TextBox2.Text & “V',’” & ComboBox5.Text & “V',’”
& TextBoxl.Text & “',’” & DateTimePickerl.Text & “',’” &
DateTimePicker2.Text & “')”, objcon)

com.ExecuteNonQuery ()
MsgBox (“"Book has been Issued!”, O,
Call readData ()

ANY II)

objcon.Close ()
Catch ex As Exception
MsgBox (ex.Message, O,
End Try
End Sub

ANY Il)

Private Sub ComboBoxl SelectedIndexChanged (ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ComboBoxl.SelectedIndexChanged

Dim i As Integer
ListViewl.SelectedItems.Clear ()
TextBoxl.Focus ()
Try
If Me.ComboBoxl.Text = “” Then
TextBox2.Text =
Else
For i = 0 To ListViewl.Items.Count - 1

If ComboBoxl.Text =
ListViewl.Items (i) .SubItems (0).Text Then

ComboBox2.Text =
ListViewl.Items (i) .SubItems (1) .Text

TextBox2.Text =
ListViewl.Items (i) .SubItems (2) .Text

TextBox3.Text =
ListViewl.Items (i) .SubItems (3) .Text

TextBox4.Text =
ListViewl.Items (i) .SubItems (4) .Text

ComboBox3.Text =
ListViewl.Items (i) .SubItems (5).Text

TextBox5.Text =
ListViewl.Items (i) .SubItems (6) .Text

TextBox6.Text =
ListViewl.Items (i) .SubItems (7) .Text

ComboBox4.Text =
ListViewl.Items (i) .SubItems (8) .Text

Lab:.NET Programming

NOTES

Self-Instructional
Material

95

Lab:.NET Programming

96

NOTES

Self-Instructional
Material

ListViewl.Items (i) .Selected =

True
Exit For
End If
Next
End If
Catch
End Try
End Sub

Private Sub Button8 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button8.Click

Try
If ComboBoxl.Text = “” Then
MsgBox (“Please mention the BookID”, O,
")
Else
If objcon.State = ConnectionState.Closed
Then
com = New OleDb.OleDbCommand (“delete
from Issue where BookID='" & ComboBoxl.Text & “'%, objcon)

If MsgBox (“Do you really want to
delete?”, MsgBoxStyle.YesNo, Y“Are you sure?”) =
Windows.Forms.DialogResult.Yes Then

com.ExecuteNonQuery ()
End If
objcon.Close ()
End If
End If

Catch ex As Exception

End Try
End Sub

Private Sub ListViewl SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ListViewl.SelectedIndexChanged

Dim i As Integer
For 1 = 0 To ListViewl.Items.Count - 1
If ListViewl.Items (i) .Selected = True Then

ComboBox1l.Text =

ListViewl.Items (i) .SubItems (0) .Text
Exit For
End If
Next
ListViewl.Focus ()
ListViewl.FullRowSelect = True
End Sub

Private Sub ComboBox5 SelectedIndexChanged (ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ComboBox5.SelectedIndexChanged

Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“Select CID,CName
from Customer”, objcon)

dr = com.ExecuteReader
While dr.Read

If dr.Item(0) = ComboBox5.Text Then
TextBoxl.Text = dr.Item (1)
End If
End While
dr.Close ()

objcon.Close ()

Catch ex As Exception

End Try
End Sub

Private Sub Button6t Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
Button6.Click

Try
Dim i As Integer
For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True
Then

TextBoxl.Text = ListViewl.Items (i +
1) .SubItems (0) .Text

Exit For

Lab:.NET Programming

NOTES

Self-Instructional
Material

97

Lab:.NET Programming

NOTES

Self-Instructional
98 Material

End If
Next
ListViewl.Focus ()
ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub

Private Sub Button5 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Buttonb5.Click

Try
Dim i As Integer
For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True
Then
TextBoxl.Text = ListViewl.Items (i -
1) .SubItems (0) .Text

Exit For
End If
Next
ListViewl.Focus ()
ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub
End Class
EEERON = Ea
BOOKS DETAIL
BOOK ID - EDITION
GROUP ID - PRICE
BOOK NAME STATUS ¥
PUBLISHER
AUTHOR
PUBLISHING YEAR e
ISSUE DETAIL
ISSUETO - ISSUING DATE 11/26/2020 [ERg
NAME DUE DATE 1142642020 @~

Return Book

Public Class ReturnBook

Private Sub Button9 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button9.Click

Me.Close ()
End Sub

Private Sub Button2 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button2.Click

If ComboBox1l.Text = “” Then

MsgBox (“Please mention the Book ID”, 0, %)
Else
Try
If objcon.State = ConnectionState.Closed
Then objcon.Open ()

com = New OleDb.OleDbCommand (YUPDATE Books
SET status=’Available’ WHERE BookID='" & ComboBoxl.Text
& "', objcon)
com.ExecuteNonQuery ()
objcon.Close ()
Call readData ()
If objcon.State = ConnectionState.Closed
Then objcon.Open ()

com = New OleDb.OleDbCommand (Y"INSERT INTO
Returns VALUES (‘% & ComboBox1.Text & “',’” & ComboBox2.Text
& N, 1" & TextBox2.Text & “',’” & ComboBox5.Text & “V',’”

& TextBoxl.Text & “',’'” & TextBox3.Text & “',’'” &
TextBox7.Text & “',’” & DateTimePicker2.Text & “',’” &
TextBox6.Text & “')”, objcon)

com.ExecuteNonQuery ()
MsgBox (“"Book has been returned!”, 0, “)
objcon.Close ()
Catch ex As Exception
MsgBox (ex.Message, 0,
End Try
End If

End Sub

ANY II)

Private Sub Button8 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles

Lab:.NET Programming

NOTES

Self-Instructional
Material

99

Lab:.NET Programming

100

NOTES

Self-Instructional
Material

Button8.Click
If ComboBoxl.Text = Y Then
A\Y II)

MsgBox (“Please mention a Book ID”, O,

Else

Try
If objcon.State = ConnectionState.Closed
Then objcon.Open /()
com = New OleDb.OleDbCommand (“DELETE FROM
Returns WHERE BookID=’'" & ComboBoxl.Text & “'%, objcon)
com.ExecuteNonQuery ()
MsgBox (“Deleted Success!”, 0, %)
Call ClearThem()
objcon.Close ()

Catch ex As Exception

End Try

End If

End Sub

Sub ClearThem/()
ComboBoxl.TabIndex = “”
ComboBox2.Text = %~
TextBox2.Text = V"
TextBox3.Text =
TextBox6.Text =
ComboBox5.Text = V7
TextBoxl.Text =
TextBox7.Text =
DateTimePicker2.Refresh ()

End Sub

Private Sub ReturnBook Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load

Call BookID Combo ()
Call readbData()

End Sub
Sub BookID Combo ()
Try
If objcon.State = ConnectionState.Closed Then

objcon.Open ()

com = New OleDb.OleDbCommand (“Select BookID
from Books WHERE status=’Rented’”, objcon)

dr = com.ExecuteReader
While dr.Read
ComboBoxl.Items.Add (dr.Item(0))
End While
dr.Close ()
objcon.Close ()

Catch ex As Exception

End Try
End Sub
Sub readData ()
ListViewl.Clear ()
ListViewl.Columns.Add (“BOOK 1ID”, 90,
HorizontalAlignment.Center)
ListViewl.Columns.Add (“"GROUP 1ID”, 90,
HorizontalAlignment.Center)
ListViewl.Columns.Add (“BOOK NAME”, 310,
HorizontalAlignment.Center)
ListViewl.Columns.Add (“"PUBLISHER”, 90,
HorizontalAlignment.Center)
ListViewl.Columns.Add (YAUTHOR"”, 90,
HorizontalAlignment.Center)
ListViewl.Columns.Add (“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)
ListViewl.Columns.Add (“EDITION”, 90,
HorizontalAlignment.Center)
ListViewl.Columns.Add (“PRICE”, 90,
HorizontalAlignment.Center)
ListViewl.Columns.Add (“STATUS”, 90,
HorizontalAlignment.Center)
ListViewl.View = View.Details

Try

If (objcon.State = ConnectionState.Closed)
Then objcon.Open ()

com = New OleDb.OleDbCommand (“SELECT * FROM
Books WHERE status=’Rented’”, objcon)

dr = com.ExecuteReader
While dr.Read()
Call adddatatolistview (ListViewl, dr(0),

Lab:.NET Programming

NOTES

Self-Instructional
Material

101

Lab:.NET Programming

102

NOTES

Self-Instructional
Material

dr(1l), dr(2), dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))
End While
dr.Close ()
objcon.Close ()
Catch

‘MsgBox (“Please Refresh”,
MsgBoxStyle.Information, “”)

End Try
End Sub

Public Sub adddatatolistview (ByVal lvw As ListView,
ByVal BookID As String, ByVal GroupID As String, ByVal
BookName As String, ByVal Publisher As String, ByVal
Author As String, ByVal PubYear As String, ByVal edi As
String, ByVal pric As String, ByVal st As String)

Dim 1lv As New ListViewItem
lvw.Items.Add (1lv)

lv.Text = BookID

1lv.SubItems.Add (GroupID)
1lv.SubItems.Add (BookName)
1lv.SubItems.Add (Publisher)
lv.SubItems.Add (Author)
lv.SubItems.Add (PubYear)
1lv.SubItems.Add (edi)
lv.SubItems.Add (pric)
lv.SubItems.Add(st)
End Sub

Private Sub Buttonl Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Buttonl.Click

Me.Refresh ()
End Sub

Private Sub ListViewl SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ListViewl.SelectedIndexChanged

Dim i As Integer
For i = 0 To ListViewl.Items.Count - 1
If ListViewl.Items (i) .Selected = True Then

ComboBoxl.Text =
ListViewl.Items (i) .SubItems (0) .Text

Exit For

End If
Next
ListViewl.Focus ()
ListViewl.FullRowSelect = True
End Sub

Private Sub ComboBoxl SelectedIndexChanged (ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ComboBoxl.SelectedIndexChanged

Dim i As Integer
ListViewl.SelectedItems.Clear ()
TextBoxl.Focus ()
Try
If Me.ComboBoxl.Text = “” Then
TextBox2.Text =
Else
For i = 0 To ListViewl.Items.Count - 1

If ComboBoxl.Text =
ListViewl.Items (i) .SubItems (0).Text Then

ComboBox2.Text =
ListViewl.Items (i) .SubItems (1) .Text

TextBox2.Text =
ListViewl.Items (i) .SubItems (2) .Text

ListViewl.Items (i) .Selected =

True
Exit For
End If
Next
End If
Catch
End Try
Call IssueDetail ()
End Sub

Sub IssueDetail ()
Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“Select
IssueDate, IssueName, IssueTo, DueDate from Issue WHERE
BookID=’" & ComboBoxl.Text & “'%, objcon)

dr = com.ExecuteReader

Lab:.NET Programming

NOTES

Self-Instructional
Material

103

Lab:.NET Programming

104

NOTES

Self-Instructional
Material

While dr.Read
ComboBox5.Text = dr.Item(2)
TextBoxl.Text dr.Item(1)
TextBox3.Text = dr.Item(0)
TextBox7.Text dr.Item(3)

End While

dr.Close ()

objcon.Close ()

Catch ex As Exception

End Try
End Sub

Private Sub Button6 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button6.Click

Try
Dim i As Integer

For 1 = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True
Then

TextBoxl.Text = ListViewl.Items (i +
1) .SubItems (0) .Text

Exit For
End If
Next
ListViewl.Focus ()
ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub

Private Sub Button5 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Buttonb5.Click

Try
Dim i As Integer

For 1 = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True
Then

TextBoxl.Text = ListViewl.Items (i +

1) .SubItems (0) .Text Lab: NET Programming
Exit For
End If
Next
. . NOTES
ListViewl.Focus ()
ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub
End Class

