
B.Sc. [Information Technology]
VI - Semester

129 64

LAB: .NET PROGRAMMING

Directorate of Distance Education

ALAGAPPA UNIVERSITY
[Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle

and Graded as Category–I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI – 630 003

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any
implied warranties or merchantability or fitness for any particular use.

Author:
Dr. Preety Khatri, Assistant Professor-SOIT IMS, Noida

"The copyright shall be vested with Alagappa University"

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT. LTD.
E-28, Sector-8, Noida - 201301 (UP)
Phone: 0120-4078900 Fax: 0120-4078999
Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
 Website: www.vikaspublishing.com Email: helpline@vikaspublishing.com

Work Order No. AU/DDE/DE 12-27/Preparation and Printing of Course Materials/2020 Dated 12.08.2020 Copies - 500

BLOCK 1
1. Building Simple Applications, Observe and Draw Visual.NET IDE Layout and Hands on Practice to Create, Save and

Open the Project.
2. Working with Intrinsic Controls, Control Arrays, Sub Procedures and Functions.

BLOCK 2
3. Application with Multiple Forms
4. Application with Dialogs
5. Application with Menus
6. Application using Data Controls
7. Application using Common Dialogs

BLOCK 3
8. Drag and Drop Events, In-Built Functions, Mathematical and String Functions
9. Database Management
10. Creating ActiveX Controls
11. Database Object (DAO) and Properties
12. Active Data Objects (ADO) and OLE DB

BLOCK 4
13. Database: Bounded and Unbounded Mode, Connecting to the Database, Retrieving a Recordset, Creating a Query

Dynamically, Using a Parameterized Query, Using Action Queries - Adding Records, Editing Records, Closing the
Database Connection

BLOCK 5
14. Simple Application Development

(i) Library Information System
(ii) Students Mark Sheet Processing
(iii) Telephone Directory Maintenance
(iv) Gas Booking and Delivering
(v) Electricity Bill Processing
(vi) Bank Transaction
(vii) Pay Roll Processing
(viii) Personal Information System
(ix) Question Database and Conducting Quiz
(x) Personal Diary

SYLLABI-BOOK MAPPING TABLE
LAB: .NET PROGRAMMING

Syllabi

INTRODUCTION
The .NET Framework, pronounced as ‘DOT NET’ is a software framework
developed by Microsoft that runs primarily on Microsoft Windows. It includes a
large class library called Framework Class Library (FCL) and provides language
interoperability (each language can use code written in other languages) across
several programming languages. Programs written for .NET Framework execute
in a software environment (in contrast to a hardware environment) named the
Common Language Runtime (CLR). The CLR is an application virtual machine
that provides services, such as security, memory management, and exception
handling. As such, computer code written using .NET Framework is termed as
the ‘Managed Code’. FCL and CLR together constitute the .NET Framework.
FCL provides the user interface, data access, database connectivity, cryptography,
web application development, numeric algorithms, and network communications.
Programmers produce software by combining their source code with .NET
Framework and other libraries. The framework is intended to be used by most
new applications created for the Windows platform. Microsoft also produces an
Integrated Development Environment (IDE) for .NET software called Visual
Studio.

This lab manual, DOT NET Programming, contains several programs
based on DOT NET programming which includes building simple applications,
observe and draw Visual.NET IDE layout and hands on practice to create, save
and open the project, working with intrinsic controls, control arrays, sub procedures
and functions, application with multiple forms, dialogs, menus, data controls,
common dialogs, drag and drop events, in-built functions, mathematical and string
functions, database management, creating ActiveX controls, Database Object
(DAO) and properties, Active Data Objects (ADO) and OLE DB, connecting to
the database, retrieving a record set, creating a query dynamically, parameterized
query, action queries, simple application development, such as library information
system, students mark sheet processing, telephone directory maintenance, gas
booking and delivering, electricity bill processing, bank transaction, pay roll
processing, personal information system, etc.

In addition, it will help students in coding and debugging their DOT NET
programs. The manual provides all logical, mathematical and conceptual programs
that can help to write programs easily. These exercises shall be taken as the base
reference during lab activities for students.

Lab:.NET Programming

NOTES

Self-Instructional
Material

NOTES

Self-Instructional
Material 1

Lab:.NET Programming
BLOCK I : LAB .NET PROGRAMMING

This block will cover the following topics:
1. Introduction of .NET framework and VB.NET IDE.
2. Create, save and open the project.
3. Work with intrinsic controls, control arrays, Sub Procedures and functions.

Introduction to .NET

.NET is a software framework which is designed and developed by Microsoft.
The first version 1.0 of the .NET framework came in 2002. .NET is also defined
as XML web services platform which allows to build .NET applications, through
which users can interact with the internet using wide range of smart devices like
tablets, smart phones etc. It is a virtual machine for compiling and executing
programs written in various languages like C#, VB.NET, etc. .NET allows building
and integrating the web services and which comes with different set of tools like
Visual Studio to fully develop and build those applications.

There is a large variety of programming languages available on the .NET
platform, for example VB.NET and C# which is used to build applications for
Windows, phone, web, etc. It provides a lot of functionalities and also supports
industry standards.

.NET Framework

.NET framework is a software platform. It is a language-neutral environment for
building applications and developing .NET experiences that can easily operate
within it. When developed applications are deployed, these applications will target
.NET and will execute wherever .NET is implemented instead of depending on a
particular Hardware/OS combination. The components that make the .NET
platform are collectively called the .NET framework. The .NET framework is a
managed as well as a type-safe environment for developing and executing various
applications. The .NET framework manages all kinds of program execution for
example, how to allocate the memory for the storage of data and instructions,
managing execution of the application, granting permissions to the application,
reallocation of memory etc. Basically, .NET framework is designed for cross-
language compatibility, which is an application written in VB .NET may reference
a DLL file written in C#. A VB.NET class might be derived from a C# class or
vice versa. The .NET Framework consists of various components, some important
components are:

a) Common Language Runtime (CLR)
b) Class Libraries
c) Common Language Specification (CLS)

Lab:.NET Programming

NOTES

Self-Instructional
2 Material

a) Common Language Runtime (CLR)

 The CLR is an execution engine of .NET which provides the environment to run
the program. CLR can manage the execution of programs. It also provides core
services like memory allocation, code compilation, thread management, garbage
collection etc. The software version of .NET is actually the CLR version. CLR is
the virtual machine component of the .NET framework. It is the run-time
environment in the .NET framework that runs the codes. . It also helps in code
management.The code that targets the runtime is known as the managed code and
code that doesn’t target to runtime is known as unmanaged code. It helps in
making the development process easier by providing the a variety of services like
thread management, remoting, memory management, robustness, type-safety etc..
CLR is responsible for managing the execution of .NET programs instead of any
.NET programming language.

b) Class Libraries
Class library is another component of .NET framework that is designed to integrate
with the CLR. It provides the program access to runtime environment. The class
library consists of classes, interfaces, namespaces and value types that can be
used in the applications created in VB .NET and visual studio .NET. It contains
the number of classes that serves the following functions:

1. It provides the base and user-defined data types.
2. It supports the exceptions handling.
3. It helps in managing I/O and stream operations.
4. It allows access to data.
5. It hels in creating the Windows-based GUI applications.
6. It supports in creating the web services.
7. It is useful in creating the web-client and server applications.

Fig. 1.1 .NET Framework

NOTES

Self-Instructional
Material 3

Lab:.NET Programmingc) Common Language Specification (CLS)

The CLS describes a set of rules and constraints that are common in different
languages which runs in .NET framework. If we want the code which we write in
a language to be used by programs in some other languages, then it should remain
in CLS. It defines the minimum standards that .NET language compilers must
confirm to ensure that any source code compiled by a .NET compiler and that
code interoperate with the other language. Developers are building applications
using the .NET framework due to following features:

1. To increase the performance
2. To improved reliability
3. To provide mobility support
4. XML web service support
5. To increase the developer productivity
6. To provide an environment that integrate with existing systems
7. Ease of deployment
8. To provide powerful security
9. Flexible data access

Basic Requirements to Install Visual Studio

The minimum requirements of a system for installing visual studio are:
1. RAM: 256 MB (Recommended)
2. Operating System: Windows 2000 or Windows XP
3. Processor: Pentium II 450 MHz
4. Hard Disk Space: 3.5 GB (Includes 500 MB free space on disk)

Visual Basic .NET

Visual basic .NET provides the easiest and most productive language and tool for
building Windows and web applications. It comes with improved visual designers,
a powerful integrated development environment (IDE) and increased application
performance. It also supports creation of applications for internet-enabled and
wireless hand-held devices. There are various features of VB.NET as follows:

a) Building Web-based Applications

With the help of VB.NET, we can build web applications using the shared web
form designer. You can double-click and write code to respond to events. There is
an enhanced HTML editor for working with complex web pages. We can also use
IntelliSense technology and tag completion, or choose the WYSIWYG editor for
visual authoring of interactive web applications.

Lab:.NET Programming

NOTES

Self-Instructional
4 Material

b) Powerful Windows-based Applications

VB.NET provides the features like forms designer, an in-place menu editor and
automatic control docking and anchoring. VB.NET provides new productivity
features for building robust applications very quickly. With the help of IDE
environment, VB.NET provides automatic, fast formatting of code, improved
IntelliSense, an enhanced object browser and XML designer.

c) Improved Coding

You can code faster and more effectively. A multitude of enhancements to the
code editor, including enhanced IntelliSense, smart listing of code for greater
readability and a background compiler for real-time notification of syntax errors
transforms into a rapid application development (RAD) coding machine. You can
tackle any data access scenario easily with ADO.NET and ADO data access.
The flexibility of ADO.NET enables data binding to any database, as well as
classes, collections, and arrays, and provides true XML representation of data.
Seamless access to ADO enables simple data access for connected data binding
scenarios. Using ADO.NET, VB.NET can gain high-speed access to MS SQL
Server, Oracle, DB2, Microsoft access, and more.

d) Simplified Deployment With VB.NET

With the help of VB.NET, we can build applications more rapidly and maintain
them very efficiently. Web auto-download and XCOPY-deployment of Windows-
based applications combine the simplicity of web page deployment and maintenance
with the power of rich and responsive Windows-based applications. Side-by-
side versioning provides multiple versions of the same component to live safely on
the same machine so that applications can use a specific version of a component.

e) Direct Access to the Platform

VB.NET provides direct access to the platform. It enables developers can have
full access to the capabilities available in .NET framework. The new Windows
service project template enables to build real Microsoft Windows NT services.
Developers can easily program system services including performance counters,
file system and event log.

f) Full Object-Oriented Constructs

VB.NET provides full object-oriented constructs. You can create enterprise,
reusable-class code using full object-oriented constructs. Structured exception
handling provides a global error handler and eliminates spaghetti code. Language
features consists of full implementation encapsulation, polymorphism and
inheritance.

NOTES

Self-Instructional
Material 5

Lab:.NET ProgrammingVB Language

Visual basic is very popular language for its friendly working environment and it
clearly states how widely used for developing applications. VB.NET is an extension
of visual basic programming language having various features in it. VB.NET was
designed to take advantage of the .NET framework runtime environment and
base classes. It comes with power packed features that simplify application
development. The changes from VB to VB .NET ranging from the change in
syntax of the language to the types of projects and also depends on the way of
designing applications. Following are the points which elaborate advancement
fromVB to VB.NET.

One of the major changes from VB to VB .NET is that it is based on the
concept of object-oriented.
We can now create classes and objects, and also derive classes from other
classes.
It provides the advantage of code reusability with OOP.
VB.NET supports multithreading.
VB.NET adds console applications (that run in the DOS version) to it apart
from Windows and web applications.
VB.NET supports all OOP features i.e. abstraction, inheritance,
polymorphism and encapsulation.
Representing data in XML format allows us to send large amounts of data
on the internet. It reduces network traffic when communicating with the
database.
VB.NET requires declaration of all the variables by default before using
them.
Web development is now an integral part of VB.NET making two major
types of applications i.e. web forms and web services.
VB.NET supports structured exception handling using Try...Catch...Finally.
Various controls can be added to the toolbar which make application
development more efficient.
VB.NET uses ADO.NET, a new data handling model to communicate with
databases on local machines or on a network and also it makes handling of
data on the internet easy.
Data in ADO.NET is represented in XML format and is exchanged in the
same format.

Namespaces

A namespace is a collection of various classes. The namespace with all the built-in
VB functionality is the system namespace. The VB applications are developed

Lab:.NET Programming

NOTES

Self-Instructional
6 Material

using classes from the .NET system namespace. All other namespaces are based
on this system namespace.

System: It includes necessary classes and base classes for commonly used
data types, events and exceptions.
System.Collections: It includes classes and interfaces which define
collection of objects such as queues, list, arrays, hash tables etc.
System.Globalization: It includes classes that specify culture-related
information.
System.IO: It includes classes for data access with Files System.NET that
provides interface to protocols used on the internet.
System.Diagnostics: It includes classes that allow to debug our application
and to step through our code.
System.Threading: It includes classes and interfaces to support
multithreading.
System.Data: It includes classes which lets us handle data from data
sources.
System.Data.OleDb: It includes classes that support the OLEDB .NET
provider.
System.Security: It includes classes to support the structure of common
language runtime security system.
System.Data.SqlClient: It includes classes that support the SQL Server
.NET provider.
System.Drawing: It provides access to drawing methods.
System.Reflection: It includes classes and interfaces that return information
about types, methods and fields.
System.Windows.Forms: It includes classes for creating Windows based
forms.
System.Web: It includes classes and interfaces that support browser-server
communication system.
Web.Services: It includes classes that let us build and use Web services.
System.XML: It includes classes for XML support.

Console Applications

Console Applications are command-line oriented applications that allow us to
read and characters from the console. Console applications are written in code
and are supported by the System.Console namespace. The console applications
are executed in the DOS.

NOTES

Self-Instructional
Material 7

Lab:.NET ProgrammingAn Example of Console Application

Create a folder in C drive with any name and make sure the console applications
which you open are saved there. The default location where all the .NET applications
are saved is C:\Documents and Settings\Administrator\My Documents\Visual
Studio Projects. The new project dialogue looks like the Figure 2.

Fig. 2 Starting Console Applications

The following code is an example of a console application.
Module Module1
Sub Main()
System.Console.Write(“Running program with Console
Application”)
End Sub
End Module

When, you run the code by selecting Debug’!Start from the main menu or
by pressing F5 on the keyboard. The result “Running program with Console
Application” is displayed on a DOS window. Alternatively, you can run the program
using the VB compiler (vbc). To do that, go to the Visual Studio.NET command
prompt on selecting from Start’!Programs’!Visual Studio.NET’!Visual Studio.NET
Tools’!Visual Studio.NET Command Prompt and type: c:\examples>vbc
example1.vb.

Lab:.NET Programming

NOTES

Self-Instructional
8 Material

The result “Running program with Console Application” is displayed on a
DOS Window as shown in the screenshot given below.

Explanation

See the first line, here we are creating a VB Module and Modules are designed to
hold code. The code which we write should be within the module. Next line starts
with Sub Main () which is the entry point of the program. The third shows that we
are using the Write method of the System.Console class to write to the console.

How to Comment the Code?

In VB.NET, comments start with a single quote (‘) character and the statements
following that are ignored by the compiler. Comments are generally used to define
that what is going in the program. It also provides an idea about the flow of the
program. The general form looks like this:

Dim I as Integer
‘declaring an integer

Visual Studio .NET IDE

Visual Studio.NET IDE (Integrated Development Environment) provides the
environment for developing the .NET based applications which come with various
features. Visual Studio .NET IDE is an upgraded version of all previous IDE’s by
Microsoft. It provides many options and includes many features which simplify
application development. Following the the important features of IDE.

1. IDE is Customizable: It can be customized based on your preferences and
this can be done using My Profile settings. You can set the IDE screen the
way you want and you can also filter the help files based on the language of
your choice or set the way the keyboard behaves.

2. One IDE for all .NET Projects: It provides the same environment for
developing all types of .NET applications. Applications can range from
single windows applications to complex one.

NOTES

Self-Instructional
Material 9

Lab:.NET Programming3. Built-in Browser: The IDE have a built-in browser that helps to browse
internet without launching another application. With the help of built-in-
browser, you can look for source codes, online help files, additional resources
etc.

4. Option to choose from Multiple Programming Languages: VS.NET provides
various options to choose from multiple programming languages. You can
also integrate multiple programming languages in one .NET solution and
edit that with the IDE. You can choose the programming language of your
choice to develop applications based on your expertise in that language.

You can open the VS.NET using the steps i.e. Start’!Programs’!Microsoft Visual
Studio .NET’!Microsoft Visual Studio.NET. The start page also allows us to select
from the most recent projects.

The Integrated Development Environment (IDE) is shown in the screenshot
given below. It shows the interface with which we actually work with. In this IDE,
there is toolbars towards the left side along with the Solution Explorer window
towards the right.

New Project Dialogue Box

The New Project dialogue box is used to create a new project which shows the
name the project and also shows it’s location on the disk where it is saved. The

Lab:.NET Programming

NOTES

Self-Instructional
10 Material

default location on the hard disk where all the projects are saved is
C:\DocumentsandSettings\Administrator\MyDocuments\VisualStudioProjects.

There are various templates under project types. Some are given below:
1. Windows Application: It is used to create standard windows based

applications.
2. Web Control Library: It is used to create user-defined controls for the

web.
3. Windows Control Library: It is used to create our own windows controls,

where you group some controls, add it to the toolbox also.
4. Console Application: It is used to create command line based applications.
5. Class Library: It is used to provide functionality similar to Active X and

DLL by creating classes that access other applications.
6. ASP.NET Web Application: It is used to create web-based applications,

create web pages, web applications and web services using IIS.
7. Windows Service: They are designed for special purpose and will keep

running and come to an end only when the system is shut down.
8. ASP.NET Web Service: It is used to create XML web services.

Solution Explorer Window

The Solution Explorer window provides an overview of the solution with which
we are working and lists all the files in the project as shown below.

NOTES

Self-Instructional
Material 11

Lab:.NET ProgrammingServer Explorer Window

The Server Explorer window is a great tool and it provides drag and drop feature.
With the help of server explorer, it is easy to work with databases. If we drag and
drop a database table onto a form, VB .NET automatically creates connection
and command objects which are required to access the table.

Intellisense

Intellisense is responsible for the boxes that open when we type the code. It
provides a list of options which make language references easily accessible. It
helps us to find the required information.

Code Designer Window

Code Designer window is used to edit and write code. This window will open,
when we double-click on a form or any control. This is the place where we write
all the code for the application. The right box allows us to select the part of code
that we want to work on and the left box allows us to select the object’s code we

Lab:.NET Programming

NOTES

Self-Instructional
12 Material

are working with. The “+” and “-” boxes are used to display code that is created
in VB.NET.

Properties Window

Properties window can be used to set properties for various objects at design
time. The properties window can be viewed by pressing F4 on the keyboard or
by selecting View’!Properties Window from the main menu. For example to change
the name, text, font, font size, color etc. of various controls like textbox, button
etc. which can be done easily using the properties window.

Command Window

You can add new item to the project, add new project and so on using the command
window. The command window that is given below displays all possible commands
with file. You can view the command window by selecting View’!Other
Windows’!Command Window from the main menu.

NOTES

Self-Instructional
Material 13

Lab:.NET Programming

Class View Window

With the help of class view window, you can find a member of a class. The class
view window presents projects and solutions in terms of the classes they contain
and the members of these classes. The class view can be access through view’!class
view. The class view window displayed all the methods and events for the controls
which were available on the form.

Output Window

The output window as show below is used to displays the results of building and
running applications.

Lab:.NET Programming

NOTES

Self-Instructional
14 Material

Object Explorer Window

The object explorer window lists all the objects in our code and gives us access to
them. You can view the object explorer window by selecting View’!Other
Windows’!Object Browser from the main menu. Or it can be access through
view’!object browser.

Toolbox Window

The toolbox window provides access to all components and controls. This window
consists of various tabs like components, data, window forms, general etc. Data
tab displays tools for creating datasets and making data connections. The Clipboard
Ring tab displays recent items stored in the clipboard and allows us to select from
them.The Windows Forms tab displays tools for adding controls to forms. The
General tab is left empty by default. The Clipboard Ring tab displays recent items
stored in the clipboard and allows us to select from them.

NOTES

Self-Instructional
Material 15

Lab:.NET ProgrammingWindows Forms

In VB .NET forms are based on the System.Windows.Forms namespace and the
form class is System.Windows.Forms.Form. These forms are the base on which
we develop and build our entire user interface. The form class is based on the
Control class and it allows it to share many methods and properties with other
controls. As shown below windows forms, it displays window form application.
Once you click OK, then a new Form opens having title, Form1, towards the top-
left side of the form. It also consists of close buttons, maximize, minimize towards
the top right of the form. The main area of the form in which we work is called the
Client Area. It’s in this client area in which we design the user interface leaving all
the code to the code behind file.

The Figure below shows that how a window form look like.

Lab:.NET Programming

NOTES

Self-Instructional
16 Material

Working with Intrinsic Controls

There are two types of controls in VB i.e. intrinsic and extrinsic. Intrinsic controls
are the built-in controls that cannot be changed or removed from the toolbox. You
can use them from the toolbox. The Table 1 below lists the intrinsic controls.

Table 1 The visual basic 6 intrinsic controls

Controls Description

Label It displays the text on a form.
Frame This control Serves as a container to other controls
CheckBox It enables the users to select or deselect from an option.
ComboBox This control allows the users to add a new value or select from

a list of items.
HscrollBar It allows scrolling horizontally from a list of data in another

control.
Timer It allows the program to perform actions in real time, without

user interaction.
DirListBox It enables to select a directory or folder.
Shape Reflect a shape on a form.
Image It displays images on a form.
OLE Container It enables you to add the functionality of another Control

program to your program.
PictureBox It can serve as a container and displays images on a form.
TextBox It is used to display text and also enables users to enter or edit

new or existing text.
CommandButton Used to initiate actions.
OptionButton It allows users select one choice from a group.
ListBox It allows users to select from a list of items.
VscrollBar It helps in scrolling vertically through a list of data in another

control.
DriveListBox Used to select a disk drive.
FileListBox Selects a file.
Line Displays a line.
Data Used to connect to a database.

Adding and Removing Controls

Double-clicking and by drawing are the two ways to add controls on a form.
Whenever you double-click an icon on the toolbar, the associated control appears
on your form. You can put it wherever you want it, when you draw a control on
your form. Following are the steps to draw a control on a form.

1. Click on the control’s toolbox icon.
2. Whenever you move the mouse on your form the pointer shapes as crosshair

instead of an arrow. Now click and hold the button at the position where
you want the control to go.

3. Drag the mouse based on your choice.

NOTES

Self-Instructional
Material 17

Lab:.NET Programming4. When the control is in the proper size, let go of the mouse button.
Following are the steps to remove a control from a form.

1. Select the control you want to delete.
2. Press the Delete key.

You can also delete a control by right-clicking from the context menu that appears
and select delete.

Data Types in VB .NET

There are various data types in VB .NET based on their type and size as shown
below.

Data Type Size in Bytes Description
Boolean A Boolean type

depends on the
implementing platform

True or False

Byte 1 byte Byte Range start from 0 to 255 (unsigned)
Char 2 bytes Char Range start from 0 to 65535 (unsigned)
Date 8 bytes Date range can be 0:00:0 (midnight) January 1, 0001 to

11:5959 PM of December 31, 9999.
Integer 4 bytes -2,147,483,648 to 2,147,483,647 (signed)
Long 8 bytes -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

(9.2…E + 18) (signed)
Object Object size based

on the platform
such as 4 bytes in
32-bit and 8 bytes
in 64-bit platform

It can store any type of data defined in a variable of type
Object

SByte 1 byte -128 to 127 (signed)
Short 2 bytes -32,768 to 32,767 (signed)
Single 4 bytes -3.4028235E + 38 to -1.401298E-45 for negative values;

And for positive value: 1.401298E-45 to 3.4028235E + 38.
String String Datatype

depend on the
implementing

platform

It accepts Unicode character from 0 to approximately 2
billion characters.

Decimal 16 bytes Range from 0 to +/-
79,228,162,514,264,337,593,543,950,335
(+/-7.9…E+28) without any decimal point;
And 0 to +/-7.92281625142264337593543950335 with 28
position to the right of the decimal

Double 8 bytes -1.79769313486231570E+308 to -4.94-65645841246544E-
324 for negative values;
4.94065645841246544E-324 to
1.79769313486231570E+308, for positive values

Access Specifiers

Access specifiers are used to specify how a variable, method, class can be used.
Some of the access specifiers are given below:

Public: It provides a variable public access, i.e. there is no restriction on
their accessibility.
Private: It provides a variable private access, i.e. they are accessible only
within their declaration content

Lab:.NET Programming

NOTES

Self-Instructional
18 Material

Protected: It provides a variable accessibility within their own class or a
class derived from that class.
Friend: It provides a variable friend access i.e. they are accessible within
the program that contains their declaration.
Protected Friend: It provides a variable both protected and friend access.
Static: It makes a variable static i.e. the variable will hold the value even
the procedure in which there declaration ends.
Shared: It means a variable can be shared across many instances and not
associated with a specific instance of a class or structure.
ReadOnly: It makes a variable only to be read and cannot be written.

Variables

Variables are used to store data and each variable has a name. VB.NET needs
variables to be declared before using them. Variables are declared with the Dim
keyword. Dim stands for Dimension. For example:

Imports System.Console
Module Module1
Sub Main()
Dim a,b,c as Integer
‘declaring three variables of type integer
x=20
y=30
z=x+y
Write(“Sum of x and y is” & z)
End Sub
End Module

NOTES

Self-Instructional
Material 19

Lab:.NET ProgrammingThe output of the above code is shown below:

Arrays

Arrays are the collection of variables of similar data types. Arrays are programming
constructs that store data and allow us to access them by numeric index or subscript.
Arrays in Visual Basic.NET inherit from the Array class in the system namespace.
Arrays help us create shorter and simpler code in many situations. All arrays in VB
are zero based i.e. index of the first element is zero and they are numbered
sequentially. The number of array elements must be specified by indicating the
upper bound of the array. The upper bound is the number that indicates the index
of the last element of the array. An array can have one dimension (linear arrays) or
more than one (multidimensional arrays). Arrays are declared using Dim, ReDim,
static, private, public and protected keywords. The dimensionality of an array
refers to the number of subscripts used to identify an individual element. In visual
basic, we can specify up to 32 dimensions. Arrays don’t have fixed size in visual
basic. Consider an example given below:

Imports System.Console
Module Module1
Sub Main()
Dim fruit(5) As String
‘declaring an array
fruit(0) = “Apple”
fruit (1) = “Banana”
fruit (2) = “Orange”
fruit (3) = “kiwi”
fruit (4) = “Guaua”
fruit (5) = “Pomegranate”
‘storing values in the array
WriteLine(“Name of the Fruit in the second location” & “
“ & fruit(2))
‘displaying value from array
End Sub
End Module

Lab:.NET Programming

NOTES

Self-Instructional
20 Material

The output of the above code is given below:

Reinitializing Arrays

We can change the size of an array after creating them. You can use ReDim statement
to change the number of elements in an array. The ReDim statement assigns a
completely new array object to the specified array variable. The following lines of
code demonstrate that the code reinitializes the Test array declared above.

Dim Test(15) as Integer
ReDimTest(20) as Integer
‘Reinitializing the array

When using the Redim statement all the data contained in the array gets lost. If you
want to preserve existing data when reinitializing an array, then you should use the
Preserve keyword which is given below:

Dim Test() as Integer={2,4,6}
‘declares an array an initializes it with three members
ReDim Preserve Test(20)
‘resizes the array

Multidimensional Arrays

All arrays which were mentioned above are one dimensional or linear array. There
are two kinds of multidimensional arrays supported by the .NET framework i.e.
rectangular arrays and jagged arrays.

NOTES

Self-Instructional
Material 21

Lab:.NET ProgrammingRectangular arrays

Rectangular arrays are arrays in which each member of each dimension is extended
in each other dimension by the same length. We declare a rectangular array by
specifying additional dimensions at declaration. The following lines of code
demonstrate the declaration of a multidimensional array.

Dim rectArray(4, 2) As Integer
‘declares an array of 5 by 3 members which is a 15 member
array
Dim rectArray(,) As Integer = {{2, 1, 4}, {5, 7, 9}, {12,
10, 14}}
‘setting initial values

Jagged Arrays

Jagged Array is also multidimensional array in which the length of each array can
differ. This array can be used is to create a table in which the number of columns
differ in each row. Say, if row1 has 3 columns, row2 has 3 columns then row3 can
have 4 columns, row4 can have 5 columns and so on. The following code
demonstrates the concept of jagged arrays.

Dim fruit(2)() as String
‘declaring an array of 3 arrays
fruit(0)=New String(){“apple”,”banana”,”orange”}
‘initializing the first array to 3 members and setting
values
fruit(1)=New String(){“kiwi”,”Pomegranate,
”guaua”,”banana”}
‘initializing the second array to 4 members and setting
values
fruit(2)=New String(){“apple”,”banana”,”kiwi”,
”guaua”,”orange”}
‘initializing the third array to 5 members and setting
values

Methods

A Method is a procedure which is built into the class. Methods are series of
statements which are executed when called. Methods allow us to handle code in
an organized fashion. There are two types of methods in VB.NET i.e. those that
return a value (called functions) and those that do not return a value (Sub
Procedures). Both of them are discussed below.

Sub Procedures

Sub procedures are methods that do not return a value. Sub Main (), the starting
point of the program itself is a sub procedure. Every time when the Sub procedure
is called the statements within it are executed until the End Sub is encountered.

Lab:.NET Programming

NOTES

Self-Instructional
22 Material

The control is transferred to Main Sub procedure automatically which is called by
default when the application starts execution. Consider the example given below:

Module Module1
Sub Main()
‘sub procedure Main() is called by default
Display()
‘sub procedure display() which we are creating
End Sub

Sub Display()
System.Console.WriteLine(“Program by using Sub
Procedures”)
‘executing sub procedure Display()
End Sub
End Module

The output of the above code is given below:

Functions

Function is a method that returns a value. Functions are used to evaluate, calculate
and transform data. Declaring a function is similar to declaring a sub procedure.
Functions are declared with the Function keyword. Consider the following example
code:

NOTES

Self-Instructional
Material 23

Lab:.NET ProgrammingImports System.Console
Module Module1
Sub Main()
Write(“Sum is” & “ “ & Add())
 ‘calling the function
End Sub

Public Function Add() As Integer
‘declaring a function add
Dim i, j As Integer
‘declaring two integers and assigning values to them
i = 40
j = 30
Return (i + j)
‘performing the sum of two integers and returning it’s
value
End Function

End Module

The output from above code is given below.