RETURN BOOK (=0 ==
BOOKS DETAIL
BOOK ID -~ DESCRIPTION
GROUP ID B
BOOK NAME

ISSUE DATE -

ISSUE DETAIL
ISSUE TO - DUE DATE

MNAME RETURN DATE 11/26/2020 B~

2. Students Marksheet Processing

Public conDB As New OleDb.OleDbConnection
Public Sub connectDB ()
If conDB.State = ConnectionState.Closed Then

conDB.ConnectionString =
“Provider=Microsoft.ACE.OLEDB.12.0; Data Source=" &
Application.StartupPath & “\stuDB.accdb”

conDB.Open ()
End If
End Sub

Function getNewID (tblName As String, fldName As String)
As String

Dim strVval, sgl As String

Dim cmd As OleDb.OleDbCommand

connectDB ()

sgl = “select max (" & fldName & “) from “ & tblName
cmd = New OleDb.OleDbCommand (sgl, conDB)

strval = Convert.ToString (cmd.ExecuteScalar())
If strval = “” Then

Self-Instructional
Material 105

Lab:.NET Programming

106

NOTES

Self-Instructional
Material

strval = “1”
Else

strVal = Convert.ToString (CInt (strval) + 1)
End If
Return strval

End Function

a5 Student Details 8 Marks — -] ==
Student 1D 2 Class | vl
Student Mame | | Gender 3 Male {3 Femals
Father Mame | I Mother Mame | |
Phone | | Email | |
| Subject | Marks Scored Save
£
Search
Update
Delete
Primik
Button Click

Dim strSQL As String

Dim gndr As String

Dim i As Integer

If rdbFemale.Checked = True Then
gndr = “Female”

Else
gndr = “Male”

End If

strSQL = Y“insert into studentmaster wvalues (%
txtStuID.Text & “,’” & cboClass.Text & “','”
txtStuName.Text & “',’” & txtFName.Text & “',’”
txtMName.Text & “',’” & gndr & “',’” & txtPhone.Text
WA e txtEmail.Text & “V)”

cmd = New OleDb.OleDbCommand (strSQL, conDB)

22 22 2 2

cmd . ExecuteNonQuery ()
For i = 0 To dgvMarks.RowCount - 2

strSQL = “insert into studentmarks wvalues(“ &
txtStulD.Text & “,’” & dgvMarks.Item(0, i) .Value & “',” &
dgvMarks.Item(l, i) .Value & “)”

cmd = New OleDb.OleDbCommand (strSQL, conDB)
cmd.ExecuteNonQuery ()
Next

Search Button:

Dim sid, cnt As Integer
Dim drl As OleDb.OleDbDataReader
Dim cmdl As New OleDb.OleDbCommand

sid = CInt (InputBox (“Enter the StudentID to
search”))

cmdl = New OleDbPress Ctrl+V to copy the following
code

Dim sid, cnt As Integer
Dim drl As OleDb.OleDbDataReader
Dim cmdl As New OleDb.OleDbCommand

sid = CInt (InputBox (“Enter the StudentID to
search”))

cmdl = New OleDb.OleDbCommand (“select * from
studentmaster where stuid=" & sid, conDB)

drl = cmdl.ExecuteReader ()
If drl.Read() Then
txtStulID.Text = drl.Item(0)
cboClass.Text = drl.Item(1l)
txtStuName.Text = drl.Item(2)
txtFName.Text = drl.Item(3)
txtMName.Text = drl.Item(4)
If drl.Item(5) = “Female” Then
rdbFemale.Checked = True
Else
rdbMale.Checked = True
End If
txtPhone.Text = drl.Item(6)
txtEmail.Text drl.Item(7)
drl.Close()

cmdl = New OleDb.OleDbCommand (“select subject,
marks from studentmarks where stuid=" & sid, conDB)

drl = cmdl.ExecuteReader ()

dgvMarks.Rows.Clear ()

cnt = 0

While drl.Read()
dgvMarks.Rows.Add ()

dgvMarks.Item (0, cnt).Value =
Convert.ToString(drl.Item(0))

dgvMarks.Item(1l, cnt).Value =

Lab:.NET Programming

NOTES

Self-Instructional
Material

107

Lab:.NET Programming

108

NOTES

Self-Instructional
Material

Convert.ToString (drl.Item(1l))
cnt = cnt + 1

End While
Else

MsgBox (“"No student with this ID”)
End If

.0leDbCommand (“select * from studentmaster where stuid="
& sid, conDB)

drl = cmdl.ExecuteReader ()

If drl.Read() Then
txtStuID.Text drl.Item(O0)
cboClass.Text = drl.Item (1)

(
)

txtStuName.Text = drl.Item(2)
txtFName.Text = drl.Item(3
txtMName.Text = drl.Item(4)
If drl.Item(5) = “Female” Then
rdbFemale.Checked = True
Else
rdbMale.Checked = True
End If
txtPhone.Text = drl.Item(6)
txtEmail.Text drl.Item(7)
drl.Close()

cmdl = New OleDb.OleDbCommand (“select subject,
marks from studentmarks where stuid=" & sid, conDB)

drl = cmdl.ExecuteReader ()

dgvMarks.Rows.Clear ()

cnt = 0

While drl.Read()
dgvMarks.Rows.Add ()

dgvMarks.Item (0, cnt).Value
Convert.ToString (drl.Item(0))

dgvMarks.Item(l, cnt).Value =
Convert.ToString(drl.Item(1))

cnt = cnt + 1

End While
Else

MsgBox (“"No student with this ID”)
End If

StudentResult =
Enter the Studert|D to search
Cancel
[
Button Update:

Dim strSQL As String
Dim gndr As String
Dim i As Integer

If rdbFemale.Checked = True Then

gndr = “Female”
Else
gndr = “Male”
End If
StrSQL = “update studentmaster set stuClass=’'" &
cboClass.Text & “', StuName=’" & txtStuName.Text & “?,
StuFname=""

& txtFName.Text & “',StuMName='" &
txtMName.Text & “',StuGender='" & gndr & “',StuPhone="" &
txtPhone.Text

& “V,StuEmail=’'" & txtEmail.Text & “ ' where
StulID=" & CInt (txtStulID.Text)

cmd = New OleDb.OleDbCommand (strSQL, conDB)
cmd.ExecuteNonQuery ()

‘' delete all records from marks table to add the
new marks and subjects

strSQL = “delete * from studentmarks where StulD="
& CInt (txtStulID.Text)

cmd = New OleDb.OleDbCommand (strSQL, conDB)
cmd.ExecuteNonQuery ()

‘' Insert the new subjects and marks for the student
For i = 0 To dgvMarks.RowCount - 2

strSQL = “insert into studentmarks values (“ &
txtStuID.Text & “,’” & dgvMarks.Item (0, i).Value & “',” &
dgvMarks.Item(l, i).Value & “)”

cmd = New OleDb.OleDbCommand (strSQL, conDB)
cmd .ExecuteNonQuery ()

Next

Lab:.NET Programming

NOTES

Self-Instructional
Material

109

Lab:.NET Programming

NOTES

110

Button Delete:

Dim strSQL As String
‘'delete the record of student from master table

strSQL = “delete * from studentmaster where StulD="

& CInt (txtStulD.Text)
cmd = New OleDb.OleDbCommand (strSQL, conDB)

cmd.ExecuteNonQuery ()
‘ delete all records from marks table
strSQL = “delete * from studentmarks where StulD="

& CInt (txtStulD.Text)
cmd = New OleDb.OleDbCommand (strSQL, conDB)

cmd.ExecuteNonQuery ()

Print Button:

Dim frm As New Form2 ' creates an object of form containing

the reportviewer
frm.Show ()’ displays the report

Report Viewer:

Private Sub Form2 Load(sender As Object, e As EventArgs)

Handles MyBase.Load
Dim dtl, dt2 As New DataTable

Dim sid As Integer

connectDB ()
sid

CInt (frmStuDetails.Controls (“txtStuID”) .Text)
Dim cmdl As New OleDb.OleDbCommand (“"SELECT * from
StudentMarks where stuid=" & sid, conDB)

cmdl .CommandTimeout = 4096
Dim tal As New OleDb.OleDbDataAdapter (cmdl)

tal.Fill (dtl)
Dim cmd2 As New OleDb.OleDbCommand (“"SELECT * from

StudentMaster where stuid=" & sid, conDB)

cmd? . CommandTimeout 4096
Dim ta?2 As New OleDb.OleDbDataAdapter (cmd2)

Self-Instructional
Material

ta2.Fill (dt2) Lab: NET Programming
With Me.ReportViewerl.LocalReport
.DataSources.Clear ()

.DataSources.Add (New
Microsoft.Reporting.WinForms.ReportDataSource (“DataSetl”, NOTES
dtl))

.DataSources.Add (New
Microsoft.Reporting.WinForms.ReportDataSource (“DataSet2”,

dt2))
End With
Me.ReportViewerl.RefreshReport ()
End Sub
Final Score Card

Class [StuClass] Student 1D :[StulD]
Student Name | [StulMame] Father/Mother [StuFMName] [StulMMame]
Phone No [StuPhone] Email ID [StuEmail]

Subject Name Marks Scored

[Subject] [Marks]

«ExXpr:

3. Telephone Directory Maintenance

Imports System.IO

Imports System.IO.Directory
Imports System.IO.DirectoryInfo
Imports System.IO.Path
Imports System.Environment
Imports System.IO.FileStream
Imports System.IO.File
Imports System.IO.FileInfo
Imports System.Data.SglClient
Imports System.Data

Imports System.Data.OleDb

Public Class frmPonBuk

Dim strPath As String
Dim dsContact As New DataSet

Self-Instructional
Material 111

Lab:.NET Programming Dim dsContactNam As New DataSet

Dim daContact As New OleDbDataAdapter
Dim daContactNam As New OleDbDataAdapter
Dim sglCommand As New OleDbCommand
NOTES . . .
Dim strAction As String

Dim strSQL As String

Dim dt As New DataTable

Dim dtContact As New DataTable

Dim dtSearch As New DataTable

Dim daSearch As New OleDbDataAdapter
Dim dsSearch As New DataSet

Dim drDSRow As DataRow

Dim drNewRow As DataRow

Dim cnPhoneBook As New OleDbConnection

Private Sub frmPonBuk KeyDown (ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyEventArgs) Handles
Me .KeyDown

‘code for short cut key, note this will work if
you

‘set the form’s keypreview property to true

Select Case e.KeyCode
Case Keys.F8
If Me.cmdAdd.Enabled = True Then
Me.cmdAdd Click(sender, e)
End If
Case Keys.F9
If Me.cmdEdit.Enabled = True Then
Me.cmdEdit Click (sender, e)
End If
Case Keys.F10
If Me.cmdDelete.Enabled = True Then
Me.cmdDelete Click(sender, e)
End If
Case Keys.F11l
If Me.cmdUpdate.Enabled = True Then
Me.cmdUpdate Click(sender, e)
End If
Case Keys.F12
If Me.cmdCancel.Enabled = True Then

Self-Instructional
112 Material

Me.cmdCancel Click(sender, e)
End If
Case Keys.Enter
SendKeys.Send (M {TAB}")

End Select
End Sub

Private Sub frmPonBuk Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load

‘Dim strPath As String

‘vou can use this method in order to get your
database (Access) path

‘strPath = System.Environment.CurrentDirectory &
“\Data\PhoneBook.accdb”

‘cnPhoneBook.ConnectionString =
Provider=Microsoft.ACE.OLEDB.12.0;Data Source=" &
specialName & “;Persist Security Info=False;”

AN

AN

cnPhoneBook.ConnectionString =
Provider=Microsoft.ACE.OLEDB.12.0;Data Source=../Data/
PhoneBook.accdb; Persist Security Info=False;”

strSQL = Y SELECT [LastName]+’, ‘+[FirstName]+’
‘+ [MiddleName] AS Name, TblContact.* FROM TblContact ORDER
BY [LastName]+’, ‘+[FirstName]+’ ‘+[MiddleName];”

daContact.SelectCommand = New OleDbCommand (strSQL,
cnPhoneBook)

daContact.Fill (dsContact, “TblContact”)
Me.dtContact = dsContact.Tables (“"TblContact”)
‘binding controls to dataset

Me.txtLstNam.DataBindings.Add (“Text”, dsContact,
“TblContact.LastName”)

Me.txtFstNam.DataBindings.Add (“Text”, dsContact,
“TblContact.FirstName”)

Me.txtMidNam.DataBindings.Add (“Text”, dsContact,
“TblContact.MiddleName”)

Me.txtHomAdr.DataBindings.Add (“Text”, dsContact,
“TblContact.HomeAdr”)

Me.txtBusAdr.DataBindings.Add (“Text”, dsContact,
“TblContact.BusAdr”)

Me.txtTelNo.DataBindings.Add (“Text”, dsContact,

Lab:.NET Programming

NOTES

Self-Instructional
Material

113

Lab:.NET Programming

114

NOTES

Self-Instructional
Material

“TblContact.TelNo”)
Me. txtMobNo.DataBindings.Add (“Text”, dsContact,
“TblContact .MobNo”)
Me.txtEml.DataBindings.Add (“"Text”, dsContact,
“TblContact.EMail”)

‘setting datagrid properties
Me.dtgContact.DataSource = dsContact
Me.dtgContact.DataMember = “TblContact”
HeaderText = “Name”

Visible

Me.dtgContact.Columns (0
Me.dtgContact.Columns (1

) .