Lab:.NET Programming

NOTES

Self-Instructional
24 Material

BLOCK 2

This block will cover the following topics:
1. Working with forms and dialogs.
2. Working with menus, data controls and common dialogs.

Working with Forms

Before starting to work with form, you must know about the properties of window
form.The default properties of the form can be found by selecting View’!Properties
Window or by pressing F4 on the keyboard. Some of the properties are:

Appearance: Appearance is used to make changes to the appearance of
the form like background color, background image etc.
Layout: With the help of layout, we can set the location of the form,
maximize, minimize size of the form.
Behavior: The behavior property is used to enable or disable the form by
setting the property to True/False.
Form Event: The default event of a form is to load event which looks like
this in code given below:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs)_ Handles MyBase.Load End
Sub

You can write code in the load event of the form just like you write for all
other controls. An example is given below:

You can run the Form by pressing F5 on the keyboard or by selecting
Debug’!Start from the main menu. When you run a blank form with no controls on
it then nothing is displayed.

Now, add a TextBox and a Button to the form from the toolbox. After
adding the TextBox and Button, you can run the program. The output window

NOTES

Self-Instructional
Material 25

Lab:.NET Programmingdisplays a TextBox and a Button. But when you click the Button nothing happens.
So to do the event for the button, get back to design view and double-click on the
button.

Public Class Form1
Inherits System.Windows.Forms.Form
#Region “ Windows Form Designer generated code “
Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs)_ Handles MyBase.Load
End Sub
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As _ System.EventArgs) Handles Button1.Click
End Sub
End Class

You can write the code TextBox1.Text=” This is Window Form “ in the
Click event of the Button and run the application. When you click the button the
output “ This is Window Form “ is displayed in the TextBox.

Another way is that you can also use the MessageBox functions to display
text when you click on the Button. So for that place a Button on the form and
double-click on that to open its event. Write this line of code, MsgBox (“This is
Window Form “).

 It looks like the given below in the code.
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As _ System.EventArgs) Handles Button1.Click
MsgBox(“This is Window Form “)
End Sub

When, you run the form and click the Button, a small message box displays,
“Welcome to Forms”. The output is given below:

Lab:.NET Programming

NOTES

Self-Instructional
26 Material

Adding a New Form to the Project

You can add a new form to the existing project. For adding a new form, with the
solution explorer, just right-click on the project name in solution explorer and
select Add’!Add Windows Form. After adding a new form, you need to set the
new form as Startup object. To do that, right-click on the project name in solution
explorer window and select properties which displays the Property Pages window.
On this window click the drop-down box which is labeled as Startup Object. This
will displays all the forms available in the project.

You can select the form which you want to be displayed, when you run the application
and click Apply. So, when you run the application, the form you assigned as
Startup object will be displayed.

Working with Multiple Forms

In visual Basic .NET, we can work with multiple forms. For example, take three
forms in your application Form1, Form2 and Form3. Now drag a buttons form
the toolbox on Form1 andForm2. Now, we want to open Form2 when a button
on the Form1 is clicked and when we clicked the button on Form2, Form3 will
displayed. Double click on Button1 on Form1 and place the code given below in
the click event of the button. The code for that is given below:

Public Class Form1
 Dim F2 As New Form2
 ’creating a reference to Form2
 Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)Handles Button1.Click
 F2.Show()
 End Sub
End Class

NOTES

Self-Instructional
Material 27

Lab:.NET Programming

After that, Double click on Button1 on Form2 and place the code given
below in the click event of the button.

Public Class Form2
 Dim F3 As New Form3
 ’creating a reference to Form3
 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)Handles Button1.Click
 F3.Show()
 End Sub
End Class

The output of the above code is given below:

VB.NET Dialog Box

A dialog box is a temporary window that accepts user response with the help of
keyboard or mouse to open, save a file, for alert messages, print, color etc. VB.NET
dialog box is used to create interaction between the user and the application. The
dialog box appears in a form when the program needs to interact with users, like
an alert message, when an error occurs, when the program requires immediate

Lab:.NET Programming

NOTES

Self-Instructional
28 Material

action, acknowledgment from the user etc. VB.NET Dialog box inherits the
CommonDialog class and overrides the RunDialog() method of the base class
which is used to create the PrintDialogbox, Font Dialog box, OpenFileDialog
box, Color. When the dialog box calls its ShowDialog() method,
the RunDialog() method is automatically called in a window form.

There are various ShowDialog() method in the Windows Form.
OK: It returns a DialogResult.OK, when the user clicks the OK button
of the Dialog box.
Ignore: It is used when a user clicks on the Ignore button to return the
DialogResult.Ignore.
Abort: It is used when a user clicks on the Abort button to return the
DialogResult.Abort value.
Cancel: It returns DialogResult.Cancel, when a user clicks on the Cancel
button of the Dialog Box.
No: It returns DialogResult.No, when a user clicks on the No button of
the Dialog box.
None: It is used to return nothing when the user clicks on the None
button, and the dialog box is continued running.
Yes: It returns DialogResult.Yes, when a user clicks the Yes button of
the dialog box.
Retry: It returns a DialogResult.Retry, when a user clicks on the Dialog
Box Retry button.

There are various types of commonly used dialog box controls in the VB.NET
that are given below:

1. Color Dialog Box: It allows the user to select a color from the predefined
colors or specify the custom colors.

2. OpenFile Dialog Box: It allows the users to select a file to open and
allows the selection of multiple files.

3. Print Dialog Box: It allows the user to print documents by selecting the
printer and setting of the page printed through the Windows application.

4. Font DialogBox: It allows the user to select the font size, font, style and
color to be applied to the current text selection.

Consider an example given below:
 Dialog.vb
Public Class Dialog
 Private Sub Dialog_Load(sender As Object, e As E
ventArgs) Handles MyBase.Load Button1.Text = ”Click Me” ’Set the name of button
 Me.Text = ”clickmebutton” ’ Set the title name for the Windows Form
 Button1.BackColor = Color.Aqua ’ Background color of the button

NOTES

Self-Instructional
Material 29

Lab:.NET Programming End Sub
 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
Dim result1 As DialogResult = MessageBox.Show(“Do you like
VB.NET programming language?”, ”Important Question”, MessageBoxButtons.YesNo)
End Sub
End Class

After clicking on Click Me button, the output produced is shown below:

VB.NET Menu Control

A menu is located on the menu bar. It consists of a list of various commands.
Menus are made of MenuItem objects that represent individual parts of a menu.
MainMenu is the container for the Menu structure of the form. By using the
MainMenu control, you can create a main menu object on your form. The figure
given below shows the dragging of Menustrip Object to the Form.

Lab:.NET Programming

NOTES

Self-Instructional
30 Material

After dragging, Menustrip control on the form, you can create menu items by
typing a value into the “Type Here” box on the menubar as shown below.

To create a separator bar, just right click on menu and go to
insert’!Separator.

After doing the above steps, double click on each menu item and write the
code. When clicking a menu item, the program shows a messagebox as shown
below.

Public Class Form1
Private Sub ToolStripMenuItem1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ToolStripMenuItem1.Click
 MsgBox(“Working with MenuStrip Control”)
 End Sub
End Class

The output of the above code is shown below:

NOTES

Self-Instructional
Material 31

Lab:.NET ProgrammingApplication with Data Controls

1. Write a program to demonstrate the implementation of various data
controls in ASP.NET using VB.
Step 1: Create a ASP.NET based web project using following steps:

File New Project ASP NET Empty Web
Application DataControls Ok.

Step 2: Right click on data controls in Solution Explorer, Add Windows Forms,
name the form as:

• DataView.aspx
• formView.aspx
• GridView.aspx
• ListView.aspx

As shown in Solution Explorer below:

Step 3: Open each data control form to implement their functionality as shown
below:

a. DataView.aspx

Lab:.NET Programming

NOTES

Self-Instructional
32 Material

Step I: From Menu, Click on Table and then click Insert Table as per the
requirements:
Step II: From ToolBox select and insert into any of the table cell or anywhere on
the form the DataView Control.sb
Step III: Click onr arrow sign appears after you click over DataView Control in
DataView.aspx and click on choose data source to link with this DataView Control
as shown below:

Step IV: Select datasource from the database you have created using (say)
SQLServer. Follow the steps as and when prompted to fullfil connection with
desired data source in database.
Step V: Here in this case the database selected contains five rows with three
columns as shown in figure above:
Step VI: Before you build the project you need to specify the server to host the
project. In order to does that click on project from Menu bar, click DataControl
properties option.
Step VII: Click on Web from the options displayed on the left side of the form
displayed. Go to Start Action tab, choose specific page to start your project to
run. From Servers tab select “Use Visiual Studio Development Server”, check
“Auto-Assign Port”.
Step VIII: Build the project.
Step IX: Specify the browser to display the outcome of the project.
Step X: If project builds without errors the resultant display will be loaded into a
browser specified by the programmer say FireFox in this case.

NOTES

Self-Instructional
Material 33

Lab:.NET ProgrammingThe Design of DataView.aspx will look like the figure shown below:

DataView.aspx source code will look like as given below:
<styletype=”text/css”>

.auto-style1{
width: 100%;
height: 378px;

}
.auto-style2{

width: 251px;
}
.auto-style3{

width: 86px;
}
.auto-style4{

width: 67px;
}

</style>
<p>

<tableclass=”auto-style1”>
<tr>

Lab:.NET Programming

NOTES

Self-Instructional
34 Material

<tdclass=”auto-style4”> </td>
<tdclass=”auto-style2”>DataViewDemo</

strong></td>
<tdclass=”auto-style3”> </td>

</tr>
<tr>

<tdclass=”auto-style4”> </td>
<tdclass=”auto-style2”> </td>
<tdclass=”auto-style3”> </td>

</tr>
<tr>

<tdclass=”auto-style4”> </td>
<td class=”auto-style2”><asp:datalist

runat=”server”DataSourceID=”SqlDataSource1”>
<ItemTemplate>

Name:
<asp:Label ID=”NameLabel” runat=”server”

Text=’<%#Eval(“Name”)%>’ />

Customer_PH:
<asp:Label ID=”Customer_PHLabel”

runat=”server”Text=’<%#Eval(“Customer_PH”) %>’/>

Customer_Type:
<asp:Label ID=”Customer_TypeLabel”

runat=”server” Text=’<%#Eval(“Customer_Type”)%>’/>

</ItemTemplate>
</asp:datalist>

</td>
<tdclass=”auto-style3”> </td>

</tr>
</table>

</p>
<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
C o n n e c t i o n S t r i n g = ” < % $
ConnectionStrings:CustomerDetailConnectionString %>”
SelectCommand=”SELECT * FROM [Cust_Det]”></
asp:SqlDataSource>
<%@ Page Language=”vb” AutoEventWireup=”false”
C o d e B e h i n d = ” D a t a V i e w . a s p x . v b ”

NOTES

Self-Instructional
Material 35

Lab:.NET ProgrammingInherits=”DataContols.DataView”%>
<!DOCTYPEhtml>
<htmlxmlns=”http://www.w3.org/1999/xhtml”>
<headrunat=”server”>

<title></title>
</head>
<body>

<form id=”form1”runat=”server”>
<div>

</div>
</form>

</body>
</html>

DataView.aspx.vb
‘Programto implementDataView Control inASP.NET
Public Class DataView

InheritsSystem.Web.UI.Page
ProtectedSub Page_Load(ByValsender As Object, ByVale

AsSystem.EventArgs)HandlesMe.Load
End Sub

End Class
Step 4: After successful build and start the output window obtained is shown in
figure below:

Lab:.NET Programming

NOTES

Self-Instructional
36 Material

Similarly the other DataControls can be used to implement their functionality
in your ASP.NET web project.
2. Write a program to use FormView data control.
Step 1: Follow similar steps as discussed above for DataView Control. However,
instead of DataView Control you need to Use FormView Control from toolbox.
Step 2: Choose data source for FormView Control and design the windows from
“formview.aspx” as shown below:

Source code of formview.aspx is given below:
formview.aspx

<%@ Page Language=”vb” AutoEventWireup=”false”
C o d e B e h i n d = ” f o r m v i e w . a s p x . v b ”
Inherits=”DataContols.formview”%>
<!DOCTYPEhtml>
<htmlxmlns=”http://www.w3.org/1999/xhtml”>
<head id=”Head1”runat=”server”>

<title></title>
<styletype=”text/css”>

.auto-style1{
width: 100%;

}
.auto-style2{

width: 368px;
}

</style>
</head>

<body>
<form id=”form1”runat=”server”>

<div >
<tableclass=”auto-style1”>

<tr>

NOTES

Self-Instructional
Material 37

Lab:.NET Programming<td> </td>
<td class=”auto-style2”>FormView Control

Demo</td>
<td> </td>

</tr>
<tr>

<td> </td>
<tdclass=”auto-style2”> </td>
<td> </td>

</tr>
<tr>

<td> </td>
<tdclass=”auto-style2”>

<asp:FormView ID=”FormView1” runat=”server”
DataSourceID=”SqlDataSource1”Height=”78px”>

<EditItemTemplate>
Name:
<asp:TextBox ID=”NameTextBox”

runat=”server”Text=’<%# Bind(“Name”)%>’ />

Customer_PH:
<asp:TextBox ID=”Customer_PHTextBox”

runat=”server”Text=’<%#Bind(“Customer_PH”)%>’/>

Customer_Type:
<asp:TextBox ID=”Customer_TypeTextBox”

runat=”server” Text=’<%#Bind(“Customer_Type”)%>’/>

<asp:LinkButton ID=”UpdateButton”

runat=”server”CausesValidation=”True”CommandName=”Update”
Text=”Update”/>

& n b s p ; < a s p : L i n k B u t t o n
ID=”UpdateCancelButton” runat=”server”
CausesValidation=”False”CommandName=”Cancel”Text=”Cancel”
/>

</EditItemTemplate>
<InsertItemTemplate>

Name:
<asp:TextBox ID=”NameTextBox”

runat=”server”Text=’<%# Bind(“Name”)%>’ />

Customer_PH:
<asp:TextBox ID=”Customer_PHTextBox”

Lab:.NET Programming

NOTES

Self-Instructional
38 Material

runat=”server”Text=’<%#Bind(“Customer_PH”) %>’/>

Customer_Type:
<asp:TextBox ID=”Customer_TypeTextBox”

runat=”server” Text=’<%#Bind(“Customer_Type”)%>’/>

<asp:LinkButton ID=”InsertButton”

runat=”server”CausesValidation=”True”CommandName=”Insert”
Text=”Insert”/>

& n b s p ; < a s p : L i n k B u t t o n
ID=”InsertCancelButton” runat=”server”
CausesValidation=”False”CommandName=”Cancel”Text=”Cancel”
/>

</InsertItemTemplate>
<ItemTemplate>

Name:
<asp:Label ID=”NameLabel” runat=”server”