) . False
Me.dtgContact.Columns (2) .Visible = False

) .

) .

Me.dtgContact.Columns (3) .Visible = False

Me.dtgContact.Columns (4) .Visible = False
Me.dtgContact.Columns (5) .HeaderText = “Home
Address”
Me.dtgContact.Columns (6) .HeaderText = “Bus.
Address”

Me.dtgContact.Columns (7) .HeaderText = “Telephone”
Me.dtgContact.Columns (8) .HeaderText = “Mobile”
Me.dtgContact.Columns (9) .HeaderText = “E-Mail”

‘Used SQL statement for Combo box to display the
name of contact person
strSQL = “ SELECT TblContact.ContactID,
[LastName]+’, ‘“+[FirstName]+’ ‘+[MiddleName] AS Name FROM
TblContact ORDER BY [LastNamel]+’, ‘+[FirstName]+’
‘+ [MiddleName];”
daContactNam.SelectCommand = New
OleDbCommand (strSQL, cnPhoneBook)
daContactNam.Fill (dsContactNam, “TblContact”)

‘datatable for combo box
Me.dt = dsContactNam.Tables (“TblContact”)

Me.cmbSearch.DataSource = dt

Me.cmbSearch.DisplayMember = “Name”
Me.cmbSearch.ValueMember = “ContactID”
Me.cmbSearch.SelectedIndex = -1
Me.txtRecPos.Text = ™“Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1
& N of : ™ & dsContact.Tables (“"TblContact”) .Rows.Count

‘'call procedure to lock the text field
lockField()

‘'call procedure to disabled update
UpdtOff ()
End Sub

Private Sub cmdFstRec Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdFstRec.Click

Me.BindingContext (dsContact,
“TblContact”) .Position = 0

Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1
& N of : ™ & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub

Private Sub cmdPrv Click (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdPrv.Click

Me.BindingContext (dsContact,
“TblContact”) .Position = Me.BindingContext (dsContact,
“TblContact”) .Position - 1

Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1
& N of : ™ & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub

Private Sub cmdNext Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdNext.Click

Me.BindingContext (dsContact,
“TblContact”) .Position = Me.BindingContext (dsContact,
“TblContact”) .Position + 1

Me.txtRecPos.Text = ™“Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1
& N of : ™ & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub

Private Sub cmdLst Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdLst.Click

Me.BindingContext (dsContact,
“TblContact”) .Position = Me.BindingContext (dsContact,
“TblContact”) .Count - 1

Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1
& N of : N & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub
Private Sub UnlockField()

Lab:.NET Programming

NOTES

Self-Instructional
Material

115

Lab:.NET Programming

False

Me.txtFstNam.ReadOnly
Me.txtLstNam.ReadOnly = False
Me.txtMidNam.ReadOnly = False
Me. txtHomAdr.ReadOnly
Me.txtBusAdr.ReadOnly = False
Me.txtTelNo.ReadOnly = False
Me.txtMobNo.ReadOnly = False
Me.txtEml.ReadOnly = False

NOTES

False

End Sub
Private Sub lockField()

Me.txtFstNam.ReadOnly True
Me.txtLstNam.ReadOnly
Me.txtMidNam.ReadOnly = True
Me.txtHomAdr.ReadOnly
Me.txtBusAdr.ReadOnly = True
Me.txtTelNo.ReadOnly = True
Me.txtMobNo.ReadOnly = True

Me.txtEml.ReadOnly = True

True

True

End Sub
Private Sub UpdtOff ()

Me.cmdAdd.Enabled = True
Me.cmdEdit.Enabled = True
Me.cmdDelete.Enabled = True
Me.cmdUpdate.Enabled = False
Me.cmdCancel .Enabled = False

Me.cmdAdd.BackColor = Color.Tan
Me.cmdEdit.BackColor = Color.Tan
Me.cmdDelete.BackColor = Color.Tan
Me.cmdUpdate.BackColor Color.Black
Me.cmdCancel .BackColor = Color.Black
End Sub
Private Sub UpdtOn ()

Me.cmdAdd.Enabled = False

Self-Instructional
116 Material

Me.cmdEdit.Enabled = False
Me.cmdDelete.Enabled
Me.cmdUpdate.Enabled = True

False

Me.cmdCancel .Enabled = True

Me.cmdAdd.BackColor = Color.Black
Me.cmdEdit.BackColor = Color.Black
Me.cmdDelete.BackColor = Color.Black
Me.cmdUpdate.BackColor = Color.Tan

Me.cmdCancel.BackColor = Color.Tan

End Sub

Private Sub cmdAdd Click (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdAdd.Click

strAction = “ADD”
UpdtOn ()
UnlockField ()

Me.BindingContext (dsContact,
“TblContact”) .AddNew ()

Me.txtLstNam.Focus ()
End Sub

Private Sub cmdEdit Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdEdit.Click

strAction = “EDIT”
UpdtOn ()
UnlockField ()

End Sub

Private Sub cmdDelete Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdDelete.Click

Dim delCommand As New OleDbCommand
Dim intPos As Integer

Dim intContactID As Integer

Dim strUsrRsp As String

intPos = Me.BindingContext (dsContact,
“TblContact”) .Position

intContactID = dtContact.Rows (intPos) .Item(1)
strUsrRsp = MsgBox (“Do you want to delete this

Lab:.NET Programming

NOTES

Self-Instructional
Material 117

Lab:.NET Programming

118

NOTES

Self-Instructional
Material

record”, MsgBoxStyle.YesNo + MsgBoxStyle.Question +
MsgBoxStyle.ApplicationModal, “Phone Book”)

If strUsrRsp = MsgBoxResult.Yes Then
Try
cnPhoneBook.Open ()

strSQL = “Delete from TblContact where
(ContactID = ™ & intContactID & “)”

sglCommand = New OleDbCommand (strSQL,
cnPhoneBook)

sglCommand.ExecuteNonQuery ()

cnPhoneBook.Close ()
dsContact.Clear ()
daContact.Fill (dsContact, “TblContact”)

MsgBox ("Record has been deleted”,
MsgBoxStyle.OkOnly + MsgBoxStyle.Information +
MsgBoxStyle.ApplicationModal, “Phone Book”)

Catch ex As Exception
MsgBox (Err.Description)
End Try
Else

End If
dsContactNam.Clear ()
daContactNam.Fill (dsContactNam, “TblContact”)
cmbSearch.SelectedIndex = -1
End Sub

Private Sub cmdUpdate Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
cmdUpdate.Click

Dim SubPos As Integer
Dim intPos As Integer

Dim intContactID As Integer

Try
Select Case strAction
Case “ADD”

Me.BindingContext (dsContact,
“TblContact”) .EndCurrentEdit ()

cnPhoneBook.Open ()

strSQL = “INSERT INTO TblContact
(LastName, FirstName, MiddleName, HomeAdr, BusAdr, TelNo,
MobNo, EMail) “

strSQL = strSQL & “ VALUES (‘%
Me.txtLstNam.Text & “',’” & Me.txtFstNam.Text & “',’”
Me.txtMidNam.Text & “',’” & Me.txtHomAdr.Text & “',’”
Me.txtBusAdr.Text & “',’” & Me.txtTelNo.Text & “',’”
Me.txtMobNo.Text & “',’” & Me.txtEml.Text & “V');”

sglCommand = New OleDbCommand (strSQL,

&
&
&
&

cnPhoneBook)
sglCommand.ExecuteNonQuery ()
cnPhoneBook.Close ()
dsContact.Clear ()
daContact.Fill (dsContact,
“TblContact”)

Case “EDIT”

intPos = Me.BindingContext (dsContact,
“TblContact”) .Position

intContactID =
dtContact.Rows (intPos) .Item (1)

Me.BindingContext (dsContact,
“TblContact”) .EndCurrentEdit ()

cnPhoneBook.Open ()

strSQL = “UPDATE TblContact SET

LastName = 'V & Me.txtLstNam.Text & V', FirstName = “ &

Me.txtFstNam.Text & “', MiddleName = ‘% & Me.txtMidNam.Text
& V', HomeAdr = 'V & Me.txtHomAdr.Text & “', “

strSQL = strSQL & ™ BusAdr = ‘% &

Me.txtBusAdr.Text & V', TelNo = 'V & Me.txtTelNo.Text &

“Y, MobNo = 'V & Me.txtMobNo.Text & “', EMail = % &

Me.txtEml.Text & “' WHERE (((TblContact.ContactID)=" &

intContactID & “));”

sglCommand = New OleDbCommand (strSQL,
cnPhoneBook)

sglCommand.ExecuteNonQuery ()
cnPhoneBook.Close ()

SubPos = Me.BindingContext (dsContact,
“TblContact”) .Position

Lab:.NET Programming

NOTES

Self-Instructional
Material

119

Lab:.NET Programming

120

NOTES

Self-Instructional
Material

dsContact.Clear ()

daContact.Fill (dsContact,
“TblContact”)

Me.BindingContext (dsContact,
“TblContact”) .Position = SubPos

End Select
UpdtOff ()
lockField()
Catch ex As Exception
MsgBox (strSQL)
End Try
dsContactNam.Clear ()
daContactNam.Fill (dsContactNam, “TblContact”)

Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1
& N of : ™ & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub

Private Sub cmdCancel Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
cmdCancel.Click

Me.BindingContext (dsContact,
“TblContact”) .CancelCurrentEdit ()

UpdtOff ()
lockField ()

Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1
& N of : ™ & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub

Private Sub cmdSearch Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
cmdSearch.Click

Dim ContactIDSrh As Integer
Dim ColNum As Integer

Dim RowNum As Integer

Dim RecCount As Integer
ColNum = O

RowNum = 0

‘Check Combo box if it has a value

If Me.cmbSearch.SelectedValue <> 0 Then

RecCount = Me.BindingContext (dsContact,
“TblContact”) .Count

ContactIDSrh = Me.cmbSearch.SelectedValue
‘move at first record

Me.BindingContext (dsContact,
“TblContact”) .Position = 0

‘loop until we find the desired Contact Person

Do While ContactIDSrh <>
dtContact.Rows (RowNum) . Item (1)

If RowNum <> RecCount Then
‘move record position

Me.BindingContext (dsContact,
“TblContact”) .Position = RowNum + 1

RowNum = RowNum + 1
Else
‘exit loop if record found
Exit Do
End If
Loop
Else

MsgBox (“Please Select the Student name to be
searched”)

End If
End Sub

Private Sub txtLstNam LostFocus (ByVal sender As
Object, ByVal e As System.EventArgs) Handles
txtLstNam.LostFocus

‘this will trigger if the txtLstNam has lost the
focus and during adding new or editting existing record

If strAction = “ADD” Or strAction = “EDIT” Then
‘transform the string into proper case

Me.txtLstNam.Text = StrConv (Me.txtLstNam.Text,
VbStrConv.ProperCase)

End If
End Sub

Private Sub txtFstNam LostFocus (ByVal sender As
Object, ByVal e As System.EventArgs) Handles
txtFstNam.LostFocus

If strAction = “ADD” Or strAction = “EDIT” Then
Me.txtFstNam.Text = StrConv (Me.txtFstNam.Text,

Lab:.NET Programming

NOTES

Self-Instructional
Material

121

Lab:.NET Programming

122

NOTES

Self-Instructional
Material

VbStrConv.ProperCase)
End If
End Sub

Private Sub txtMidNam LostFocus (ByVal sender As
Object, ByVal e As System.EventArgs) Handles
txtMidNam.LostFocus

If strAction = “ADD” Or strAction = “EDIT” Then

Me.txtMidNam.Text =
StrConv (Me. txtMidNam.Text, VbStrConv.ProperCase)

End If
End Sub

Private Sub txtHomAdr LostFocus (ByVal sender As
Object, ByVal e As System.EventArgs) Handles
txtHomAdr.LostFocus

If strAction = “ADD” Or strAction = “EDIT” Then

Me.txtHomAdr.Text =
StrConv (Me. txtHomAdr.Text, VbStrConv.ProperCase)

End If
End Sub

Private Sub txtBusAdr LostFocus (ByVal sender As
Object, ByVal e As System.EventArgs) Handles
txtBusAdr.LostFocus

If strAction = “ADD” Or strAction = “EDIT” Then

Me.txtBusAdr.Text =
StrConv (Me. txtBusAdr.Text, VbStrConv.ProperCase)

End If
End Sub

Private Sub txtTelNo LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtTelNo.LostFocus

If strAction = “ADD” Or strAction = “EDIT” Then
If Len (Me.txtTelNo.Text) = 7 Then
Me.txtTelNo.Text = Mid(Me.txtTelNo.Text,
1, 3) & “="” & Mid(Me.txtTelNo.Text, 4, 2) & “-" &
Mid (Me.txtTelNo.Text, 6, 2)
End If
End If
End Sub

Private Sub dtgContact CellClick (ByVal sender As

Object, ByVal e As Lab: NET Programming
System.Windows.Forms.DataGridViewCellEventArgs) Handles
dtgContact.CellClick

Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1 NOTES
& N of : ™ & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub
End Class
TR
a=' Phone Book ||| | S

Telephone #

First Mame Mobile #

Mid. Name E-Mail

Home Adress Update

Business Address Cancel

4. Gas Booking and Delivering

Main:

Private Sub Commandl Click() Handles Commandl.Click

‘#Const Compile Commandl Click = True

#If Compile Commandl Click Or CompileAll Forml Then
Form?2.Load ()
Form?2.Show ()
Close ()

#End If ' Compile Commandl Click

End Sub

Private Sub Command2 Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Command2.Click

‘#Const Compile Command2 Click = True

#If Compile Command2 Click Or CompileAll Forml Then

Self-Instructional
Material 123

Lab:.NET Programming

124

NOTES

Self-Instructional
Material

Forml5.Load()
Forml5.Show ()
Close ()
#End If ' Compile Command2 Click
End Sub

Private Sub Command3 Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Command3.Click

‘#Const Compile Command3 Click = True
#If Compile Command3 Click Or CompileAll Forml Then
‘b = InputBox (“Enter Record No”, “Find to Modify”)

Formé6.Load ()
Form6.Show ()
Close ()

#End If " Compile Command3 Click

End Sub

Private Sub Command4 Click () Handles Command4.Click
‘#Const Compile Command4 Click = True
#If Compile Command4 Click Or CompileAll Forml Then
Forml6.Load()
Forml6.Show ()
Close ()
#End If ' Compile Command4 Click
End Sub

Private Sub Command5 Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Command5.Click

‘#Const Compile Command5 Click = True
#If Compile Command5 Click Or CompileAll Forml Then
Form5.Load ()
Form5.Show ()
Close ()
#End If ' Compile Command5 Click
End Sub

Private Sub Command6 Click (ByVal sender As Object,
ByVal e As System.EventArgs) Handles Command6.Click

‘#Const Compile Command6 Click = True
#If Compile Commandé Click Or CompileAll Forml Then
Form7.Load ()

Form?7.Show ()
Close()
#End If " Compile Command6 Click
End Sub

Private Sub Command7 Click () Handles Command7.Click
‘#Const Compile Command7 Click = True
#If Compile Command7 Click Or CompileAll Forml Then
Application.Exit ()
#End If ' Compile Command? Click
End Sub

Private Sub Command8 Click () Handles Command8.Click
‘#Const Compile Command8 Click = True
#If Compile Command8 Click Or CompileAll Forml Then
Form8.Load ()
Form8.Show ()
Close()
#End If ' Compile Command8 Click
End Sub

Private Sub Command9 Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Command9.Click

‘#Const Compile Command9 Click = True
#If Compile Command9 Click Or CompileAll Forml Then
Forml4.Load()
Forml4.Show ()
Close()
#End If ' Compile Command9 Click
End Sub

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

‘#Const Compile Form Load = True
#If Compile Form Load Or CompileAll Forml Then
Timerl.Interval = 50
#End If ' Compile Form Load
End Sub

Private Sub Timerl Tick(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Timerl.Tick

Lab:.NET Programming

NOTES

Self-Instructional
Material

125

Lab: NET Programming ‘#Const Compile Timerl Timer = True
#If Compile Timerl Timer Or CompileAll Forml Then
11.Top -= 60
If 11.Top<=100 Then
11.Top = 13000
End If

NOTES

L2.Top —-= 60

If L2.Top<=100 Then
L2.Top = 13000

End If

L3.Top -= 60

If L3.Top<=100 Then
L3.Top = 13000

End If

L4.Top —-= 60

If L4.Top<=100 Then
L4.Top = 13000

End If

L5.Top -= 60

If L5.Top<=100 Then
L5.Top = 13000

End If

L6.Top —-= 60

If L6.Top<=60 Then
L6.Top = 13000

End If

17.Top -= 60

If 17.Top<=60 Then
17.Top = 13000

End If

18.Top -= 60
If 18.Top<=60 Then
18.Top = 13000

Self-Instructional
126 Material

End If

19.Top -= 60
If 19.Top<=60 Then
19.Top = 13000
End If
#End If ‘ Compile Timerl Timer
End Sub

Private Sub Timer2 Tick (ByVal sender As Object, ByVal
e As System.EventArgs) Handles Timer2.Tick

‘#Const Compile Timer2 Timer = True
#If Compile Timer2 Timer Or CompileAll Forml Then

Labeld4d.ForeColor
ColorTranslator.FromOle (QBColor (Rnd () *15))

Label5.ForeColor =
ColorTranslator.FromOle (QBColor (Rnd () *15))

#End If ‘ Compile Timer2 Timer
End Sub

End Class

e Gas Ape ey Marssgemenl S ysEem

e Mg ey Managene ni 5 s b

Lab:.NET Programming

NOTES

Self-Instructional
Material

127

Lab:.NET Programming File Menu:

B Gas Apency Management ... | IE|FE|

NOTES

Booking Menu:

W Gas Aperncy Managermrend ... |

Add Menu:

e Gas Aperpcy Manspgerree il

Shoecks Lpeclade

5. Electricity Bill Management Main form:

Private Sub Cmdexit Click()
End
End Sub

Private Sub Cmdl Click()
txtuser.Text = UCase (txtuser)
txtpass.Text = UCase (txtpass) ‘& LCase (txtpass)

If txtuser.Text = “ELECTRICITY” And txtpass = “KULKARNI”
Then

Self-Instructional
128 Material

Main.Show

Me.Hide

Else

MsgBox (“Please try again”)
txtuser.SetFocus

End If

End Sub

Private Sub Cmd2 Click()
End
End Sub

Customer Form:

Private Sub Cmdadd Click()
Adodcl.Refresh
Adodcl.Recordset.AddNew
End Sub

Private Sub cmdclear Click()
Adodcl .Refresh

W74

cmbgn.Text =
txtnm.Text = V7
txtad.Text = V7
cmbec.Text = V7
cmbct.Text = V7

\\w74

Txtpn.Text =
cmbpro.Text =V
Txtdob.Text = "

End Sub

Private Sub cmdsv_Click()

If cmbgn.Text = V" Or txtnm.Text = % Or cmbec.Text = V"
Or cmbpro.Text = V" Or Txtdob.Text = “” Then

MsgBox “Please Fill Requireds Fields Then Save Your Record”
Else
Adodcl.Recordset.Fields (0)
Adodcl.Recordset.Fields (1)
Adodcl.Recordset.Fields (2)
(3)
(4)

= cmbgn.Text
= txtnm.Text
txtad.Text

Adodcl.Recordset.Fields = cmbec.Text

Adodcl.Recordset.Fields

= cmbct.Text

Lab:.NET Programming

NOTES

Self-Instructional
Material

129

Lab:.NET Programming Adodcl.Recordset.Fields (5) = Txtpn.Text
Adodcl.Recordset.Fields (6)
Adodcl.Recordset.Fields (7)
Adodcl.Recordset.Fields (8)
Adodcl.Recordset.Save
Adodcl.Refresh

MsgBox “Record Save Successfully”

cmbpro.Text
Textl.Text ‘lbldt.Caption
= Txtdob.Text

NOTES

cmbgn.Text w
txtnm.Text = V7
txtad.Text =V
cmbec.Text = V"
cmbct.Text =
Txtpn.Text = %7

W74

cmbpro.Text =
Txtdob.Text =
End If

End Sub

Private Sub Command5 Click()
Unload Me
End Sub

Private Sub Form Load()
‘Adodcl.Refresh
cmbgn.Text w

w74

txtnm.Text =
txtad.Text = V7
cmbec.Text = %"
cmbct.Text = %"
Txtdob.Text = “”

AW/

Txtpn.Text =
A\W/4

cmbpro.Text =
Textl.Text = Date

‘FormatDateTime ((DateTime.Day) & (“-") & (DateTime.Month)
& (“=") & (DateTime.Year))

\d & \\/// & m & \\/// & y
‘1bldt.Caption = FormatDateTime (DateTime.Date, vbLongDate)

Self-Instructional
130 Material

‘vbGeneralDate Lab:.NET Programming
‘DateTime.Date
End Sub

=| Customer Entry Fosm

Personal Entry i | - NOTES

MriMrs | j Birth Date

Name

Address

Branch Office

Profession

Bill:

Private Sub Cmbnm2 LostFocus ()

‘On Error Resume Next

‘Adodcl.Refresh

‘While Not Adodcl.Recordset.EOF = True
‘If Adodcl.Recordset!Name = Cmbnm2.Text Then
‘txtadd.Text = Adodcl.Recordset!Add ‘ress
‘Txtex.Text = Adodcl.Recordset!Exchange
‘Txtpin.Text = Adodcl.Recordset!pincode
‘Else

Y

‘V'Exit Do

‘End If

‘Loop

Adodcl.Refresh

Adodc?2.Refresh

Do While Adodcl.Recordset .EOF = False

If Adodcl.Recordset!Name = Cmbnm2.Text Then
Txtadd.Text = Adodcl.Recordset!Add
Txtex.Text = Adodcl.Recordset!Exchange
Txtpin.Text = Adodcl.Recordset!pincode
Textl.Text = Adodcl.Recordset!plan

Exit Do

End If

‘End If

Self-Instructional
Material 131

Lab:.NET Programming

132

NOTES

Self-Instructional
Material

Adodcl.Recordset.MoveNext
‘Adodc?2.Recordset .MoveNext
Loop

‘Do While Adodc2.Recordset.EOF = False

‘If Adodc2.Recordset!planname = Textl.Text Then
‘Txtmcc.Text = Adodc2.Recordset!MonthlyCharges
‘txtfc.Text = Adodc2.Recordset!free calls

‘Exit Do

‘End If

‘Adodc2.Recordset .MoveNext

‘Loop

‘Adodc?2.Recordset .MoveNext

Txtn2.Text = Cmbnm2.Text
Txtn3.Text = Txtadd.Text
Txtnd.Text = txtcust.Text
Txtn5.Text = Txttel.Text
Txtn6.Text = Txtex.Text
Txtn7.Text = Txtpin.Text
Txtdb.Text = Txtfmc.Text
Txtdbl.Text = txtfc.Text
‘Wend

End Sub

Private Sub Cmdadd Click()
Adodc3.Refresh
Adodc3.Recordset.MoveNext
Adodc3.Recordset .AddNew
Cmdadd.Visible = False
cmdsv.Visible = True

End Sub

Private Sub cmdcalc Click()

‘Txtgmec.Text = Val (Txtcmr.Text) - Val (Txtomr.Text)
‘Txtncc.Text = Val (Txtgmc.Text) - Val (txtfc.Text)
‘If Txtncc.Text <= 0 Then

‘\Txtnce.Text = “0” Lab: .NET Programming
‘Txtmcc.Text = Txtncc.Text
‘Else

‘Txtmcc.Text = Txtncc.Text
‘End If

End Sub

NOTES

Private Sub cmdsv_Click()

‘Txtn2.Text = Cmbnm2.Text
‘Txtn3.Text = txtadd.Text
‘Txtn4d.Text = txtcust.Text
‘Txtn5.Text = txttel.Text
‘Txtn6.Text = Txtex.Text

‘Txtn7.Text = txtpin.Text
‘Txtdb.Text = Txtfmc.Text
‘Txtdbl.Text = txtfc.Text

= Txtomr.Text

Adodc3.Recordset.Fields (0) = Txtn2.Text

Adodc3.Recordset.Fields (1) = Txtnd.Text

Adodc3.Recordset.Fields (2) = Txtn5.Text

Adodc3.Recordset.Fields (3) = Txtn6.Text

Adodc3.Recordset.Fields (4) = Txtn7.Text

Adodc3.Recordset.Fields (5) = Txtn3.Text
)