Text=’<%#Bind(“Name”)%>’ />

Customer_PH:
<asp:Label ID=”Customer_PHLabel”

runat=”server”Text=’<%#Bind(“Customer_PH”) %>’/>

Customer_Type:
<asp:Label ID=”Customer_TypeLabel”

runat=”server” Text=’<%#Bind(“Customer_Type”)%>’/>

</ItemTemplate>
</asp:FormView>
<asp:SqlDataSource ID=”SqlDataSource1”

runat=”server” ConnectionString=”<%$
ConnectionStrings:CustomerDetailConnectionString %>”
SelectCommand=”SELECT * FROM [Cust_Det]”></
asp:SqlDataSource>

</td>
<td> </td>

</tr>
</table>
</div>

</form>
</body>

</html>

NOTES

Self-Instructional
Material 39

Lab:.NET ProgrammingCode behind formview.aspx that is formview.aspx.vb is given below:
‘Implementation of FormView DataControl in asp.net using
VB
Public Class formview

Inherits System.Web.UI.Page
Protected Sub Page_Load(ByVal sender As Object, ByVal

e As System.EventArgs) Handles Me.Load
End Sub
Protected Sub SqlDataSource1_Selecting(sender As

Object, e As SqlDataSourceSelectingEventArgs) Handles
SqlDataSource1.Selecting

End Sub
End Class

Step 3: Build and run the project. The output generated is shown in figure below:

Note: FormView data control displays only a single row retrieved from the linked
data source into the browser window as shown above.
3. Write a program to use GridView data control.
Step 1: Follow similar steps as discussed above for DataView Control. However,
instead of DataView Control you need to Use GridViewControl from toolbox.
Step 2: Choose data source for to be linked with GridView Control and design
the windows from “Gridview.aspx” as shown below:

Lab:.NET Programming

NOTES

Self-Instructional
40 Material

Source code of Gridview.aspx is given below:
‘Gridview.aspx
<%@ Page Language=”vb” AutoEventWireup=”false”
C o d e B e h i n d = ” G r i d v i e w . a s p x . v b ”
Inherits=”DataContols.Gridview” %>
<!DOCTYPE html>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>

<title></title>
<style type=”text/css”>

.auto-style1 {
width: 100%;

}
.auto-style2 {

width: 206px;
}

</style>
</head>
<body>

<form id=”form1” runat=”server”>
<div >

<asp:Label ID=”Label1” runat=”server”
Text=”GridView Demo” ></asp:Label>

<table class=”auto-style1”>

<tr>
<td> </td>
<td class=”auto-style2”><h3>GridView

Demo</h3>
</td>

<td> </td>
</tr>
<tr>

<td> </td>
<td class=”auto-style2”> </td>
<td> </td>

</tr>
<tr>

<td> </td>

NOTES

Self-Instructional
Material 41

Lab:.NET Programming<td class=”auto-style2”>
<asp:GridView ID=”GridView1”

runat=”server” AutoGenerateColumns=”False”
DataSourceID=”SqlDataSource1”>

<Columns>
<asp:BoundField DataField=”Name”

HeaderText=”Name” SortExpression=”Name” />
< a s p : B o u n d F i e l d

DataField=”Customer_PH” HeaderText=”Customer_PH”
SortExpression=”Customer_PH” />

< a s p : B o u n d F i e l d
DataField=”Customer_Type” HeaderText=”Customer_Type”
SortExpression=”Customer_Type” />

</Columns>
</asp:GridView>

</td>
<td> </td>

</tr>
</table>
<asp:SqlDataSource ID=”SqlDataSource1”

runat=”server” ConnectionString=”<%$
ConnectionStrings:CustomerDetailConnectionString %>”
SelectCommand=”SELECT * FROM [Cust_Det]”></
asp:SqlDataSource>

</div>
</form>

</body>
</html>
Code behind Gridview.aspx that is Gridview.aspx.vb is
given below:
‘Gridview.aspx.vb
‘Implementation of GridView DataControl in asp.net using
VB
Public Class Gridview

Inherits System.Web.UI.Page
Protected Sub Page_Load(ByVal sender As Object, ByVal

e As System.EventArgs) Handles Me.Load
End Sub
Protected Sub SqlDataSource1_Selecting(sender As

Object, e As SqlDataSourceSelectingEventArgs) Handles
SqlDataSource1.Selecting

End Sub
Protected Sub GridView1_SelectedIndexChanged(sender

Lab:.NET Programming

NOTES

Self-Instructional
42 Material

As Object, e As EventArgs) Handles
GridView1.SelectedIndexChanged

End Sub
End Class

Step 3: Build and run the project. The output generated is shown in figure given
below:

4. Write a program to use ListView data control.
Step 1: Follow similar steps as discussed above for DataView Control. However,
instead of DataView Control you need to Use ListViewControl from toolbox.
Step 2: Choose data source for to be linked with ListView Control and design the
windows from “ListView.aspx” as shown below:

Source code of ListView.aspx is given below:
‘ListView.aspx
<%@ Page Language=”vb” AutoEventWireup=”false”
C o d e B e h i n d = ” L i s t V i e w . a s p x . v b ”
Inherits=”DataContols.ListView” %>
<!DOCTYPE html>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<style type=”text/css”>

.auto-style1 {

NOTES

Self-Instructional
Material 43

Lab:.NET Programmingwidth: 100%;
}
.auto-style2 {

width: 374px;
}

</style>
<p>

<table class=”auto-style1”>
<tr>

<td> </td>
<td class=”auto-style2”>ListView Demo</

strong></td>
<td> </td>

</tr>
</table>

</p>
<asp:listview runat=”server” DataSourceID=”SqlDataSource1”
OnSelectedIndexChanged=”Unnamed1_SelectedIndexChanged”>

<AlternatingItemTemplate>
<td runat=”server” style=”background-color:

#FAFAD2;color: #284775;”>Name:
<asp:Label ID=”NameLabel” runat=”server”

Text=’<%# Eval(“Name”) %>’ />

Customer_PH:
<asp:Label ID=”Customer_PHLabel” runat=”server”

Text=’<%# Eval(“Customer_PH”) %>’ />

Customer_Type:
<asp:Label ID=”Customer_TypeLabel”

runat=”server” Text=’<%# Eval(“Customer_Type”) %>’ />

</td>
</AlternatingItemTemplate>
<EditItemTemplate>

<td runat=”server” style=”background-color:
#FFCC66;color: #000080;”>Name:

<asp:TextBox ID=”NameTextBox” runat=”server”
Text=’<%# Bind(“Name”) %>’ />

Customer_PH:
<asp:TextBox ID=”Customer_PHTextBox”

Lab:.NET Programming

NOTES

Self-Instructional
44 Material

runat=”server” Text=’<%# Bind(“Customer_PH”) %>’ />

Customer_Type:
<asp:TextBox ID=”Customer_TypeTextBox”

runat=”server” Text=’<%# Bind(“Customer_Type”) %>’ />

<asp:Button ID=”UpdateButton” runat=”server”

CommandName=”Update” Text=”Update” />
<asp:Button ID=”CancelButton” runat=”server”

CommandName=”Cancel” Text=”Cancel” />
</td>

</EditItemTemplate>
<EmptyDataTemplate>

<table style=”background-color: #FFFFFF;border-
collapse: collapse;border-color: #999999;border-
style:none;border-width:1px;”>

<tr>
<td>No data was returned.</td>

</tr>
</table>

</EmptyDataTemplate>
<InsertItemTemplate>

<td runat=”server” style=””>Name:
<asp:TextBox ID=”NameTextBox” runat=”server”

Text=’<%# Bind(“Name”) %>’ />

Customer_PH:
<asp:TextBox ID=”Customer_PHTextBox”

runat=”server” Text=’<%# Bind(“Customer_PH”) %>’ />

Customer_Type:
<asp:TextBox ID=”Customer_TypeTextBox”

runat=”server” Text=’<%# Bind(“Customer_Type”) %>’ />

<asp:Button ID=”InsertButton” runat=”server”

CommandName=”Insert” Text=”Insert” />
<asp:Button ID=”CancelButton” runat=”server”

CommandName=”Cancel” Text=”Clear” />
</td>

</InsertItemTemplate>
<ItemTemplate>

<td runat=”server” style=”background-color:
#FFFBD6;color: #333333;”>Name:

<asp:Label ID=”NameLabel” runat=”server”
Text=’<%# Eval(“Name”) %>’ />

NOTES

Self-Instructional
Material 45

Lab:.NET Programming

Customer_PH:
<asp:Label ID=”Customer_PHLabel” runat=”server”

Text=’<%# Eval(“Customer_PH”) %>’ />

Customer_Type:
<asp:Label ID=”Customer_TypeLabel”

runat=”server” Text=’<%# Eval(“Customer_Type”) %>’ />

</td>
</ItemTemplate>
<LayoutTemplate>

<table runat=”server” border=”1” style=”background-
color: #FFFFFF;border-collapse: collapse;border-color:
#999999;border-style:none;border-width:1px;font-family:
Verdana, Arial, Helvetica, sans-serif;”>

<tr id=”itemPlaceholderContainer”
runat=”server”>

<td id=”itemPlaceholder” runat=”server”></
td>

</tr>
</table>
<div style=”text-align: center;background-color:

#FFCC66;font-family: Verdana, Arial, Helvetica, sans-
serif;color: #333333;”>

</div>
</LayoutTemplate>
<SelectedItemTemplate>

<td runat=”server” style=”background-color:
#FFCC66;font-weight: bold;color: #000080;”>Name:

<asp:Label ID=”NameLabel” runat=”server”
Text=’<%# Eval(“Name”) %>’ />

Customer_PH:
<asp:Label ID=”Customer_PHLabel” runat=”server”

Text=’<%# Eval(“Customer_PH”) %>’ />

Customer_Type:
<asp:Label ID=”Customer_TypeLabel”

runat=”server” Text=’<%# Eval(“Customer_Type”) %>’ />

</td>
</SelectedItemTemplate>

Lab:.NET Programming

NOTES

Self-Instructional
46 Material

</asp:listview>
<asp:SqlDataSource ID=”SqlDataSource1” runat=”server”
C o n n e c t i o n S t r i n g = ” < % $
ConnectionStrings:CustomerDetailConnectionString %>”
SelectCommand=”SELECT * FROM [Cust_Det]”></
asp:SqlDataSource>
<head runat=”server”>

<title></title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

</div>
</form>

</body>
</html>

Code behind ListView.aspx that is ListView.aspx.vb is given below:
ListView.aspx.vb

‘Program to demonestrate the use of ListView DataContol
in asp.net
Public Class ListView

Inherits System.Web.UI.Page
Protected Sub Page_Load(ByVal sender As Object, ByVal

e As System.EventArgs) Handles Me.Load
End Sub
Protected Sub Unnamed1_SelectedIndexChanged(sender As

Object, e As EventArgs)
End Sub

End Class
Step 3: Build and run the project. The output generated is shown in figure given
below:

Common Dialog Controls

There are various built-in dialog boxes which can be used in Windows forms.
These dialog controls are used for various tasks like opening files, saving files,

NOTES

Self-Instructional
Material 47

Lab:.NET Programmingproviding choices for colors, printing a page, page setup, fonts etc. All of these
dialog box control classes is inherited from the CommonDialog class and override
the RunDialog() function of the base class to create the specific dialog box. The
RunDialog() function is automatically invoked when a user of a dialog box calls
its ShowDialog() function.The ShowDialog method is used to display all dialog
box controls at run-time. It returns a value of the type of DialogResult enumeration.
The values of DialogResult are given below:

Yes – when user clicks a Yes button, returns DialogResult.Yes.
Abort – when user clicks an Abort button, returns DialogResult.Abort
value.
Cancel – when user clicks a Cancel button, returns DialogResult.Cancel.
Ignore – when user clicks an Ignore button, returns DialogResult.Ignore.
No – when user clicks a No button, returns DialogResult.No.
OK – when user clicks an OK button, returns DialogResult.OK.
Retry – when user clicks a Retry button, returns DialogResult.Retry.
None ” returns nothing and the dialog box continues running.

The following diagram shows the inheritance in common dialog class.

All these classes have subsequent controls that could be added from the toolbox
during design time. You can include relevant functionality of these classes either by
instantiating the class programmatically or by using relevant controls to your
application.

When you drag the control onto the form or double click any of the dialog
controls in the toolbox, it shows in the component tray at the bottom of the Windows
Forms Designer.form. Following are the commonly used dialog box controls.

SaveFileDialog: It allows the user to specify the name of the file to
save data.
OpenFileDialog: It allows the user to select a file to open.

Lab:.NET Programming

NOTES

Self-Instructional
48 Material

ColorDialog: It represents a common dialog box that displays available
colors along with controls that enable the user to define custom colors.
FontDialog: It prompts the user to choose a font from among those
installed on the local computer. It lets the user select color, font size and
font size.
PrintDialog: It lets the user to print documents by selecting a printer
and choosing which sections of the document to print.

NOTES

Self-Instructional
Material 49

Lab:.NET Programming
BLOCK 3

This block will cover the following topics:
1. Work with drag and drop event, inbuilt functions, mathematical and string

functions.
2. Understand the ADO.NET data architecture
3. Create ActiveX controls
4. Active Data Objects (ADO) and OLE DB

Drag and Drop Event

Basically in drag and drop event, it is a pointing device gesture in which the user
selects a virtual object by “grabbing” it and dragging it to a different location or
onto another virtual object.

Consider an example of drag and drop operation. For this, just create a
VB.NET windows application, and then design a form with drag and drop and
control & event procedure. To enable drag & drop for text, first you have to place
two textboxes and set allow drop property of a second text box to true and after
that write the code as given below:

Private MouseIsDown As Boolean = False ‘variable declaration
Private Sub TextBox1_MouseDown(ByVal sender As Object,
ByVal e As _
System.Windows.Forms.MouseEventArgs) Handles
TextBox1.MouseDown
‘Set a flag to show that the mouse is down.
MouseIsDown = True
End Sub

Private Sub TextBox1_MouseMove(ByVal sender As Object,
ByVal e As _
System.Windows.Forms.MouseEventArgs) Handles
TextBox1.MouseMove
If MouseIsDown Then
‘Initiate dragging.
TextBox1.DoDragDrop(TextBox1.Text,DragDropEffects.Copy)
End If
MouseIsDown = False
End Sub

Private Sub TextBox2_DragEnter(ByVal sender As Object,
ByVal e As _

Lab:.NET Programming

NOTES

Self-Instructional
50 Material

System.Windows.Forms.DragEventArgs) Handles
TextBox2.DragEnter
‘Check the format of the data being dropped.
If (e.Data.GetDataPresent(DataFormats.Text)) Then
‘Display the copy cursor.
e.Effect = DragDropEffects.Copy
Else
‘Display the no-drop cursor.
e.Effect = DragDropEffects.None
End If
End Sub

Private Sub TextBox2_DragDrop(ByVal sender As Object,
ByVal e As _
System.Windows.Forms.DragEventArgs) Handles
TextBox2.DragDrop
‘Paste the text.
TextBox2.Text = e.Data.GetData(DataFormats.Text)
End Sub

From the above code, it can be seen that the DoDragDrop method is called
in the MouseMove event and the MouseDown event is used to set a flag, which
shows that the mouse is down. In the MouseMove event, the MouseIsDown flag
is set to False. You can handle the drag in the MouseDown event also. Dring this
every time a user clicks the control, and then no-drag cursor would be displayed.