Adodc3.Recordset.Fields (6
Adodc3.Recordset.Fields (7) = Txtcmr.Text
Adodc3.Recordset.Fields (8) = Txtgmc.Text
Adodc3.Recordset.Fields (9) = txtfc.Text

Adodc3.Recordset.Fields (10) = Txtncc.Text
Adodc3.Recordset.Fields (11) = Txtfmc.Text
Adodc3.Recordset.Fields (12)
‘Adodc3.Recordset.Fields (13) = Txtdb.Text
Adodc3.Recordset.Fields (14) = Txttx.Text

‘Adodc3.Recordset.Fields (15) = Txtdbl.Text
Adodc3.Recordset.Fields (18) = Txtapb.Text
Adodc3.Recordset.Fields (19) = Txtsfdp.Text
Adodc3.Recordset.Fields (20) Txtapdd.Text

Txtmcc.Text

‘Adodcl.Recordset.Save
‘Adodc2.Recordset.Save
Adodc3.Recordset. Save
MsgBox “BILL SAVE Successfully”

Self-Instructional
Material 133

Lab:.NET Programming

134

NOTES

Self-Instructional
Material

Adodc3.Refresh

While Adodc3.Recordset.EQOF = False
Combol .AddItem (Adodc3.Recordset!Name)
Adodc3.Recordset.MoveNext

Wend

“Wal (Txtgmc.Text) = Val (Txtcmr.Text) - Val (Txtomr.Text)
‘End
End Sub

Private Sub cmdx Click()
Unload Me
End Sub

Private Sub Combol LostFocus ()
‘Text2.Text = Combol.Text
‘Adodc3.Refresh

‘On Error Resume Next

‘If DataEnvironmentl.conl.State = 1 Then
DataEnvironmentl.conl.Open

‘DataEnvironmentl.conl.Close
‘DataEnvironmentl.conl.Open
‘DataEnvironmentl.Bill details (Text2.Text)
‘' DataReport3.Show

‘BillReport.Show

End Sub

Private Sub Commandl Click()
Text2.Text = Combol.Text
Adodc3.Refresh

On Error Resume Next

If DataEnvironmentl.conl.State = 1 Then
DataEnvironmentl.conl.Open

DataEnvironmentl.conl.Close
DataEnvironmentl.conl.Open
DataEnvironmentl.Bill details (Text2.Text)
‘DataReport3.Show

BillReport.Show

End Sub

Private Sub Form Load()

While Adodcl.Recordset.EQOF = False
Cmbnm?2 .AddItem (Adodcl.Recordset !Name)
Adodcl.Recordset.MoveNext

Wend

txtfc.Text =V

Txtfmc.Text = V"

‘Label5.Caption = DateTime.Month (Date) & “/” &
DateTime.Year (Date)

Adodc3.Refresh

While Adodc3.Recordset.EQF = False
Combol .AddItem (Adodc3.Recordset !Name)
Adodc3.Recordset.MoveNext

Wend

cmdsv.Visible = False
‘“Wal (Txtgmc.Text) = Val (Txtcmr.Text) - Val (Txtomr.Text)
End Sub

Private Sub Framel DragDrop (Source As Control, X As Single,
Y As Single)

‘BillReport.Show
End Sub

Private Sub Label5 Click()
End Sub

Private Sub Txtgmc GotFocus ()

Txtgmc.Text = Val (Txtcmr.Text) - Val (Txtomr.Text)
Txtncc.Text = Val (Txtgmc.Text) - Val (txtfc.Text)

If Txtncc.Text <= 0 Then

Txtncc.Text = “0”

Txtmcc.Text = Txtncc.Text

Else

Txtmcc.Text = Txtncc.Text

End If

Txttx.Text = (Val (Txtfmc.Text) + Val (Txtmcc.Text)) * 0.1023
Txttx.Text = Round (Txttx.Text)

Txtapb.Text = Val (Txttx.Text) + Val(Txtfmc.Text) +

Lab:.NET Programming

NOTES

Self-Instructional
Material

135

Lab:.NET Programming Val (Txtmcc.Text)

If Val (Txtapb.Text) > 0 Then

Txtsfdp.Text = “10”

Txtapdd.Text = Val (Txtapb.Text) + Val (Txtsfdp.Text)
Else

NOTES

MsgBox “Wrong Bill Amount”
End If
End Sub

Private Sub Txtomr GotFocus ()

Do While Adodc2.Recordset.EOF = False

If Adodc2.Recordset!planname = Textl.Text Then
‘Txtmcc.Text = Adodc2.Recordset!MonthlyCharges
txtfc.Text = Adodc2.Recordset!free calls

Exit Do

End If

Adodc2.Recordset.MoveNext

Loop

End Sub

CUST NOL

TEL NG

Fixed Monthly charges
Matarad Unit Charges
Dabim

Taxes

OuiStanding Surcharge

Crodit Biscownt

AMOUNT PAYABLE BY

Surcharge for delayad
AnvOunt PayAble Due DATE

6. Bank Transaction System

Bank Details:

Public Class bankd

Private Sub Label2 Click(sender As Object, e As
EventArgs)

End Sub

Self-Instructional
136 Material

Private Sub PictureBoxl Click(sender As Object, e As
EventArgs)

End Sub

Private Sub cls Click(sender As Object, e As EventArgs)
Handles cls.Click

Me.Close ()
End Sub

Private Sub Buttonl Click(sender As Object,

e As
EventArgs) Handles Buttonl.Click

home.managername.Text = TextBoxl.Text

home.brnamee.Text = TextBox2.Text

home.Label6.Text = TextBox3.Text

MsgBox (“Bank Details Updated”)
End Sub

Private Sub RectangleShapel Click(sender As Object,
e As EventArgs) Handles RectangleShapel.Click

End Sub

Private Sub PictureBoxl Click 1(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub
End Class

Manager Name :

Branch Name :

Branch Code :

Manager Name Preety Knatri
Update Bank
— Branch Name Dy
Employe

Branch Code o1l
Emp_Id Emp_Name Phy

suyash 213|

Update Bank Details

Deposit:
Public Class Deposit

Private Sub cls Click(sender As Object, e As EventArgs)
Handles cls.Click

Me.Hide ()
End Sub

Lab:.NET Programming

NOTES

Self-Instructional
Material 137

Lab:.NET Programming

NOTES

Self-Instructional
138 Material

Private Sub Deposit Load(sender As Object, e As
EventArgs) Handles MyBase.Load

‘TODO: This line of code loads data into the
‘BankaccountsDataSet.baccounts’ table. You can move, or
remove it, as needed.

Me .BaccountsTableAdapter.Fill
(Me.BankaccountsDataSet .baccounts)

dat.Text = Date.Now.ToString (“MM/dd/yyyy”)
Timerl.Start ()
End Sub

Private Sub Label3 Click(sender As Object, e As
EventArgs) Handles Label3.Click

End Sub

Private Sub dat Click(sender As Object, e As EventArgs)
Handles dat.Click

End Sub

Private Sub Buttonl Click(sender As Object, e As
EventArgs) Handles Buttonl.Click

Me.Close ()
End Sub

Private Sub Timerl Tick(sender As Object, e As
EventArgs) Handles Timerl.Tick

clock.Text = TimeOfDay
End Sub

Private Sub Button2Z Click(sender As Object, e As
EventArgs) Handles Button2.Click

Dim con As New OleDb.OleDbConnection

con.ConnectionString = Y“PROVIDER =
Microsoft.Ace.OLEDB.12.0; Data Source =F:\Sem.4\extra vs
code\bankmanagementsystem\bankmanagementsystem\proje
ct\BankManageMentSystem\BankManage

MentSystem\bankaccounts.accdb”

Dim SqglString As String = “update [baccounts]
set [Balance] = Balance+@TextBox2.Text where [Acc Id] =
@TextBox1.Text”

Using conn As New
OleDb.0OleDbConnection (con.ConnectionString)

Using cmd As New OleDb.OleDbCommand (SglString,
con)

cmd.CommandType = CommandType.Text

cmd.Parameters.AddWithValue (“column”,
TextBox2.Text)

cmd.Parameters.AddWithValue (“column”,
TextBox1l.Text)

con.Open ()

MsgBox (“Amount Deposited Successfully”)
cmd.ExecuteNonQuery ()
Me.DataGridViewl .Refresh ()
TextBox2.Text =
TextBox1l.Text = V7

End Using
End Using
End Sub

Private Sub HomeToolStripMenultem Click (sender As
Object, e As EventArgs) Handles HomeToolStripMenulItem.Click

home.Show ()
End Sub

Private Sub AccountsToolStripMenultem Click (sender As

Object, e As EventArgs) Handles
AccountsToolStripMenultem.Click
End Sub

Private Sub AddAccountToolStripMenultem Click (sender
As Object, e As EventArgs) Handles
AddAccountToolStripMenultem.Click

addaccount.Show ()
End Sub

Private Sub
UpdateAccountToolStripMenultem Click (sender As Object, e
As EventArgs) Handles UpdateAccountToolStripMenultem.Click

updateaccount.Show ()
End Sub

Private Sub
DeleteAccountToolStripMenultem Click (sender As Object, e

Lab:.NET Programming

NOTES

Self-Instructional
Material

139

Lab:.NET Programming

140

NOTES

Self-Instructional
Material

As EventArgs) Handles DeleteAccountToolStripMenultem.Click
deleteaccount.Show ()
End Sub

Private Sub DepositToolStripMenultem Click (sender As

Object, e As EventArgs) Handles
DepositToolStripMenultem.Click
Me.Show ()
End Sub

Private Sub WithdrawToolStripMenultem Click (sender As
Object, e As EventArgs) Handles
WithdrawToolStripMenulItem.Click

Withdraw.Show ()

End Sub
Private Sub
RegisterProductToolStripMenultem Click(sender As Object,
e As EventArgs) Handles

RegisterProductToolStripMenultem.Click
Register.Show ()
End Sub

Private Sub CreditsToolStripMenultem Click (sender As

Object, e As EventArgs) Handles
CreditsToolStripMenultem.Click
about.Show ()
End Sub

Private Sub HelpToolStripMenultem Click (sender As
Object, e As EventArgs) Handles HelpToolStripMenultem.Click

Help.Show ()
End Sub

Private Sub AboutToolStripMenultem Click(sender As

Object, e As EventArgs) Handles
AboutToolStripMenultem.Click

End Sub
End Class

Deposit.vb [Design] < RSy bankdetails.vb [Design]

Deposit Amount Accounts

Acc_id Acc_Name Balance

Enter Account Number

Enter Amount to deposit

Withdraw:

Public Class Withdraw
Private Sub AddAccountToolStripMenultem Click (sender

As Object, e As EventArgs) Handles
AddAccountToolStripMenultem.Click
End Sub

Private Sub cls Click(sender As Object, e As EventArgs)
Handles cls.Click

Me.Hide ()
End Sub

Private Sub Withdraw Load(sender As Object, e As
EventArgs) Handles MyBase.Load

‘TODO: This line of code loads data into the
‘BankaccountsDataSet.baccounts’ table. You can move, or
remove it, as needed.

Me.BaccountsTableAdapter.Fill (Me.RankaccountsDataSet .lbaccounts)
dat.Text = Date.Now.ToString (“MM/dd/yyyy”)
Timerl.Start ()

End Sub

Private Sub dat Click(sender As Object, e As EventArgs)
Handles dat.Click

End Sub

Private Sub Timerl Tick(sender As Object, e As
EventArgs) Handles Timerl.Tick

clock.Text = TimeOfDay
End Sub

Private Sub Button2 Click(sender As Object, e As
EventArgs) Handles Button2.Click

[0

Lab:.NET Programming

NOTES

Self-Instructional
Material

141

Lab: NET Programming Dim con As New OleDb.OleDbConnection

con.ConnectionString = Y“PROVIDER =
Microsoft.Ace.OLEDB.12.0; Data Source =F:\Sem.4\extra vs
code\bankmanagementsystem\bankmanagementsystem\project\

NOTES BankManageMentSystem\BankManageMentSystem\bankaccounts.accdb”
Dim SqglString As String = “update [baccounts]
set [Balance] = Balance-@TextBox2.Text where [Acc Id] =

@TextBox1l.Text”

Using conn As New
OleDb.0OleDbConnection (con.ConnectionString)

Using cmd As New OleDb.OleDbCommand (SglString,
con)

cmd.CommandType = CommandType.Text

cmd. Parameters.AddWithValue (“column”,
TextBox2.Text)

cmd. Parameters.AddWithValue (“column”,
TextBoxl.Text)

con.Open ()
MsgBox (“Amount Withdrawn Successfully”)
cmd.ExecuteNonQuery ()
Me.DataGridViewl .Refresh ()
TextBox2.Text = “”
TextBoxl.Text = “”
End Using
End Using
End Sub
End Class

Withdraw.vb Withdraw.vb [Design] > [e reper] employees.vb [Design]*® Deposit.vb Depositvb [Design]

] Home Accounts Deposit Withdraw About

Withdraw Accounts

Acc_ld Acc_Name Balance

Enter Account Number

m

Enter Amount to Withdraw

7. Payroll Processing

Login:

Imports System.Data.0OleDb
Public Class frmloginA

Self-Instructional
142 Material

Private Sub Buttonl Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Buttonl.Click

Dim con As New
System.Data.0leDb.0OleDbConnection (“Provider =
Microsoft.jet.0leDB.4.0;Data Source = A

Application.StartupPath & “\datastorage.mdb;”)
Dim cmd As OleDbCommand = New OleDbCommand(_

“SELECT * FROM logininfo WHERE Username
= W\ g

TextBoxl.Text & “' AND [Password] =
W& txtPassword.Text & “' V%, con)

con.Open ()
Dim sdr As OleDbDataReader = cmd.ExecuteReader ()
If (sdr.Read() = True) Then

MessageBox.Show (“You are Now Logged In”)
frmMainA. Show ()
TextBoxl.Focus ()
TextBoxl.Clear ()

txtPassword.Clear ()

Me.Hide ()
Else
MessageBox.Show (VInvalid Username or
Password!”)
End If
End Sub

Private Sub Button2 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button2.Click

If MsgBox (“Do you want to switch user?”, vbYesNo
+ vbQuestion) = vbYes Then

Me.Hide ()
TextBoxl.Clear ()
txtPassword.Clear ()
Frmchoose.Show ()
End If
End Sub

Private Sub txtUsername TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub

Lab:.NET Programming

NOTES

Self-Instructional
Material

143

Lab:.NET Programming

144

NOTES

Self-Instructional
Material

Private Sub CheckBoxl CheckedChanged (ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
CheckBox1 .CheckedChanged

If CheckBoxl.Checked = True Then
txtPassword.PasswordChar = “”
Else

txtPassword.PasswordChar = “e”

End If

End Sub

Private Sub txtPassword TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub

Private Sub log Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub GroupBoxl Enter (ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
GroupBox1 .Enter

End Sub

Private Sub PictureBoxl Click 1(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub
End Class

[PAYROLL SYSTEM |

Log-In

Username

Password

Legin Panel E=]

Form Main:

Imports System.IO
Public Class frmMainA
Private Sub Timerl Tick(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Timerl.Tick

1blTime.Text = DateTime.Now.ToString (“hh:mm:ss
tt”)
lblDate.Text = DateTime.Now.ToString (“MMMM dd
yyyy”)
End Sub

Private Sub frmmainuser Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load

Label2.Text = frmloginA.TextBoxl.Text
Timerl.Start ()
End Sub

Private Sub btnMaintenance Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnMaintenance.Click

Try
Dim fbd As New FolderBrowserDialog
If fbd.ShowDialog() = vbOK Then

File.Copy (“GenerallPayroll.accdb”,
fbd.SelectedPath & “\GenerallPayroll.accdb”)

MsgBox (“Done...”)
End If
Catch ex As Exception
MsgBox (ex.Message)
End Try
End Sub

Private Sub btnMini Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnMini.Click

Me.WindowState = FormWindowState.Minimized
End Sub

Private Sub btnLogout Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnLogout.Click

btnLogout.BackColor = Color.White
btnLogout.ForeColor = Color.Black

If MsgBox (“Do you want to switch user?”, vbYesNo
+ vbQuestion) = vbYes Then

Me.Hide ()

Lab:.NET Programming

NOTES

Self-Instructional
Material

145

Lab:.NET Programming

146

NOTES

Self-Instructional
Material

Frmchoose.Show ()
End If
End Sub

Private Sub NotePadToolStripMenultem Click(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles NotePadToolStripMenultem.Click

Try
System.Diagnostics.Process.Start (“Notepad.exe”)

Catch ex As Exception

MessageBox.Show (ex.Message, “Error”,
MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
End Sub

Private Sub CalculatorToolStripMenultem Click (ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles CalculatorToolStripMenuItem.Click

Try
System.Diagnostics.Process.Start (“Calc.exe”)

Catch ex As Exception

MessageBox.Show (ex.Message, “Error”,
MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
End Sub

Private Sub SystemInfoToolStripMenultem Click (ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles SystemInfoToolStripMenuItem.Click

End Sub

Private Sub btnCataloging Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCataloging.Click

frmregister.Show ()
End Sub

Private Sub btnCirculation Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCirculation.Click

frmpayslip.Show ()
End Sub

Private Sub AddStaffToolStripMenultem Click (ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles AddStaffToolStripMenultem.Click

frmaddstaff.Show ()
End Sub

Private Sub RemoveStaffToolStripMenultem Click (ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles RemoveStaffToolStripMenultem.Click

frmremovestaff.Show ()
End Sub

Private Sub ToolStripMenulteml Click (ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ToolStripMenulIteml.Click

About.Show ()
End Sub

Private Sub EmployeeToolStripMenultem Click (ByVal
sender As System.Object, ByVal e As System.EventArgs)

End Sub

Private Sub SearchRecordsToolStripMenultem Click (ByVal
sender As System.Object, ByVal e As System.EventArgs)

End Sub
End Class

Dashboard
w Mote Pad

B Calculstor G Manage Staff &8 About E

Logged As

[E Register
—— @ Employves

P=| pavcei =
Print Slip:

Public Class frmpayslip

Private Sub
GenPayFinalBindingNavigatorSaveItem Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

Me.Validate ()
Me.GenPayFinalBindingSource.EndEdit ()

Lab:.NET Programming

NOTES

Self-Instructional
Material

147

Lab:.NET Programming

148

NOTES

Self-Instructional
Material

Me.TableAdapterManager.UpdateAll (Me.GenerallPayrollDataSet)
End Sub

Private Sub frmpayslip Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load

‘TODO: This line of code loads data into the
‘GenerallPayrollDataSet.GenPayFinal’ table. You can move,
or remove it, as needed.

Me.GenPayFinal TableAdapter . Fill (Me.GarerallPayrol 1DataSet . GenPayFinal)
End Sub

Private Sub FacultyUnionLabel Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub

Private Sub TuitionLabel Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub

Private Sub Button5 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Buttonb5.Click

Me.Validate ()
Me.GenPayFinalBindingSource.EndEdit ()
Me.TableAdapterManager.UpdateAll (Me.GenerallPayrollDataSet)
MessageBox.Show (“Successfully Added”)
End Sub

Private Sub btnLogin Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub

Private Sub btnDeleteJHS Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnDeleteJHS.Click

Try
If PlantIDTextBox.Text = “” Then
MessageBox.Show (“"Please select employee
id”, “Entry”, MessageBoxButtons.OK,
MessageBoxIcon.Warning)
Exit Sub
End If

If PlantIDTextBox.Text.Count > 0 Then

If MessageBox.Show (“Do you really want
to delete the record?” & vbCrLf & “You can not restore the
record” & vbCrLf & “It will delete record permanently” &
vbCrLf & “related to selected employee”, “Warning!!!”,
MessageBoxButtons.YesNo, MessageBoxIcon.Warning) =
Windows.Forms.DialogResult.Yes Then

GenPayFinalBindingSource.RemoveCurrent ()
Me. TablerdapterManager . UodateAl 1 (Me.General 1Payrol 1DataSet)
End If
End If

Catch ex As Exception

MessageBox.Show (ex.Message, “Error”,
MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
End Sub

Private Sub Button2 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button2.Click

txtReceipt.Text = V7

A\\W/4

txtReceipt.AppendText vbNewLine

A\\W/4

txtReceipt.AppendText vbNewLine

txtReceipt.AppendText

A\W/4

txtReceipt.AppendText vbNewLine

A\W/4

()
()
txtReceipt.AppendText (V" vbNewLine)
()
()
()

vbNewLine

+
+
+

“ + vbNewLine
+
txtReceipt.AppendText +
+

txtReceipt.AppendText (N vbNewLine)

txtReceipt.AppendText (vbTab + vbTab + vbTab +
vbTab + vbTab + vbTab & “PAY-SLIP” + vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (“Plantilla Number: “ + vbTab
& PlantIDTextBox.Text + vbTab + vbTab + vbTab + vbNewLine)

txtReceipt.AppendText ("Employee Name: “ + vbTab
& EmployeeNameTextBox.Text + vbTab + vbTab + vbNewLine)

txtReceipt.AppendText (“Number: “ + vbTab + vbTab
& NoTextBox.Text + vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText ("Basic Salary: “ + vbTab &

Lab:.NET Programming

NOTES

Self-Instructional
Material

149

Lab:.NET Programming

150

NOTES

Self-Instructional
Material

BasicTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Pera: “ + vbTab + vbTab &
PERATextBox.Text + vbNewLine)

txtReceipt.AppendText (V"Gross Amount: “ + vbTab &
GrossAmountTextBox.Text + vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (vbTab + vbTab & “Deductions”
+ vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (“W/ Tax: “ + vbTab + vbTab
+ vbTab & WtaxTextBox.Text + vbNewLine)

txtReceipt.AppendText ("GSIS Premium: “ + vbTab +
vbTab & GSISPremiumTextBox.Text + vbNewLine)

txtReceipt.AppendText ("GSIS Salary Loan: “ + vbTab
& GSISSalaryLoanTextBox.Text + vbNewLine)

txtReceipt.AppendText (VGSIS EL: “ + vbTab + vbTab
& GSISELTextBox.Text + vbNewLine)

txtReceipt.AppendText (“"GSIS EMRGL: “ + vbTab +
vbTab & GSISEMRGLTextBox.Text + vbNewLine)

txtReceipt.AppendText (V"GSIS PL: “ + vbTab + vbTab
& GSISPLTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Pag-Ibig Premium: “ + vbTab
& PagIbigPremTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Pag-Ibig ML: “ + vbTab +
vbTab & PaglbigMLTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Pag-Ibig 2: “ + vbTab +
vbTab & PagIbig2TextBox.Text + vbNewLine)

txtReceipt.AppendText (“Phil Health Premium: “ +
vbTab & PhilHealthPremiunTextBox.Text + vbNewLine)

txtReceipt.AppendText ("LEAP: “ + vbTab + vbTab +
vbTab & LEAPTextBox.Text + vbNewLine)

txtReceipt.AppendText ("IGP: “ + vbTab + vbTab +
vbTab & IGPTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Faculty Union: “ + vbTab
+ vbTab & FacultyUnionTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Refund Disallow: “ + vbTab
& RefundDisallowTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Tuition: “ + vbTab + vbTab
+ vbTab & TuitionTextBox.Text + vbNewLine)

txtReceipt.AppendText (“LBP Payment: “ + vbTab +
vbTab & LBPPaymentTextBox.Text + vbNewLine)

txtReceipt.AppendText (“"City Savings: “ + vbTab +

vbTab & CitySavingsTextBox.Text + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (“"Total Deductions: “ + vbTab
& TotalDeductionTextBox.Text + vbTab + vbTab & “Net Amount:
Y + vbTab & NetAmountTextBox.Text + vbNewLine)

txtReceipt.AppendText (vbTab & “Due Date: “ + Today
& vbTab + vbTab + vbTab + vbTab + vbTab + vbTab & “Time:
N & TimeOfDay + vbNewLine)

txtReceipt.AppendText (Y + vbNewLine)
txtReceipt.AppendText (Y + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (vbTab + “Recieve by:” +
vbNewLine)

txtReceipt.AppendText (vbTab + vbTab + vbTab +
W ” + vbNewLine)

txtReceipt.AppendText (vbTab + vbTab + vbTab +
EmployeeNameTextBox.Text + vbNewLine)

txtReceipt.AppendText (vbTab + vbTab + vbTab + “
Employee” + vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText ("
Need Help? Contact Us: 09096510899
“ + vbNewLine)

txtReceipt.AppendText (vbTab + vbTab + vbTab +
PictureBoxl.Text + vbNewLine)