The GetDataPresent method checks the format of the data being dragged
in case of DragEnter event. In our case it is text, so the Effect property is set
to Copy, which in turn displays the copy cursor. The GetData method is used to
retrieve the text from the DataObject. In case of DragDrop event it also assigns it
to the target TextBox.

The example code given below draggs a different type of data and provides
support for both cutting and copying. For these just add two picturebox controls
and write the code given below:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As _
System.EventArgs) Handles MyBase.Load
‘Enable dropping.
PictureBox2.AllowDrop = True
End Sub

Private Sub PictureBox1_MouseDown(ByVal sender As Object,
ByVal e As _

NOTES

Self-Instructional
Material 51

Lab:.NET ProgrammingSystem.Windows.Forms.MouseEventArgs) Handles
PictureBox1.MouseDown
If Not PictureBox1.Image Is Nothing Then
‘Set a flag to show that the mouse is down.
m_MouseIsDown = True
End If
End Sub

Private Sub PictureBox1_MouseMove(ByVal sender As Object,
ByVal e As _
System.Windows.Forms.MouseEventArgs) Handles
PictureBox1.MouseMove
If m_MouseIsDown Then
‘Initiate dragging and allow either copy or move.
Pi ct u r eB ox 1 .D o D rag D ro p (P ic t u re B o x1. I m ag e ,
DragDropEffects.Copy Or _
DragDropEffects.Move)
End If
m_MouseIsDown = False
End Sub

Private Sub PictureBox2_DragEnter(ByVal sender As Object,
ByVal e As _
System.Windows.Forms.DragEventArgs) Handles
PictureBox2.DragEnter
If e.Data.GetDataPresent(DataFormats.Bitmap) Then
‘Check for the CTRL key.
If e.KeyState = 9 Then
e.Effect = DragDropEffects.Copy
Else
e.Effect = DragDropEffects.Move
End If
Else
e.Effect = DragDropEffects.None
End if
End sub

Private Sub PictureBox2_DragDrop(ByVal sender As Object,
ByVal e As _
System.Windows.Forms.DragEventArgs) Handles
PictureBox2.DragDrop

Lab:.NET Programming

NOTES

Self-Instructional
52 Material

‘Assign the image to the PictureBox.
PictureBox2.Image = e.Data.GetData(DataFormats.Bitmap)
‘If the CTRL key is not pressed, delete the source picture.
If Not e.KeyState = 8 Then
PictureBox1.Image = Nothing
End If
End Sub

The AllowDrop property for the second PictureBox control is set in
the Form1_Load event. In both the DragEnter and DragDrop events, the code
checks to see if the CTRL key is pressed to determine whether to copy or move
the picture.

Fig. 1 Control before being dragged to a target

Fig. 2 Control after being dragged to a target

VB.NET Inbuilt Functions

Built-in functions are used for manipulating text as well as for carrying out
mathematical operations. These are used to format data in user-defined and
standard styles. Basically, there are two types of functions: the MsgBox() function
and the InputBox() function.

NOTES

Self-Instructional
Material 53

Lab:.NET Programming1. MsgBox () Function

The MsgBox is used to generate a pop-up message box which prompts the user
to click on a command button. For example:

yourMsg=MsgBox(Prompt,Style Value, Title)
Prompt will display the message in the message box. The Style Value is used
to find what type of command buttons appear on the message box. Title
argument will display the title of the message board.

Table 1 Style Values

Style Value Named Constant Buttons Displayed

0 vbOkOnly Ok button

1 vbOkCancel Ok and Cancel buttons

2 vbAbortRetryIgnore Abort, Retry and Ignore buttons.

3 vbYesNoCancel Yes, No and Cancel buttons

4 vbYesNo Yes and No buttons

5 vbRetryCancel Retry and Cancel buttons

In the second argument, we can use named constant in place of integers to make
the programs more readable. For example:

yourMsg=MsgBox(“Click OK to Proceed”, 1, “Startup Menu”)
and
yourMsg=Msg(“Click OK to Proceed”. vbOkCancel,”Startup
Menu”)

Both the codes given above are same. The table below shows the value, named
constant and buttons.

Value Named Constant Button Clicked

1 vbOk Ok button

2 vbCancel> Cancel button

3 vbAbort Abort button

4 vbRetry Retry button

5 vbIgnore Ignore button

6 vbYes Yes button

7 vbNo No button

Lab:.NET Programming

NOTES

Self-Instructional
54 Material

The example below shows the interface which is to be drawn with a label and
three command buttons.

Write the following code for test button.
Private Sub Test_Click()
Dim testmsg As Integer
testmsg = MsgBox(“Click to test”, 1, “Test message”)
If testmsg = 1 Then
Display.Caption = “Testing Successful”
Else
Display.Caption = “Testing fail”
End If
End Sub

After clicking the test button, the message shown below will appears.

After clicking Ok button, the message “Testing successful” will be displayed and
after clicking on the cancel button, “Testing fail” will be displayed. There are various
types of icons that can be displayed.

NOTES

Self-Instructional
Material 55

Lab:.NET ProgrammingValue Named Constant Icon

16 vbCritical

3 vbQuestion

48 vbExclamation

64 vbInformation

Consider the example given below:
Private Sub test2_Click()
Dim testMsg2 As
Integer testMsg2 = MsgBox(“Click to Test”, vbYesNoCancel
+ vbExclamation, “TestMessage”)
If testMsg2 = 6 Then
display2.Caption =”Testing successful”
ElseIf testMsg2 = 7 Then
display2.Caption = “Are you sure?”
Else display2.Caption =”Testing fail”
End If
End Sub

Output:

2. The InputBox() Function

An InputBox() function display a message box where the user can enter a value
or a message in the form of text. For example:

myMessage=InputBox(Prompt, Title, default_text, x-
position, y-position)

myMessage is data type which is declared as string. Here, the message input
by the users is default-text displays the default text that appears in the
input field where users can use it as his intended input. Title dislays the title of
the Input Box. Prompt is the message displayed normally as a question asked.
x-position and y-position is the position or the coordinate of the input box. Consider
an example given below:

Lab:.NET Programming

NOTES

Self-Instructional
56 Material

Private Sub OK_Click()
Dim userMsg As String
userMsg = InputBox(“What is your message?”, “Message Entry
Form”, “Enter your messge here”, 500, 700)
If userMsg <>”” Then
message.Caption = userMsg
Else
message.Caption = “No Message”
End If
End Sub

After clicking the OK button, the message will be displayed and after clicking the
cancel button, “No message” will be displayed.

Mathematical Functions

In VB.NET, math functions are stored in System.Math namespace. The namespace
is used to import Math functions. The functions built into Math class can be applied
to calculate square roots, logarithm values, trigonometry etc. Consider an example
given below:

Imports System.Console
Imports System.Math
Module Module1
 Sub Main()
 WriteLine(“Sine 60 is” & “ “ & Sin(60))
 ‘display Sine60 value
 WriteLine(“Square root of 72 is “ & “ “ & Sqrt(72))
 ‘displays square root of 72
 WriteLine(“Log value of 14 is” & “ “ & Log(14))
 ‘displays the logarithm value of 14
 Read()
 End Sub
End Module

NOTES

Self-Instructional
Material 57

Lab:.NET Programming

The output from above code is given below.

String Functions

String functions are mainly used to edit and manipute the string. Following are the
string functions in VB.
Methods Description

Asc, AscW This method will return an integer value that represents a
character code corresponding to a character.

Chr, ChrW It will return the character associated to a character code.
Filter This method returns a zero-based array having a subset of

a string array on the basis of specified filter criteria.
Format This method will return a string formatted according to

instructions contained in a format string expression.
FormatCurrency It will return an expression formatted as a currency value using

the currency symbol defined in the system control panel.
FormatDateTime It will return a string expression showing date/time value.
FormatNumber It will return an expression in a number format.
FormatPercent It will return an expression in percentage followed by % character.
InStr This method will return an integer that specifies the start position

of the first occurrence of one string in another.
InStrRev This method will return the position of the first occurrence of

one string within another, starting from the right side of the string.
Join It will return a string created by concatenating a number of

substrings.
LCase Converts a string or character to lowercase.
Left This method will return a number of characters in a string from

the left.

Lab:.NET Programming

NOTES

Self-Instructional
58 Material

Len It will return an integer containing the number of characters in a
string.

LSet This method will return a left-aligned string containing the
specified string adjusted to the specified length.

LTrim It will return a string containing a copy of a specified string
having no spaces.

Mid This method returns a string containing a specified number of
characters from mid.

Replace This method replaces a substring with another with a specific
number of times.

Right It will return a number of characters from the right side of a
string.

Space It will return a string containing a given number of spaces.
StrComp It will return -1, 0, or 1, based on the result of comparison.
StrConv Converts a string as specified.
StrDup It will return a string that contains repeated character a number

of times.
StrReverse This method returns a string in which the character order of a

specified string is reversed.
Trim Returns a copy of string having no spaces.
UCase Converts a string to uppercase.

ActiveX controls

ActiveX controls are objects or COM components that can be used in a web
page or other application that is already programmed by someone else. ActiveX
controls developed for Visual Basic 6.0 and earlier versions can be used to
add features to the toolbox of Visual Studio. You can add ActiveX controls to the
toolbox using the following steps.

1. Click Choose Toolbox Items on the Tools menu. Choose Toolbox dialog
box will appears.

2. Now, click the COM Components tab.
3. You have to select the check box next to ActiveX control and click OK.

The new control appears with the other tools in the Toolbox.

Database Access Objects (DAO)

It is an abstract pattern that provides interface to some types of database. DAO
provides some specific data operations without exposing details of the database
by mapping application calls to the persistence layer. The data needs by the
application is separated in terms of domain-specific objects and data types from
how these needs can be satisfied with a specific DBMS, database schema, etc.

NOTES

Self-Instructional
Material 59

Lab:.NET ProgrammingDatabase object properties

Some of the properties of database objects are:
1. It is the relatively simple and rigorous separation between two important

parts of an application that can but should not know anything of each other.
2. It can be expected to evolve frequently and independently.
3. Changing business logic can rely on the same DAO interface, while changes

to persistence logic do not affect DAO clients as long as the interface remains
correctly implemented.

4. All details of storage are hidden from the rest of the application.
5. It acts as an intermediary between the application and the database.
6. They move data back and forth between objects and database records.

ADO.NET

ADO is a Microsoft technology that stands for ActiveX Data Objects. It is
automatically installed with Microsoft IIS. It provides an interface to access data
in a database. There are various applications that require data access while working
with applications. It makes the application to interact with a database. There are
various applications which have different requirements for database access. For
example: VB .NET uses ADO.NET (Active X Data Object) as its data access
and manipulation protocol which also enables us to work with data on the internet.

ADO.NET Data Architecture

Data Access in ADO.NET is based on two components i.e. DataSet and Data
Provider.

1. DataSet: The dataset is a disconnected and in-memory representation of
data. It is a local copy of the relevant portions of the database. When the
use of the DataSet is completed, then changes can be made back to the
central database for updating. The DataSet is persisted in memory and the
data in it can be updated and manipulated independent of the database.
The data in DataSet can be loaded from any valid data source like Microsoft
SQL server database, an Oracle database or from a Microsoft Access
database.

2. Data Provider: When the use of the DataSet is completed, then changes
can be made back to the central database. The Data Provider is responsible
for providing and maintaining the connection to the database. Data Provider
is a set of related components that work together to provide data in an
efficient and performance driven manner. The .NET framework currently
comes with two DataProviders i.e. the SQL Data Provider which is designed
only to work with OleDb DataProvider or Microsoft’s SQL Server which
allows us to connect to other types of databases like Access and Oracle.

Lab:.NET Programming

NOTES

Self-Instructional
60 Material

Each DataProvider consists of the following component classes:
1. The Connection object provides a connection to the database.
2. The Command object is used to execute a command.
3. The DataReader object provides a forward-only, read only, connected

recordset.
4. The DataAdapter object populates a disconnected DataSet with data

and performs update.

Fig. 3 ADO.NET Architecture

Component classes that make up the data providers are as follows:

1) The Connection Object

The Connection object creates the connection to the database. Microsoft VB.NET
provides two types of connection classes: the SqlConnection object, which is
designed specifically to connect to Microsoft SQL Server and the
OleDbConnection object, which can provide connections to a wide range of
database types like Microsoft Access and Oracle. The Connection object contains
all of the information required to open a connection to the database.

2) The Command Object

The Command object is represented by two corresponding classes: SqlCommand
and OleDbCommand. The Command objects are used to execute the commands
to a database across a data connection. These can be used to execute stored
procedures on the database, SQL commands, or return complete tables directly.
Command objects provide three methods that are used to execute commands on
the database.

1. ExecuteScalar: Returns a single value from a database query.
2. ExecuteNonQuery: Executes commands that have no return values such

as INSERT,
UPDATE or DELETE.

3. ExecuteReader: Returns a result set by way of a DataReader object.

NOTES

Self-Instructional
Material 61

Lab:.NET Programming3) The DataReader Object

The DataReader object provides a read-only, forward-only connected stream
recordset from a database. It cannot be directly instantiated. Instead, The
OleDbCommand.ExecuteReader method returns an OleDbDataReader object.
The DataReader is returned as the result of the Command object’s ExecuteReader
method. The SqlCommand.ExecuteReader method returns a SqlDataReader
object. The DataReader can provide rows of data directly to application logic
when you don’t require keeping the data cached in memory because only one row
is in memory at a time. It provides the lowest overhead in terms of system
performance but requires the exclusive use of an open Connection object for the
lifetime of the DataReader.

4) The DataAdapter Object

The DataAdapter is the class at the core of ADO.NET’s disconnected data access.
The DataAdapter is used either to fill a DataSet or DataTable with data from the
database with its Fill method. After the memory-resident data has been manipulated,
the DataAdapter can commit the changes to the database by calling the Update
method. The DataAdapter provides four properties that represent database
commands.

1. SelectCommand
2. DeleteCommand
3. InsertCommand
4. UpdateCommand

Data Access with Server Explorer

VB allows us to work with database in two ways, visually and code. In VB,
server explorer allows us to work with connections across different data sources
visually. The window that is displayed is the Server Explorer lets us create and
examine data connections. Server Explorer can be viewed by selecting ViewàServer
Explorer from the main menu or by pressing Ctrl+Alt+S on the keyboard as shown
below.

Lab:.NET Programming

NOTES

Self-Instructional
62 Material

In order to work with the Server Explorer, we will work with SQL Server, the
default provider for .NET. We will be displaying data from Customers table in
sample Northwind database in SQL Server. For this, we need to establish a
connection to this database. You need to just right-click on the data connections
icon in Server Explorer and select Add Connection that opens the Data Link
Properties dialog which allows you to enter the name of the server you want to
work along with login name and password.

To work with a database which is already on the server, you have to select the
option “select the database on the server”. Now, select Northwind database from
the list. After that, click on the Test Connection tab to test the connection. If the
connection is successful, the message “Test Connection Succeeded” is displayed.
When connection to the database is set, click OK and close the Data Link
Properties or add connection. When, you expand the connection node that is (“+”
sign), it displays the Tables, Views and Stored Procedures in that Northwind
sample database. Expanding the Tables node will display all the tables available in
the database.