PrintPreviewDialogl.ShowDialog ()
End Sub

Private Sub PrintDocumentl PrintPage (ByVal sender As
System.Object, ByVal e As

Lab:.NET Programming

NOTES

Self-Instructional
Material

151

Lab:.NET Programming

152

NOTES

Self-Instructional
Material

System.Drawing.Printing.PrintPageEventArgs) Handles
PrintDocumentl.PrintPage

e.Graphics.DrawString (txtReceipt.Text, Font,
Brushes.Black, 140, 140)

e.Graphics.DrawImage (Me.PictureBox1l.Image, 120,
130, PictureBoxl.Width - 15, PictureBoxl.Height - 25)

e.Graphics.DrawImage (Me.PictureBox2.Image, 300,
130, PictureBox2.Width - 15, PictureBox2.Height - 25)

End Sub

Private Sub Buttonl Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Buttonl.Click

TotalDeductionTextBox.Text = Val (WtaxTextBox.Text)
+ Val (GSISPremiumTextBox.Text) +
Val (GSISSalaryLoanTextBox.Text) + Val (GSISELTextBox.Text)
+ Val (GSISEMRGLTextBox.Text) + Val (GSISPLTextBox.Text) +
Val (PagIbigPremTextBox.Text) + Val (PagIbigMLTextBox.Text)
+ Val (PagIbig2TextBox.Text) +
Val (PhilHealthPremiunTextBox.Text) + Val (LEAPTextBox.Text)
+ Val (IGPTextBox.Text) + Val (FacultyUnionTextBox.Text) +
Val (RefundDisallowTextBox.Text) + Val (TuitionTextBox.Text)
+ Val (LBPPaymentTextBox.Text) +
Val (CitySavingsTextBox.Text)

GrossAmountTextBox.Text = Val (BasicTextBox.Text)
+ Val (PERATextBox.Text)

NetAmountTextBox.Text
Val (GrossAmountTextBox.Text)
Val (TotalDeductionTextBox.Text)
NetAmountTextBox.Text
FormatCurrency (NetAmountTextBox.Text)

TotalDeductionTextBox.Text =
FormatCurrency (TotalDeductionTextBox.Text)

GrossAmountTextBox.Text
FormatCurrency (GrossAmountTextBox.Text)

MessageBox.Show (“Successfully Computed”)
End Sub

Private Sub Button9 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button9.Click

Me.TableAdapterManager.UpdateAll (Me.GenerallPayrollDataSet)
Me.Close ()
End Sub

Private Sub Button8 Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles

Button8.Click Lab: NET Programming

GenPayFinalBindingSource.MovePrevious ()
End Sub

, , NOTES
Private Sub Button7 Click(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
Button7.Click

GenPayFinalBindingSource.MoveNext ()
End Sub

Private Sub TextBoxl4 TextChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
TextBox14.TextChanged

Me.GenPayFinalBindingSource.Filter = “PlantID LIKE
& TextBoxl1l4.Text & “%'”

End Sub
End Class

ATA\Y

Due Date: Thursday . November 26, 2020 D~ [Dowbase |Print Preview|

PlantiD Employseham
Deductions 3

Plant ID: W PR
“Employee Name: GSIS Premium:
No- GSIS Salary Loan:
GSIS EL-

e GSISEMRGL:

B GSIS PL:

Pag Ibig Prem:
Pag Ibig ML

Gross Amount e
Pag Ibig2:
Phil Health Premiun:

T

8. Personal Information System
Main:

Imports System.Data.OleDb
Public Class frmmain
Dim Oledr As OleDbDataReader
Dim Item As New ListViewItem()
Dim ItemSearch As New ListViewItem

Private Sub frmmain Load (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Call ListStudentColumns (lststudent)
Call openconnection ()

Call Initialized()

Call LoadListView ()

Call closeconnection ()

Self-Instructional
Material 153

Lab:.NET Programming

154

NOTES

Self-Instructional
Material

End Sub

Public Sub LoadListView ()
lststudent.Items.Clear ()
Call Initialized()
Oledr = OleDa.SelectCommand.ExecuteReader ()
Do While Oledr.Read()

ITtem =
lststudent.Items.Add (Oledr (“studentno”) .ToString ())

Ttem.SubItems.Add (Oledr (V“firstname”) .ToString ())
ITtem.SubItems.Add (Oledr (Vlastname”) .ToString())
Item.SubItems.Add (Oledr (“course”) .ToString())

Loop
Oledr.Close ()
End Sub

Private Sub btnAdd Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnAdd.Click

frmadd.ShowDialog ()
End Sub
Private Function UpdateValidateStudent () As Boolean
If lststudent.Items.Count = 0 Then
MsgBox (“No records.”,
MsgBoxStyle.Information, “No Records”)
Return True
Exit Function
End If
If lststudent.SelectedItems.Count > 1 Then

MsgBox (“Double click the record”,
MsgBoxStyle.Information)

lststudent.SelectedItems.Clear ()
Return True
Exit Function

End If

If lststudent.SelectedItems.Count = 0 Then

MsgBox (“Please choose the record you want to
edit”, MsgBoxStyle.Information)

Return True
Exit Function
End If

End Function

Private Sub btnEdit Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnEdit.Click

If UpdateValidateStudent () = True Then
Return
End If
frmedit.ShowDialog ()
End Sub
Private Function DeleteStudentValidate () As Boolean
If lststudent.Items.Count = 0 Then
MsgBox (“"No Records to delete”)
Return True
Exit Function
End If
If lststudent.SelectedItems.Count = 0 Then

MsgBox (“Please choose the record you want to
delete.”)

Return True
Exit Function
End If

End Function

Private Sub btnDelete Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnDelete.Click

If DeleteStudentValidate () = True Then
Return
End If

If MsgBox (“Do you really want to delete this
record?”, MsgBoxStyle.YesNo + MsgBoxStyle.Question,
“Delete?”) = MsgBoxResult.No Then

MsgBox (“Delete Cancelled.”,
MsgBoxStyle.Information)

lststudent.SelectedItems.Clear ()
Exit Sub
End If

For Each Item As ListViewItem 1In
lststudent.SelectedItems

Item.Remove ()
OleDa.DeleteCommand = New OleDbCommand ()

Lab:.NET Programming

NOTES

Self-Instructional
Material

155

Lab:.NET Programming

156

NOTES

Self-Instructional
Material

Call openconnection ()

OleDa.DeleteCommand.CommandText = “DELETE
FROM tblstudent WHERE studentno = @studentno”

OleDa.DeleteCommand.Connection = 0leCn

OleDa.DeleteCommand.Parameters.Add (“@studentno”,
OleDbType.VarChar, 50, “studentno”) .Value =
Item.Text.ToString ()

OleDa.DeleteCommand.ExecuteNonQuery ()
Call LoadListView ()
Call closeconnection ()
Next
MsgBox (“"Record Deleted”)
lststudent.SelectedItems.Clear ()
End Sub

Private Sub btnRefresh Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnRefresh.Click

Call openconnection ()
Call Initialized()
Call LoadListView ()
Call closeconnection()
txtSearch.Clear ()

MsgBox (“Total Records = % &
lststudent.Items.Count, MsgBoxStyle.Information, “Record”)

End Sub

Private Sub SearchStudent ()
lststudent.Items.Clear ()
Call Initialized()

OleDa.SelectCommand.CommandText = “SELECT * FROM
tblstudent WHERE studentno Like Y% &
txtSearch.Text.Trim.ToString () & “%%’”

OleDa.SelectCommand.Connection = OleCn
Oledr = OleDa.SelectCommand.ExecuteReader ()
Do While Oledr.Read()

ItemSearch =
lststudent.Items.Add (Oledr (“studentno”) .ToString ())

TtemSearch.SubItems.Add (Oledr (“firstname”) .ToString())
TtemSearch.SubItems.Add (Oledr (“lastname”) .ToString ())
ItemSearch.SubItems.Add (Oledr (“course”) .ToString())

Loop
Oledr.Close ()
End Sub

Private Sub txtSearch TextChanged (ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
txtSearch.TextChanged

OleDa.SelectCommand = New OleDbCommand ()

OleDa.SelectCommand.CommandText = “SELECT * FROM
tblstudent WHERE studentno Like ‘%%’”

OleDa.SelectCommand.Connection = OleCn
Call openconnection ()
OleDa.SelectCommand.ExecuteNonQuery ()
Call SearchStudent ()

Call closeconnection()

End Sub
End Class
{ 85 Student Information System 22
-
| acl Add Student &J
SEARCH
Student Mo 1234
studentno course
12345 BSIT
8796 First Name PREETY BSCS
2314 BSEM
3431 BSCS
2638 Last Name KHATRI BSIT
Course [ESIT | -
[sae | [cancer |
ll ADD] REFRESH IJ
Add Information:

Imports System.Data.OleDb
Public Class frmadd

Private Sub frmadd FormClosing (ByVal sender As Object,
ByVal e As System.Windows.Forms.FormClosingEventArgs)
Handles Me.FormClosing

Call cleartext ()

txtsn.Focus ()

frmmain.lststudent.SelectedItems.Clear ()
End Sub

Private Sub frmadd Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Lab:.NET Programming

NOTES

Self-Instructional
Material

157

Lab:.NET Programming

158

NOTES

Self-Instructional
Material

End Sub

Private Sub cleartext ()
Me.txtsn.Clear ()
Me.txtfn.Clear ()
Me.txtln.Clear ()

End Sub

Private Sub btnCancel Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCancel.Click

Me.Close ()
End Sub

Private Sub btnSave Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnSave.Click

If txtsn.Text = “Y Or txtfn.Text = Y Or
cmbcourse.Text = “” Then

MsgBox (“Please don’t leave blank textfields”,
MsgBoxStyle.Information, “Missing data”)

Exit Sub

End If

Try
Call openconnection ()
OleDa.InsertCommand = New OleDbCommand ()

OleDa.InsertCommand.CommandText = “INSERT
INTO tblstudent (studentno, firstname, lastname, course)”
&

“WALUES (@studentno , @firstname, @lastname,
@course)”

OleDa.InsertCommand.Connection = 0leCn

OleDa.InsertCommand.Parameters.Add (“@studentno”,
OleDbType.VarWChar, 50, “studentno”) .Value = txtsn.Text

OleDa.InsertCommand.Parameters.Add (“@firstname”,
OleDbType.VarWChar, 50, “firstname”) .Value = txtfn.Text

OleDa.InsertCommand.Parameters.Add (“dlastname”,
OleDbType.VarWChar, 50, “lastname”) .Value = txtln.Text

OleDa.InsertCommand.Parameters.Add (“@course”,
OleDbType.VarWChar, 50, “course”) .Value = cmbcourse.Text

OleDa.InsertCommand.ExecuteNonQuery ()
Call frmmain.LoadListView ()
Call closeconnection ()

MsgBox (“Records Saved”,

MsgBoxStyle.Information, “Saved”)
Me.Close ()
Catch ex As Exception

MsgBox (“Cannot Save this record, Existing
Student Number”, MsgBoxStyle.Information, “Error”)

Call closeconnection()
txtsn.Focus ()
txtsn.SelectAll ()
End Try
End Sub
End Class

Delete Record:

ol Student Information System =
SEARCH
studentno Delete? ot ourse
12345 ST
8756 o SCS
2314 |0| Do you really want to delete this record? SEM
3431 - SCS
3636 T
[Yes] | Mo J
I ADD EDIT | [pELETE | REFRESH
.
Edit Record:

Imports System.Data.OleDb
Public Class frmedit

Private Sub frmedit FormClosing (ByVal sender As
Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles
Me.FormClosing

Call cleartext ()
txtsn.Focus ()

frmmain.lststudent.SelectedItems.Clear ()
End Sub

Private Sub frmedit Load (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Call openconnection ()

Call Initialized()

txtsn.Text =
CStr (frmmain.lststudent.SelectedItems (0) .Text)

Call Fill ()

Call closeconnection ()

Lab:.NET Programming

NOTES

Self-Instructional
Material

159

Lab:.NET Programming

160

NOTES

Self-Instructional
Material

End Sub
Private Sub cleartext ()
Me.txtsn.Clear ()
Me.txtfn.Clear ()
Me.txtln.Clear ()
End Sub
Private Sub Fill ()
Dim OleDr As OleDbDataReader
OleDa.SelectCommand = New OleDbCommand ()

OleDa.SelectCommand.CommandText = “SELECT * From
tblstudent WHERE studentno = @studentno”

OleDa.SelectCommand.Parameters.Add (“@studentno”,
OleDbType.VarWChar, 50, “studentno”) .Value = txtsn.Text

OleDa.SelectCommand.Connection = OleCn

OleDr = OleDa.SelectCommand.ExecuteReader ()

If OleDr.HasRows () Then
OleDr.Read()
txtsn.Text = OleDr (“studentno”) .ToString /()
txtfn.Text = OleDr (“firstname”) .ToString ()
txtln.Text = OleDr (“lastname”) .ToString ()
cmbcourse.Text = OleDr (“course”) .ToString ()

End If

OleDr.Close ()

End Sub

Private Sub btnCancel Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCancel.Click

Me.Close ()
End Sub

Private Sub btnSave Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnSave.Click

If txtsn.Text = V" Or txtfn.Text = V" Or txtln.Text
= “ Or cmbcourse.Text = “” Then

MsgBox (“Dont leave blank textfields”)
Exit Sub

End If

Try
Call openconnection ()
OleDa.UpdateCommand = New OleDbCommand ()

OleDa.UpdateCommand.CommandText = “UPDATE
tblstudent SET studentno = @studentno, firstname =
@firstname, lastname = @lastname, course = @course WHERE
studentno = ?”

OleDa.UpdateCommand.Connection = OleCn

OleDa.UpdateCommand.Parameters.Add (“@studentno”,
OleDbType.VarWChar, 50, “studentno”) .Value = txtsn.Text

OleDa.UpdateCommand.Parameters.Add (“@firstname”,
OleDbType.VarWChar, 50, “firstname”) .Value = txtfn.Text

OleDa.UpdateCommand.Parameters.Add (“"@lastName”,
OleDbType.VarWChar, 50, “lastName”) .Value = txtln.Text

OleDa.UpdateCommand.Parameters.Add (“@Course”,
OleDbType.VarWChar, 50, “Course”) .Value = cmbcourse.Text

OleDa.UpdateCommand.Parameters.Add (New
System.Data.0OleDb.OleDbParameter (“EmpID”,
System.Data.OleDb.0OleDbType.VarWChar, 50,

System.Data.ParameterDirection.Input, False, CType (0,
Byte), CType (0, Byte), “studentno”, _

System.Data.DataRowVersion.Original, Nothing)) .Value =
frmmain.lststudent.SelectedItems (0) .Text

OleDa.UpdateCommand.ExecuteNonQuery ()
Call frmmain.LoadListView ()
Call closeconnection ()
MsgBox (“Records Updated”)
Me.Close ()
Catch ex As Exception
MsgBox (“Cannot Update StudentNo is present”)
Call closeconnection()
txtsn.Focus ()
txtsn.SelectAll ()

End Try
End Sub
End Class
atl Student Information System - =
| a2 Edit Student |
SEARCH
Student No 1234
studentno course
12345] — BSIT
b Fist Name ~ PREETY e
2314 BSBM
3431 | LastMame KHATRI BSCS
3636 BSIT
1214 BSIT
Course BSIT "
UPDATE | [cANcCEL |
ADD | i [REFRESH |
L

Lab:.NET Programming

NOTES

Self-Instructional
Material

161

Lab:.NET Programming

162

NOTES

Self-Instructional
Material

9. Question Database and Conducting Quiz

Register:

Public Class Form2

Private Sub Form2 Load(sender As Object,
EventArgs) Handles MyBase.Load

End Sub

e

As

Private Sub LinkLabell LinkClicked (sender As Object,

e As LinkLabelLinkClickedEventArgs)
SIGN_ IN.Show ()
Me.Close ()
End Sub

Private Sub Buttonl Click(sender As Object,
EventArgs)

Home .Show ()
Me.Close ()
End Sub

Private Sub Button2 Click(sender As Object,
EventArgs)

End Sub

Private Sub GroupBoxl Enter (sender As Object,
EventArgs)

End Sub

Private Sub Button3 Click(sender As Object,
EventArgs)

quest6.Show ()
End Sub

Private Sub Buttonl Click 1(sender As Object,
EventArgs) Handles Buttonl.Click

My.Settings.Username = usernamel.Text
My.Settings.Password = passwordl.Text
My.Settings.Save ()
MsgBox (“Your Account Has Been Created”)
SIGN IN.Show ()
Me.Close ()

End Sub

0}

0}

As

Private Sub LinkLabell LinkClicked 1 (sender As Object,
e As

LinkLabellLinkClickedEventArgs)
LinkLabell.LinkClicked
SIGN IN.Show ()

Me.Close ()
End Sub

Private Sub Button2 Click 1(sender As Object, e As
EventArgs) Handles Button2.Click

Forml.Show ()
End Sub

Private Sub CheckBoxl CheckedChanged (sender As Object,
e As EventArgs) Handles CheckBoxl.CheckedChanged
If CheckBoxl.Checked Then

passwordl.UseSystemPasswordChar

= False
Else
passwordl.UseSystemPasswordChar = True
End If
End Sub
End Class

Sign In:
Public Class SIGN IN

Private Sub Buttonl Click(sender As Object,
EventArgs) Handles Buttonl.Click

e As

If username?2.Text

My.Settings.Username And
password2.Text = My.Settings.Password = True
Then
Home . Show ()

Me.Close ()
Else

Handles

Self-Instructional
Material

Lab:.NET Programming

NOTES

163

Lab:.NET Programming

164

NOTES

Self-Instructional
Material

MsgBox (“Incorrect Username Or Password”)
username?.Clear ()
password2.Clear ()
End If
End Sub

Private Sub Button2Z Click(sender As Object, e As
EventArgs) Handles Button2.Click

Forml.Show ()
Me.Close ()
End Sub

Private Sub Button3 Click(sender As Object, e As
EventArgs)

End Sub

Private Sub SIGN IN ILoad(sender As Object, e As
EventArgs) Handles MyBase.Load

End Sub

Private Sub CheckBoxl CheckedChanged (sender As Object,
e As EventArgs) Handles CheckBoxl.CheckedChanged

If CheckBoxl.Checked Then

password?2.UseSystemPasswordChar = False

Else
password?2.UseSystemPasswordChar = True
End If
End Sub
End Class
oD iGN B, B R e

Usermame:

Password:

Questionl:

Public Class quest2

Private Sub Button2 Click(sender As Object, e As
EventArgs) Handles Button2.Click

Button2.Invalidate ()

If RadioButton3.Checked Then
MsgBox (“You are correct”)
quest8.LBLRIGHT.Text = quest8.LBLRIGHT.Text

+ 1
Else
MsgBox (“You are wrong”)
quest8.LBLWRONG.Text = quest8.LBLWRONG.Text
+ 1

End If
Dim quest6 As New quest2
Dim quest2 As New quest4
quest4.Show ()
Me.Hide ()

End Sub

Private Sub Label2 Click(sender As Object, e As
EventArgs) Handles Label2.Click

End Sub

Private Sub RadioButtond4 CheckedChanged (sender As
Object, e As EventArgs) Handles RadioButton4.CheckedChanged

End Sub

Private Sub RadioButton3 CheckedChanged (sender As
Object, e As EventArgs) Handles RadioButton3.CheckedChanged

End Sub
End Class

—= = |)

10. Personal Diary

Main:

Class clsEntry
Public Property dtDateOfentry As DateTime

Lab:.NET Programming

NOTES

Self-Instructional
Material

165

Lab:.NET Programming

166

NOTES

Self-Instructional
Material

Public Property strContent As String

Public Sub New (ByVal dtDate As DateTime,
ByVal strText As String)
dtDateOfentry = dtDate
strContent = strText
End Sub

Public Overrides Function ToString () As String

Return dtDateOfentry & “ ™ & strContent
End Function
End Class

Module Modulel
Sub Main (ByVal args As String())
Dim objDiary As clsDiary = New clsDiary ()
Dim cSelection As Char = “0”c
While cSelection <> “4”c
objDiary.Welcome ()
Console.WriteLine ()
Console.WriteLine (“"MAIN MENU”)
(“1 — ADD RECORD”)
Console.WriteLine (Y2 - VIEW RECORD”)
Console.WriteLine (“3 - EDIT RECORD”)
(“4
(™5

ANY

Console.WriteLine

AN

ANY

Console.WritelLine — DELETE RECORD”)
Console.WritelLine — EDIT PASSWORD”)
Console.WriteLine (Y6 — EXIT”)

Console.WriteLine ("ENTER YOUR CHOICE”)

ANY

cSelection = Console.ReadKey () .KeyChar
Console.WriteLine ()
Select Case cSelection
Case “1”c
objDiary.Add ()
Case “2”"c
objDiary.View ()
Case “3”"c
objDiary.Edit ()
Case “4”c

objDiary.Delete ()

Case “5”c
objDiary.Edit ()
Case “6”c
Console.WriteLine (“Press any key to exit.”)
Case Else
Console.WriteLine (“Error.”)
End Select
Console.ReadKey ()
End While
End Sub
End Module

MAIN MEMU:

ADD RECORD [11
UIEW RECORD [21
EDIT RECORD [31]
DELETE RECORD [4]
EDIT PASSWORD [
EXIT [61

ENTER YOUR CHOICE:

Public Sub Add (ByVal dtDate As DateTime, ByVal strText _
As String)
lstEntries.Add (New clsEntry(dtDate, strText))
End Sub

Public Sub Delete (ByVal dtDate As DateTime)

Dim lstResults As List (Of clsEntry) = Find(dtDate,
True)

For Each Entry As clsEntry In lstResults
lstEntries.Remove (Entry)
Next
End Sub

Public Function Find(ByVal dtDate As DateTime, ByVal
blnTime

As Boolean) As List (Of clsEntry)

Dim lstResults As List (Of clsEntry) = New List (Of
clsEntry) ()

For Each Entry As clsEntry In lstEntries

Lab:.NET Programming

NOTES

Self-Instructional
Material

167

Lab:.NET Programming

168

NOTES

Self-Instructional
Material

If ((blnTime) AndAlso (Entry.dtDateOfentry = _
dtDate)) OrElse ((Not blnTime) AndAlso _
(Entry.dtDateOfentry.Date = dtDate.Date))

Then lstResults.Add(Entry)

Next
Return lstResults

End Function

Class clsDiary
Private dbData As clsDatabase
Public Sub New ()
dbData = New clsDatabase ()
End Sub

Private Function GetDate () As DateTime
Dim dtDate As DateTime

While Not DateTime.TryParse (Console.ReadLine (),
dtDate)

Console.WritelLine (“Error. Try again:”)
End While
Return dtDate

End Function

Public Sub Print (ByVal dtDay As DateTime)

Dim lstResults As List (Of clsEntry) =
dbData.Find(dtDay,

False)
For Each Entry As clsEntry In lstResults
Console.WritelLine (Entry)
Next
End Sub

Public Sub Add()

Dim dtDate As DateTime = GetDate ()
Console.Writeline (“Enter the entry text:”)
Dim strText As String = Console.ReadLine ()
dbData.Add (dtDate, strText)

End Sub

Public Sub Search()
Dim dtDate As DateTime = GetDate ()

Dim lstResults As List(Of clsEntry) =
dbData.Find(dtDate,

False)
If 1lstResults.Count() > 0 Then
Console.WriteLine (“Found:"”)
For Each Entry As clsEntry In lstResults
Console.WriteLine (Entry)
Next
Else
Console.WritelLine (“Nothing found.”)
End If
End Sub

Public Sub Delete()
Dim dtDate As DateTime = GetDate ()
dbData.Delete (dtDate)
End Sub

Public Sub Welcome ()
Console.Clear ()

Console.WriteLine (“ENTER DATE OF YOUR RECORD: [yyyy-
mm-dd] :”, DateTime.Now))

Console.WriteLine (“ENTER TIME:"”)
Console.WritelLine (“"ENTER NAME: ")
Console.WriteLine (“"ENTER PLACE:”)
Console.WriteLine (“"ENTER DURATION:”)
Console.WriteLine ("NOTE:"”)

Console.WriteLine (“"ADD ANOTHER RECORD..<Y/N>"
Print (DateTime.Today)
Console.WriteLine ()
Print (DateTime.Now.AddDays (1))
Console.WriteLine ()
End Sub
End Class

Lab:.NET Programming

NOTES

Self-Instructional
Material

169

Lab:.NET Programming

170

NOTES

Self-Instructional
Material

ENMTER

ENTER
ENTER
EMTER
ENTER

DATE OF Y¥YOUR RECORD: [yyyuy—mm—ddl

TIME:Lhh=:mml1:=:18:85%
NMAME : Fy»ank

PLACE - Hathmandu
DURATION:= 2 hy

MOTE:=-Office meeting

OUR RECORD IS ADDED. . .
ADD AMOTHER RECORD. . . <% .- MH>»

	Pre
	Text