NOTES

Self-Instructional
Material 63

Lab:.NET ProgrammingIn this example given below, we will work with Customers table to display
its data. Now drag Customers table onto the form from the Server Explorer.
Doing that creates SQLConnection1 and SQLDataAdapter1 objects which are
the data connection and data adapter objects used to work with data. They are
displayed on the component tray. Now, we need to generate the dataset that
holds data from the data adapter. To do that select Data’!Generate DataSet from
the main menu or right click on SQLDataAdapter1 object and select generate
DataSet menu. Dataset dialogbox will open.

Once the dialogbox is displayed, select the radio button with New option to
create a new dataset. Make sure Customers table is checked and click OK.
Clicking OK adds a dataset to the component tray. After that, drag a DataGrid
from toolbox. We will display Customers table in this data grid. Set the data grid’s
DataSource property to DataSet and its DataMember property to Customers.
Next, we need to fill the dataset with data from the data adapter. The code is given
below:

Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs)_
Handles MyBase.Load
DataSet.Clear()
SqlDataAdapter1.Fill(DataSet)
‘filling the dataset with the dataadapter’s fill method
End Sub

The output of the above code is given below:

Once the application is executed, Customers table is displayed in the data
grid. That is one of the simplest ways of displaying data using the Server Explorer
window.

Microsoft Access and Oracle Database

On working with Oracle, you need to select Microsoft OLE DB provider for
Oracle from the provider tab in the DataLink dialog. The process is similar in
working with Oracle or MS Access but with some minor changes. You need to
enter the appropriate Username and password.

Lab:.NET Programming

NOTES

Self-Instructional
64 Material

NOTES

Self-Instructional
Material 65

Lab:.NET Programming
BLOCK 4

This block will cover the following topics:
1. Using DataReaders and SQL Server
2. Retrieving, inserting, updating and deleting the records using OleDB provider

and MS access.

Using DataReaders and SQL Server

In this section, will work with ADO.NET objects in code to create connections
and read data using the data reader. The namespace that requires to be imported
while working with SQL Connections is System.Data.SqlClient. Here, we will
check that how to connect by using our own connection objects. We also check
how to use the command object.

Working with SQL Server

The classes in SQL server are discussed below:
a) The SqlConnection Class: This class allows the connection to SQL server

data source. We will use OleDB connection object, when working with
databases instead of SQL Server. The performance of Sqlconnections is
70% faster than OleDB connections.

b) The SqlCommand Class: This class represents a SQL statement or stored
procedure for use in a database with SQL Server.

c) The SqlDataAdapter Class: This class represents a bridge between SQL
server database and dataset. It includes the Select, Insert, Update and Delete
commands for loading and updating the data.

d) The SqlDataReader Class: The SqlDataReader class creates a data
reader to be used with SQL Server.

DataReaders

A DataReader is a lightweight object which provides forward-only, read-only
data in a very efficient and fast way. Data access with DataReader is read-only, if
we cannot make any changes (update) to data and forward-only, which means we
cannot go back to the previous record which was accessed. A DataReader requires
the use of an active connection for the entire time. We can instantiate a DataReader
by making a call to a Command object’s ExecuteReader command. When the
DataReader is first returned, it is positioned before the first record of the result set.
To make the first record available, we need to call the Read method. If a record is
available, then Read method moves the DataReader to next record and returns
True. If a record is not available the Read method returns False.

Lab:.NET Programming

NOTES

Self-Instructional
66 Material

Program 1: To retrieve data using Select command (to display data from Discounts
table in Pubs sample database).

Imports System.Data.SqlClient
Public Class Form1 Inherits System.Windows.Forms.Form
Dim myConnection As SqlConnection
Dim myCommand As SqlCommand
Dim dr As New SqlDataReader()
‘declaring the objects
Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As
System.EventArgs)_
Handles MyBase.Load
myConnection = New
SqlConnection(“server=localhost;uid=sa;pwd=;database=pubs”)
‘establishing connection. you need to provide password
for sql server
Try
myConnection.Open()
‘opening the connection
myCommand = New SqlCommand(“Select * from discounts”,
myConnection)
‘executing the command and assigning it to connection
dr = myCommand.ExecuteReader()
While dr.Read()
‘reading from the datareader
MessageBox.Show(“discounttype” & dr(0).ToString())
MessageBox.Show(“stor_id” & dr(1).ToString())
MessageBox.Show(“lowqty” & dr(2).ToString())
MessageBox.Show(“highqty” & dr(3).ToString())
MessageBox.Show(“discount” & dr(4).ToString())
‘displaying the data from the table
End While
dr.Close()
myConnection.Close()
Catch e As Exception
End Try
End Sub
End Class

The above code displays records from discounts table in MessageBoxes.
Retrieving records with a Console Application

NOTES

Self-Instructional
Material 67

Lab:.NET ProgrammingImports System.Data.SqlClient
Imports System.Console
Module Module1
Dim myConnection As SqlConnection
Dim myCommand As SqlCommand
Dim dr As SqlDataReader
Sub Main()
Try
myConnection = New
SqlConnection(“server=localhost;uid=sa;pwd=;database=pubs”)
‘you need to provide password for sql server
myConnection.Open()
myCommand = New SqlCommand(“Select * from discounts”,
myConnection)
dr = myCommand.ExecuteReader
Do
While dr.Read()
WriteLine(dr(0))
WriteLine(dr(1))
WriteLine(dr(2))
WriteLine(dr(3))
WriteLine(dr(4))
‘ writing to console
End While
Loop While dr.NextResult()
Catch
End Try
dr.Close()
myConnection.Close()
End Sub
End Module

Inserting a Record

Program 2: To insert a record into the Jobs table in Pubs sample database.

Imports System.Data.SqlClient
Public Class Form2 Inherits System.Windows.Forms.Form
Dim myConnection As SqlConnection
Dim myCommand As SqlCommand
Dim ra as Integer
‘integer holds the number of records inserted

Lab:.NET Programming

NOTES

Self-Instructional
68 Material

Private Sub Form2_Load(ByVal sender As System.Object,
ByVal e_
As System.EventArgs) Handles MyBase.Load
End Sub
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e_
As System.EventArgs) Handles Button1.Click
myConnection = New
SqlConnection(“server=localhost;uid=sa;pwd=;database=pubs”)
‘you need to provide password for sql server
myConnection.Open()
myCommand = New SqlCommand(“Insert into Jobs values 12,’IT
Manager’,100,300,_
myConnection)
ra=myCommand.ExecuteNonQuery()
MessageBox.Show(“New Row Inserted” & ra)
myConnection.Close()
End Sub
End Class

Deleting a Record

Program 3: For deleting a record, we will use Authors table in Pubs sample
database to work with this code. Drag a button onto the form and place the
following code.

Imports System.Data.SqlClient
Public Class Form3 Inherits System.Windows.Forms.Form
Dim myConnection As SqlConnection
Dim myCommand As SqlCommand
Dim ra as Integer
Private Sub Form3_Load(ByVal sender As System.Object,
ByVal e_
As System.EventArgs) Handles MyBase.Load
End Sub
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e_
As System.EventArgs) Handles Button1.Click
myConnection = New
SqlConnection(“server=localhost;uid=sa;pwd=;database=pubs”)
‘you need to provide password for sql server
myConnection.Open()
myCommand = New SqlCommand(“Delete from Authors where

NOTES

Self-Instructional
Material 69

Lab:.NET Programmingcity=’Oakland’”,_
myConnection)
‘since no value is returned we use ExecuteNonQuery
ra=myCommand.ExecuteNonQuery()
MessageBox.Show(“Records affected” & ra)
myConnection.Close()
End Sub
End Class

Updating a Record

Program 4: For updating a record, we will update a row in Authors table. Drag a
button onto the form and place the following code.

Imports System.Data.SqlClient
Public Class Form4 Inherits System.Windows.Forms.Form
Dim myConnection As SqlConnection
Dim myCommand As SqlCommand
Dim ra as Integer
Private Sub Form4_Load(ByVal sender As System.Object,
ByVal e_
As System.EventArgs) Handles MyBase.Load
End Sub
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e_
As System.EventArgs) Handles Button1.Click
myConnection = New
SqlConnection(“server=localhost;uid=sa;pwd=;database=pubs”)
‘you need to provide password for sql server
myConnection.Open()
myCommand = New SqlCommand(“Update Authors Set
city=’Oakland’

‘San where city=_
Jose’ “,myConnection)
ra=myCommand.ExecuteNonQuery()
MessageBox.Show(“Records affected” & ra)
myConnection.Close()
End Sub
End Class

Lab:.NET Programming

NOTES

Self-Instructional
70 Material

Using OleDb Provider

The classes of the OleDb provider with which we work are as follows:
1. The OleDbConnection Class: The OleDbConnection class allows a

connection to OleDb data source. OleDbconnections are used to connect
to most databases.

2. The OleDbCommand Class: The OleDbCommand class shows a SQL
statement or stored procedure which is to be executed in a database by an
OLEDB provider.

3. The OleDbDataAdapter Class: The OleDbDataAdapter class represents
as an intermediate between OleDb data source and datasets. We use the
Select, Insert, Delete and Update commands for loading and updating the
data.

4. The OleDbDataReader Class: The OleDbDataReader class creates a
datareader for use with an OleDb data provider. The data is read as forward-
only stream which means that data is read sequentially, one row after another
not allowing you to choose a row you want or going backwards. It is used
to read a row of data from the database.

Program 5: To retrieve the records. In the code below, we are working with
Emp table in Oracle.

Imports System.Data.OleDB
Public Class Form1 Inherits System.Windows.Forms.Form
Dim myConnection As OleDbConnection
Dim myCommand As OleDbCommand
Dim dr As New OleDbDataReader()
‘declaration
Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As
System.EventArgs)_
Handles MyBase.Load
myConnection = New OleDbConnection_
(“Provider=MSDAORA.1;UserID=scott;password=tiger;
database=ora”)
‘MSDORA is the provider when working with Oracle

Try
myConnection.Open()
‘opening the connection
myCommand = New OleDbCommand(“Select * from emp”,

NOTES

Self-Instructional
Material 71

Lab:.NET ProgrammingmyConnection)
‘executing the command and assigning it to connection
dr = myCommand.ExecuteReader()
While dr.Read()
‘reading from the datareader
MessageBox.Show(“EmpNo” & dr(0))
MessageBox.Show(“EName” & dr(1))
MessageBox.Show(“Job” & dr(2))
MessageBox.Show(“Mgr” & dr(3))
MessageBox.Show(“HireDate” & dr(4))
‘displaying data from the table
End While
dr.Close()
myConnection.Close()
Catch e As Exception
End Try
End Sub
AND CLASS

The above code displays first 5 columns from the Emp table in Oracle.

Inserting a Record

Program 6: Drag a Button from the toolbox onto the Form. When this Button is
clicked the values specified in code will be inserted into the Emp table.

Imports System.Data.OleDb
Public Class Form2 Inherits System.Windows.Forms.Form
Dim myConnection As OleDbConnection
Dim myCommand As OleDbCommand
Dim ra as Integer
‘integer holds the number of records inserted
Private Sub Form2_Load(ByVal sender As System.Object,
ByVal e As_
System.EventArgs) Handles MyBase.Load
End Sub
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As _
System.EventArgs) Handles Button1.Click
myConnection = New
OleDbConnection(“”Provider=MSDAORA.1;User_
ID=scott;password=tiger;database=ora”
)
Try

Lab:.NET Programming

NOTES

Self-Instructional
72 Material

myConnection.Open()
myCommand = New OleDbCommand(“Insert into emp values
12,’Ben’,’Salesman’,300
12-10-2001,3000,500,10 “, myConnection)
‘emp table has 8 columns. You can work only with the
columns you want
ra=myCommand.ExecuteNonQuery()
MessageBox.Show(“Records Inserted” & ra)
myConnection.Close()
Catch
End Try
End Sub
End Class
Deleting Records
Drag a Button on a new form and paste the following code.
Imports System.Data.OleDb
Public Class Form3 Inherits System.Windows.Forms.Form
Dim myConnection As OleDbConnection
Dim myCommand As OleDbCommand
Dim ra as Integer
Private Sub Form3_Load(ByVal sender As System.Object,
ByVal e As_
System.EventArgs) Handles MyBase.Load
End Sub
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e_
As System.EventArgs) Handles Button1.Click
Try
myConnection.Open()ID=scott;password=tiger;database=ora”)

myCommand = myConnection = New
OleDbConnection(“”Provider=MSDAORA.1;User_
New OleDbCommand(“Delete from emp where
DeptNo=790220",_
myConnection)
ra=myCommand.ExecuteNonQuery()
MessageBox.Show(“Records Deleted” & ra)
myConnection.Close()
Catch
End Try
End Sub
End Class

NOTES

Self-Instructional
Material 73

Lab:.NET ProgrammingUpdating a Record

Program 7: Drag a Button on a new form and paste the following code.
Imports System.Data.OleDb
Public Class Form4 Inherits System.Windows.Forms.Form
Dim myConnection As OleDbConnection
Dim myCommand As OleDbCommand
Dim ra as Integer
Private Sub Form4_Load(ByVal sender As System.Object,
ByVal e As_
System.EventArgs) Handles MyBase.Load
End Sub
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e_
As System.EventArgs) Handles Button1.Click
Try
myConnection = New
OleDbConnection(“”Provider=MSDAORA.1;User_
ID=scott;password=tiger;database=ora”)
myConnection.Open()
myCommand = New OleDbCommand(“Update emp Set DeptNo=65
where DeptNo=793410",_ myConnection)
ra=myCommand.ExecuteNonQuery()
MessageBox.Show(“Records Updated” & ra)
myConnection.Close()
Catch
End Try
End Sub
End Class

Data Access using MSAccess

Program 8: In this program, create a database named Emp in Microsoft Access
in the C drive of your computer. In the Emp database, create a table, Table1 with
EmpNo, EName and Department as columns, insert some values in the table and
close it. Drag three TextBoxes and a Button. The following code will assume that
TextBox1 is for EmpNo, TextBox2 is for EName and TextBox3 is for Department.
Our intention is to retrieve data from Table1 in the Emp Database and display the
values in these TextBoxes without binding, when the Button is clicked.

Imports System.Data.OleDb
Public Class Form1 Inherits System.Windows.Forms.Form
Dim cn As OleDbConnection
Dim cmd As OleDbCommand

Lab:.NET Programming

NOTES

Self-Instructional
74 Material

Dim dr As OleDbDataReader
Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e as _
System.EventArgs) Handles MyBase.Load
End Sub
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As_
System.EventArgs) Handles Button1.Click
Try
cn = New
OleDbConnection(“Provider=Microsoft.Jet.OLEDB.4.0;_
Data Source=C:\emp.mdb;”)
‘provider to be used when working with access database
cn.Open()
cmd = New OleDbCommand(“select * from table1”, cn)
dr = cmd.ExecuteReader
While dr.Read()
TextBox1.Text = dr(0)
TextBox2.Text = dr(1)
TextBox3.Text = dr(2)
‘ loading data into TextBoxes by column index
End While
Catch
End Try
dr.Close()
cn.Close()
End Sub
End Class

When you run the code and click the Button, records from Table1 of the Emp
database will be displayed in the TextBoxes.

Retrieving a Record

Program 9: Write a code for retrieving records with a Console Application.
Imports System.Data.OleDb
Imports System.Console
Module Module1
Dim cn As OleDbConnection
Dim cmd As OleDbCommand
Dim dr As OleDbDataReader
Sub Main()
Try

NOTES

Self-Instructional
Material 75

Lab:.NET Programmingcn = New
OleDbConnection(“Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:\emp.mdb;_
Persist Security Info=False”)
cn.Open()
cmd = New OleDbCommand(“select * from table1”, cn)
dr = cmd.ExecuteReader
While dr.Read()
WriteLine(dr(0))
WriteLine(dr(1))
‘writing to console
End While
Catch
End Try WriteLine(dr(2))

dr.Close()
cn.Close()
End Sub
End Module

Code for Inserting a Record
Imports System.Data.OleDb
Public Class Form2 Inherits System.Windows.Forms.Form
Dim cn As OleDbConnection
Dim cmd As OleDbCommand
Dim dr As OleDbDataReader
Dim icount As Integer
Dim str As String
Private Sub Form2_Load(ByVal sender As System.Object,
ByVal e As_
System.EventArgs) Handles MyBase.Load
End Sub
Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As_
System.EventArgs) Handles Button2.Click
Try
cn = New
OleDbConnection(“Provider=Microsoft.Jet.OLEDB.4.0;Data
Source=C:\emp.mdb;”)
cn.Open()
str = “insert into table1 values(“ & CInt(TextBox1.Text)
& “,’” &

Lab:.NET Programming

NOTES

Self-Instructional
76 Material

TextBox2.Text & “‘,’” &_
TextBox3.Text & “‘)”
‘string stores the command and CInt is used to convert
number to string
cmd = New OleDbCommand(str, cn)
icount = cmd.ExecuteNonQuery
MessageBox.Show(icount)
‘displays number of records inserted
Catch
End Try
cn.Close()
End Sub
End Class

NOTES

Self-Instructional
Material 77

Lab:.NET Programming
BLOCK 5

This block will cover the development of following simple applications:
1. Library Information System
2. Students Marksheet Processing
3. Telephone Directory Maintenance
4. Gas Booking and Delivering
5. Electricity Bill Processing
6. Bank Transaction
7. Pay Roll Processing
8. Personal Information System
9. Question Database and Conducting Quiz

10. Personal Diary

1. Library Information System

Add Books:

Public Class AddBooks
 Public NameFrm, NameTo As String
 Private Sub Button9_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button9.Click
 Me.Close()
 End Sub

 Private Sub AddBooks_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 Call generateyear()
 Call disablethem()
 Call readData()
 Call GroupID_Combo()
 End Sub
 Sub GroupID_Combo()
 Try
 If objcon.State = ConnectionState.Closed Then
objcon.Open()
 com = New OleDb.OleDbCommand(“Select GroupID
from GroupD”, objcon)
 dr = com.ExecuteReader

Lab:.NET Programming

NOTES

Self-Instructional
78 Material

 While dr.Read
 ComboBox1.Items.Add(dr.Item(0))
 End While
 dr.Close()
 objcon.Close()
 Catch ex As Exception

 End Try
 End Sub
 Sub generateyear()
 Dim YearNow As Integer
 YearNow =
Int(My.Computer.Clock.LocalTime.Year.ToString)
 Dim a, b, c As Integer
 a = YearNow - 5
 b = YearNow
 For c = a To b
 ComboBox2.Items.Add(c)
 Next
 End Sub

 Private Sub ComboBox1_LostFocus(ByVal sender As
Object, ByVal e As System.EventArgs) Handles
ComboBox1.LostFocus
 ComboBox1.Text = ComboBox1.Text.ToUpper()
 End Sub

 Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 ComboBox3.Text = “Available”
 Call enablethem()
 End Sub

 Private Sub TextBox2_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox2.LostFocus
 NameFrm = TextBox2.Text
 Call Sentence()
 TextBox2.Text = NameTo
 End Sub

NOTES

Self-Instructional
Material 79

Lab:.NET Programming Sub disablethem()
 ‘TextBox1.Enabled = False
 TextBox2.Enabled = False
 TextBox3.Enabled = False
 ComboBox1.Enabled = False
 TextBox4.Enabled = False
 TextBox5.Enabled = False
 TextBox6.Enabled = False
 ComboBox2.Enabled = False
 ComboBox3.Enabled = False
 End Sub
 Sub enablethem()
 TextBox1.Enabled = True
 TextBox2.Enabled = True
 TextBox3.Enabled = True
 ComboBox1.Enabled = True
 TextBox4.Enabled = True
 TextBox5.Enabled = True
 TextBox6.Enabled = True
 ComboBox2.Enabled = True
 ComboBox3.Enabled = True
 TextBox1.Clear()
 TextBox2.Clear()
 TextBox3.Clear()
 TextBox4.Clear()
 TextBox5.Clear()
 TextBox6.Clear()
 ComboBox1.Text = “”
 ComboBox2.Text = “”
 ComboBox3.Text = “”
 End Sub

 Sub Sentence()
 Dim a, b As Integer
 a = NameFrm.Length
 NameTo = “”
 For b = 0 To a - 1
 If b = 0 Then
 If Char.IsLower(NameFrm(0)) Then
 NameTo = Char.ToUpper(NameFrm(0))

Lab:.NET Programming

NOTES

Self-Instructional
80 Material

 Else
 NameTo = NameFrm(0)
 End If
 Else
 If NameFrm(b - 1) = “ “ Then
 NameTo = NameTo +
Char.ToUpper(NameFrm(b))
 Else
 NameTo = NameTo + NameFrm(b)
 End If
 End If
 Next
 End Sub

 Private Sub TextBox3_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox3.LostFocus
 NameFrm = TextBox3.Text
 Call Sentence()
 TextBox3.Text = NameTo
 End Sub

 Private Sub TextBox3_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox3.TextChanged

 End Sub

 Private Sub TextBox4_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox4.LostFocus
 NameFrm = TextBox4.Text
 Call Sentence()
 TextBox4.Text = NameTo
 End Sub

 Private Sub TextBox4_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox4.TextChanged

 End Sub

 Private Sub TextBox5_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox5.LostFocus

NOTES

Self-Instructional
Material 81

Lab:.NET Programming NameFrm = TextBox5.Text
 Call Sentence()
 TextBox5.Text = NameTo
 End Sub

 Private Sub TextBox5_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox5.TextChanged

 End Sub

 Private Sub Button2_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button2.Click
 If TextBox1.Text = “” Then
 MsgBox(“Please enter the Book ID!”, 0, “”)
 Else
 Try
 If objcon.State = ConnectionState.Closed
Then objcon.Open()
 com = New OleDb.OleDbCommand(“INSERT INTO
Books VALUES(‘“ & TextBox1.Text & “‘,’” & ComboBox1.Text
& “‘,’” & TextBox2.Text & “‘,’” & TextBox3.Text & “‘,’” &
TextBox4.Text & “‘,’” & ComboBox2.Text & “‘,’” &
TextBox5.Text & “‘,’” & TextBox6.Text & “‘,’” &
ComboBox3.Text & “‘)”, objcon)
 com.ExecuteNonQuery()
 Call readData()
 MsgBox(“Saved successfully”, 0, “SUCCESS”)
 objcon.Close()
 Catch ex As Exception
 MsgBox(ex.Message, 0, “”)
 End Try
 End If
 End Sub
 Sub readData()
 ListView1.Clear()
 ListView1.Columns.Add(“BOOK ID”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“GROUP ID”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“BOOK NAME”, 310,
HorizontalAlignment.Center)

Lab:.NET Programming

NOTES

Self-Instructional
82 Material

 ListView1.Columns.Add(“PUBLISHER”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“AUTHOR”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“EDITION”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PRICE”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“STATUS”, 90,
HorizontalAlignment.Center)
 ListView1.View = View.Details
 Try

 If (objcon.State = ConnectionState.Closed)
Then objcon.Open()
 com = New OleDb.OleDbCommand(“SELECT * FROM
Books “, objcon)
 dr = com.ExecuteReader
 While dr.Read()
 Call adddatatolistview(ListView1, dr(0),
dr(1), dr(2), dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))
 End While
 dr.Close()
 objcon.Close()
 Catch
 ‘MsgBox(“Please Refresh”,
MsgBoxStyle.Information, “”)
 End Try
 End Sub
 Public Sub adddatatolistview(ByVal lvw As ListView,
ByVal BookID As String, ByVal GroupID As String, ByVal
BookName As String, ByVal Publisher As String, ByVal
Author As String, ByVal PubYear As String, ByVal edi As
String, ByVal pric As String, ByVal st As String)
 Dim lv As New ListViewItem
 lvw.Items.Add(lv)
 lv.Text = BookID
 lv.SubItems.Add(GroupID)
 lv.SubItems.Add(BookName)
 lv.SubItems.Add(Publisher)
 lv.SubItems.Add(Author)

NOTES

Self-Instructional
Material 83

Lab:.NET Programming lv.SubItems.Add(PubYear)
 lv.SubItems.Add(edi)
 lv.SubItems.Add(pric)
 lv.SubItems.Add(st)
 End Sub

 Private Sub Button8_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button8.Click
 Try
 If objcon.State = ConnectionState.Closed Then
objcon.Open()

 If MessageBox.Show(“Do you really want to
delete?”, “ARE YOU SURE”, MessageBoxButtons.YesNo) =
Windows.Forms.DialogResult.Yes Then
 com = New OleDb.OleDbCommand(“DELETE FROM
Books WHERE BookID=’” & TextBox1.Text & “‘“, objcon)
 com.ExecuteNonQuery()
 objcon.Close()
 MsgBox(“Deleted successfully”, 0,
“SUCCESS”)
 End If
 Catch ex As Exception

 End Try
 End Sub
 Sub fill_list()
 com = New OleDb.OleDbCommand(“Select * from Books”,
objcon)
 Dim dr As OleDb.OleDbDataReader
 dr = com.ExecuteReader
 dr.Read()
 While (dr.NextResult)

 End While
 End Sub

 Private Sub GroupBox1_Enter(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
GroupBox1.Enter

Lab:.NET Programming

NOTES

Self-Instructional
84 Material

 End Sub

 Private Sub TextBox1_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox1.TextChanged
 Dim i As Integer
 ListView1.SelectedItems.Clear()
 TextBox1.Focus()
 Try
 If Me.TextBox1.Text = “” Then
 TextBox2.Text = “”
 Else
 For i = 0 To ListView1.Items.Count - 1
 If TextBox1.Text =
ListView1.Items(i).SubItems(0).Text Then
 ComboBox1.Text =
ListView1.Items(i).SubItems(1).Text
 TextBox2.Text =
ListView1.Items(i).SubItems(2).Text
 TextBox3.Text =
ListView1.Items(i).SubItems(3).Text
 TextBox4.Text =
ListView1.Items(i).SubItems(4).Text
 ComboBox2.Text =
ListView1.Items(i).SubItems(5).Text
 TextBox5.Text =
ListView1.Items(i).SubItems(6).Text
 TextBox6.Text =
ListView1.Items(i).SubItems(7).Text
 ComboBox3.Text =
ListView1.Items(i).SubItems(8).Text
 ListView1.Items(i).Selected =
True
 Exit For
 End If
 Next
 End If
 Catch

 End Try
 End Sub

 Private Sub ListView1_SelectedIndexChanged(ByVal

NOTES

Self-Instructional
Material 85

Lab:.NET Programmingsender As System.Object, ByVal e As System.EventArgs)
Handles ListView1.SelectedIndexChanged
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True Then
 TextBox1.Text =
ListView1.Items(i).SubItems(0).Text
 TextBox7.Clear()
 Exit For
 End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 End Sub

 Private Sub Button6_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button6.Click
 Try
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True
Then
 TextBox1.Text = ListView1.Items(i +
1).SubItems(0).Text
 Exit For
 End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 Catch ex As Exception

 End Try
 End Sub

 Private Sub ComboBox1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ComboBox1.SelectedIndexChanged
 Call GroupNameCom()
 End Sub

 Sub GroupNameCom()

Lab:.NET Programming

NOTES

Self-Instructional
86 Material

 Try
 If objcon.State = ConnectionState.Closed Then
objcon.Open()
 com = New OleDb.OleDbCommand(“Select * from
GroupD”, objcon)
 dr = com.ExecuteReader
 While dr.Read
 If dr.Item(0) = ComboBox1.Text Then
 TextBox7.Text = dr.Item(1)
 End If

 End While
 dr.Close()
 objcon.Close()
 Catch ex As Exception

 End Try
 End Sub

 Private Sub ComboBox1_TextUpdate(ByVal sender As
Object, ByVal e As System.EventArgs) Handles
ComboBox1.TextUpdate
 Call GroupNameCom()
 End Sub

 Private Sub Button5_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button5.Click
 Try
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True
Then
 TextBox1.Text = ListView1.Items(i -
1).SubItems(0).Text
 Exit For
 End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 Catch ex As Exception

NOTES

Self-Instructional
Material 87

Lab:.NET Programming End Try
 End Sub
End Class

Book Details
Public Class BookDetail
 Dim sel As Integer
 Private Sub ComboBox1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ComboBox1.SelectedIndexChanged
 Label1.Text = ComboBox1.Text
 Label1.Visible = True
 If Label1.Text = “STATUS” Then
 ComboBox2.Enabled = True
 ComboBox2.Visible = True
 TextBox1.Visible = False

 Else
 ComboBox2.Enabled = False
 ComboBox2.Visible = False
 TextBox1.Visible = True

 End If
 Call forselect()
 End Sub
 Sub forselect()
 If ComboBox1.Text = “BOOK ID” Then
 sel = 1
 ElseIf ComboBox1.Text = “BOOK NAME” Then
 sel = 2

Lab:.NET Programming

NOTES

Self-Instructional
88 Material

 ElseIf ComboBox1.Text = “AUTHOR” Then
 sel = 3
 ElseIf ComboBox1.Text = “STATUS” Then
 sel = 8
 End If
 End Sub

 Private Sub BookDetail_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 ComboBox2.Visible = False
 TextBox1.Visible = False
 Label1.Visible = False
 Call readData()
 End Sub
 Sub readData()
 ListView1.Clear()
 ListView1.Columns.Add(“BOOK ID”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“GROUP ID”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“BOOK NAME”, 310,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PUBLISHER”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“AUTHOR”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“EDITION”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PRICE”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“STATUS”, 90,
HorizontalAlignment.Center)
 ListView1.View = View.Details
 sel = 5
 ‘Call whenclick()
 End Sub
 Sub whenclick()
 Try

 While dr.Read()

NOTES

Self-Instructional
Material 89

Lab:.NET Programming Call adddatatolistview(ListView1, dr(0),
dr(1), dr(2), dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))
 End While
 dr.Close()
 objcon.Close()
 Catch
 ‘MsgBox(“Please Refresh”,
MsgBoxStyle.Information, “”)
 End Try
 End Sub
 Public Sub adddatatolistview(ByVal lvw As ListView,
ByVal BookID As String, ByVal GroupID As String, ByVal
BookName As String, ByVal publisher As String, ByVal
author As String, ByVal pubyear As String, ByVal edi As
String, ByVal pric As String, ByVal status As String)
 Dim lv As New ListViewItem
 lvw.Items.Add(lv)
 lv.Text = BookID
 lv.SubItems.Add(GroupID)
 lv.SubItems.Add(BookName)
 lv.SubItems.Add(publisher)
 lv.SubItems.Add(author)
 lv.SubItems.Add(pubyear)
 lv.SubItems.Add(edi)
 lv.SubItems.Add(pric)
 lv.SubItems.Add(status)
 End Sub

 Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 If objcon.State = ConnectionState.Closed Then
objcon.Open()
 Select Case (sel)
 Case 1
 com = New OleDb.OleDbCommand(“select *
from Books where BookID=’” & TextBox1.Text & “‘“, objcon)
 dr = com.ExecuteReader
 Case 2
 com = New OleDb.OleDbCommand(“select *
from Books where BookName=’” & TextBox1.Text & “‘“, objcon)
 dr = com.ExecuteReader
 Case 3

Lab:.NET Programming

NOTES

Self-Instructional
90 Material

 com = New OleDb.OleDbCommand(“select *
from Books where Author=’” & TextBox1.Text & “‘“, objcon)
 dr = com.ExecuteReader
 Case 5
 com = New OleDb.OleDbCommand(“select *
from Books”, objcon)
 dr = com.ExecuteReader
 Case 8
 com = New OleDb.OleDbCommand(“select *
from Books where Status=’” & ComboBox2.Text & “‘“, objcon)
 dr = com.ExecuteReader
 End Select
 Call readData()
 Call whenclick()
 objcon.Close()
 End Sub

 Private Sub ListView1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ListView1.SelectedIndexChanged

 End Sub

 Private Sub Button6_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button6.Click
 Try
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True
Then
 TextBox1.Text = ListView1.Items(i +
1).SubItems(0).Text
 Exit For
 End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 Catch ex As Exception

 End Try
 End Sub

NOTES

Self-Instructional
Material 91

Lab:.NET Programming

 Private Sub Button5_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button5.Click
 Try
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True
Then
 TextBox1.Text = ListView1.Items(i -
1).SubItems(0).Text
 Exit For
 End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 Catch ex As Exception

 End Try
 End Sub
End Class

Issue Book
Public Class IssueBook

 Private Sub Button9_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button9.Click
 Me.Close()
 End Sub

Lab:.NET Programming

NOTES

Self-Instructional
92 Material

 Private Sub PictureBox1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

 Private Sub IssueBook_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 Call Retrive_C()
 Call BookID_Combo()
 Call readData()
 End Sub
 Sub Retrive_C()
 Try
 If objcon.State = ConnectionState.Closed Then
objcon.Open()
 com = New OleDb.OleDbCommand(“Select CID from
Customer”, objcon)
 dr = com.ExecuteReader
 While dr.Read
 ComboBox5.Items.Add(dr.Item(0))
 End While
 dr.Close()
 objcon.Close()
 Catch ex As Exception

 End Try
 End Sub
 Sub BookID_Combo()
 Try
 If objcon.State = ConnectionState.Closed Then
objcon.Open()
 com = New OleDb.OleDbCommand(“Select BookID
from Books WHERE status=’Available’”, objcon)
 dr = com.ExecuteReader
 While dr.Read
 ComboBox1.Items.Add(dr.Item(0))
 End While
 dr.Close()
 objcon.Close()
 Catch ex As Exception

NOTES

Self-Instructional
Material 93

Lab:.NET Programming End Try
 End Sub
 Sub readData()
 ListView1.Clear()
 ListView1.Columns.Add(“BOOK ID”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“GROUP ID”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“BOOK NAME”, 310,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PUBLISHER”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“AUTHOR”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“EDITION”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PRICE”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“STATUS”, 90,
HorizontalAlignment.Center)
 ListView1.GridLines = True
 ListView1.View = View.Details
 Try

 If (objcon.State = ConnectionState.Closed)
Then objcon.Open()
 com = New OleDb.OleDbCommand(“SELECT * FROM
Books WHERE status=’Available’”, objcon)
 dr = com.ExecuteReader
 While dr.Read()
 Call adddatatolistview(ListView1, dr(0),
dr(1), dr(2), dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))
 End While
 dr.Close()
 objcon.Close()
 Catch
 ‘MsgBox(“Please Refresh”,
MsgBoxStyle.Information, “”)
 End Try
 End Sub
 Public Sub adddatatolistview(ByVal lvw As ListView,

Lab:.NET Programming

NOTES

Self-Instructional
94 Material

ByVal BookID As String, ByVal GroupID As String, ByVal
BookName As String, ByVal Publisher As String, ByVal
Author As String, ByVal PubYear As String, ByVal edi As
String, ByVal pric As String, ByVal st As String)
 Dim lv As New ListViewItem
 lvw.Items.Add(lv)
 lv.Text = BookID
 lv.SubItems.Add(GroupID)
 lv.SubItems.Add(BookName)
 lv.SubItems.Add(Publisher)
 lv.SubItems.Add(Author)
 lv.SubItems.Add(PubYear)
 lv.SubItems.Add(edi)
 lv.SubItems.Add(pric)
 lv.SubItems.Add(st)
 End Sub
 Sub Retrive()
 objcon.Open()
 com = New OleDb.OleDbCommand(“SELECT * FROM Books”,
objcon)
 com.ExecuteNonQuery()
 dr = com.ExecuteReader
 dr.Read()
 While (dr.NextResult)
 ComboBox1.Items.Add(dr(1))
 End While
 objcon.Close()
 End Sub

 Private Sub Button2_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button2.Click
 Try
 If objcon.State = ConnectionState.Closed Then
objcon.Open()
 com = New OleDb.OleDbCommand(“UPDATE Books
SET status=’Rented’ WHERE BookID=’” & ComboBox1.Text &
“‘“, objcon)
 com.ExecuteNonQuery()
 objcon.Close()
 Call readData()
 If objcon.State = ConnectionState.Closed Then
objcon.Open()

NOTES

Self-Instructional
Material 95

Lab:.NET Programming com = New OleDb.OleDbCommand(“INSERT INTO
Issue VALUES(‘“ & ComboBox1.Text & “‘,’” & ComboBox2.Text
& “‘,’” & TextBox2.Text & “‘,’” & ComboBox5.Text & “‘,’”
& TextBox1.Text & “‘,’” & DateTimePicker1.Text & “‘,’” &
DateTimePicker2.Text & “‘)”, objcon)
 com.ExecuteNonQuery()
 MsgBox(“Book has been Issued!”, 0, “”)
 Call readData()
 objcon.Close()
 Catch ex As Exception
 MsgBox(ex.Message, 0, “”)
 End Try
 End Sub

 Private Sub ComboBox1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ComboBox1.SelectedIndexChanged
 Dim i As Integer
 ListView1.SelectedItems.Clear()
 TextBox1.Focus()
 Try
 If Me.ComboBox1.Text = “” Then
 TextBox2.Text = “”
 Else
 For i = 0 To ListView1.Items.Count - 1
 If ComboBox1.Text =
ListView1.Items(i).SubItems(0).Text Then
 ComboBox2.Text =
ListView1.Items(i).SubItems(1).Text
 TextBox2.Text =
ListView1.Items(i).SubItems(2).Text
 TextBox3.Text =
ListView1.Items(i).SubItems(3).Text
 TextBox4.Text =
ListView1.Items(i).SubItems(4).Text
 ComboBox3.Text =
ListView1.Items(i).SubItems(5).Text
 TextBox5.Text =
ListView1.Items(i).SubItems(6).Text
 TextBox6.Text =
ListView1.Items(i).SubItems(7).Text
 ComboBox4.Text =
ListView1.Items(i).SubItems(8).Text

Lab:.NET Programming

NOTES

Self-Instructional
96 Material

 ListView1.Items(i).Selected =
True
 Exit For
 End If
 Next
 End If
 Catch

 End Try
 End Sub

 Private Sub Button8_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button8.Click
 Try
 If ComboBox1.Text = “” Then
 MsgBox(“Please mention the BookID”, 0,
“”)
 Else
 If objcon.State = ConnectionState.Closed
Then
 com = New OleDb.OleDbCommand(“delete
from Issue where BookID=’” & ComboBox1.Text & “‘“, objcon)
 If MsgBox(“Do you really want to
delete?”, MsgBoxStyle.YesNo, “Are you sure?”) =
Windows.Forms.DialogResult.Yes Then
 com.ExecuteNonQuery()
 End If
 objcon.Close()
 End If
 End If
 Catch ex As Exception

 End Try
 End Sub

 Private Sub ListView1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ListView1.SelectedIndexChanged
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True Then

NOTES

Self-Instructional
Material 97

Lab:.NET Programming ComboBox1.Text =
ListView1.Items(i).SubItems(0).Text
 Exit For
 End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 End Sub

 Private Sub ComboBox5_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ComboBox5.SelectedIndexChanged
 Try
 If objcon.State = ConnectionState.Closed Then
objcon.Open()
 com = New OleDb.OleDbCommand(“Select CID,CName
from Customer”, objcon)
 dr = com.ExecuteReader
 While dr.Read
 If dr.Item(0) = ComboBox5.Text Then
 TextBox1.Text = dr.Item(1)
 End If

 End While
 dr.Close()
 objcon.Close()
 Catch ex As Exception

 End Try
 End Sub

 Private Sub Button6_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button6.Click
 Try
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True
Then
 TextBox1.Text = ListView1.Items(i +
1).SubItems(0).Text
 Exit For

Lab:.NET Programming

NOTES

Self-Instructional
98 Material

 End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 Catch ex As Exception

 End Try
 End Sub

 Private Sub Button5_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button5.Click
 Try
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True
Then
 TextBox1.Text = ListView1.Items(i -
1).SubItems(0).Text
 Exit For
 End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 Catch ex As Exception

 End Try
 End Sub
End Class

NOTES

Self-Instructional
Material 99

Lab:.NET ProgrammingReturn Book
Public Class ReturnBook

 Private Sub Button9_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button9.Click
 Me.Close()
 End Sub

 Private Sub Button2_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button2.Click
 If ComboBox1.Text = “” Then
 MsgBox(“Please mention the Book ID”, 0, “”)
 Else
 Try
 If objcon.State = ConnectionState.Closed
Then objcon.Open()
 com = New OleDb.OleDbCommand(“UPDATE Books
SET status=’Available’ WHERE BookID=’” & ComboBox1.Text
& “‘“, objcon)
 com.ExecuteNonQuery()
 objcon.Close()
 Call readData()
 If objcon.State = ConnectionState.Closed
Then objcon.Open()
 com = New OleDb.OleDbCommand(“INSERT INTO
Returns VALUES(‘“ & ComboBox1.Text & “‘,’” & ComboBox2.Text
& “‘,’” & TextBox2.Text & “‘,’” & ComboBox5.Text & “‘,’”
& TextBox1.Text & “‘,’” & TextBox3.Text & “‘,’” &
TextBox7.Text & “‘,’” & DateTimePicker2.Text & “‘,’” &
TextBox6.Text & “‘)”, objcon)
 com.ExecuteNonQuery()
 MsgBox(“Book has been returned!”, 0, “”)
 objcon.Close()
 Catch ex As Exception
 MsgBox(ex.Message, 0, “”)
 End Try
 End If
 End Sub

 Private Sub Button8_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles

Lab:.NET Programming

NOTES

Self-Instructional
100 Material

Button8.Click
 If ComboBox1.Text = “” Then
 MsgBox(“Please mention a Book ID”, 0, “”)
 Else

 Try
 If objcon.State = ConnectionState.Closed
Then objcon.Open()
 com = New OleDb.OleDbCommand(“DELETE FROM
Returns WHERE BookID=’” & ComboBox1.Text & “‘“, objcon)
 com.ExecuteNonQuery()
 MsgBox(“Deleted Success!”, 0, “”)
 Call ClearThem()
 objcon.Close()
 Catch ex As Exception

 End Try
 End If
 End Sub
 Sub ClearThem()
 ComboBox1.TabIndex = “”
 ComboBox2.Text = “”
 TextBox2.Text = “”
 TextBox3.Text = “”
 TextBox6.Text = “”
 ComboBox5.Text = “”
 TextBox1.Text = “”
 TextBox7.Text = “”
 DateTimePicker2.Refresh()
 End Sub

 Private Sub ReturnBook_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 Call BookID_Combo()
 Call readData()

 End Sub
 Sub BookID_Combo()
 Try
 If objcon.State = ConnectionState.Closed Then

NOTES

Self-Instructional
Material 101

Lab:.NET Programmingobjcon.Open()
 com = New OleDb.OleDbCommand(“Select BookID
from Books WHERE status=’Rented’”, objcon)
 dr = com.ExecuteReader
 While dr.Read
 ComboBox1.Items.Add(dr.Item(0))
 End While
 dr.Close()
 objcon.Close()
 Catch ex As Exception

 End Try
 End Sub
 Sub readData()
 ListView1.Clear()
 ListView1.Columns.Add(“BOOK ID”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“GROUP ID”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“BOOK NAME”, 310,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PUBLISHER”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“AUTHOR”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“EDITION”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“PRICE”, 90,
HorizontalAlignment.Center)
 ListView1.Columns.Add(“STATUS”, 90,
HorizontalAlignment.Center)
 ListView1.View = View.Details
 Try

 If (objcon.State = ConnectionState.Closed)
Then objcon.Open()
 com = New OleDb.OleDbCommand(“SELECT * FROM
Books WHERE status=’Rented’”, objcon)
 dr = com.ExecuteReader
 While dr.Read()
 Call adddatatolistview(ListView1, dr(0),

Lab:.NET Programming

NOTES

Self-Instructional
102 Material

dr(1), dr(2), dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))
 End While
 dr.Close()
 objcon.Close()
 Catch
 ‘MsgBox(“Please Refresh”,
MsgBoxStyle.Information, “”)
 End Try
 End Sub
 Public Sub adddatatolistview(ByVal lvw As ListView,
ByVal BookID As String, ByVal GroupID As String, ByVal
BookName As String, ByVal Publisher As String, ByVal
Author As String, ByVal PubYear As String, ByVal edi As
String, ByVal pric As String, ByVal st As String)
 Dim lv As New ListViewItem
 lvw.Items.Add(lv)
 lv.Text = BookID
 lv.SubItems.Add(GroupID)
 lv.SubItems.Add(BookName)
 lv.SubItems.Add(Publisher)
 lv.SubItems.Add(Author)
 lv.SubItems.Add(PubYear)
 lv.SubItems.Add(edi)
 lv.SubItems.Add(pric)
 lv.SubItems.Add(st)
 End Sub

 Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Me.Refresh()
 End Sub

 Private Sub ListView1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ListView1.SelectedIndexChanged
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True Then
 ComboBox1.Text =
ListView1.Items(i).SubItems(0).Text
 Exit For

NOTES

Self-Instructional
Material 103

Lab:.NET Programming End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 End Sub

 Private Sub ComboBox1_SelectedIndexChanged(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles ComboBox1.SelectedIndexChanged
 Dim i As Integer
 ListView1.SelectedItems.Clear()
 TextBox1.Focus()
 Try
 If Me.ComboBox1.Text = “” Then
 TextBox2.Text = “”
 Else
 For i = 0 To ListView1.Items.Count - 1
 If ComboBox1.Text =
ListView1.Items(i).SubItems(0).Text Then
 ComboBox2.Text =
ListView1.Items(i).SubItems(1).Text
 TextBox2.Text =
ListView1.Items(i).SubItems(2).Text
 ListView1.Items(i).Selected =
True
 Exit For
 End If
 Next
 End If
 Catch

 End Try
 Call IssueDetail()
 End Sub
 Sub IssueDetail() ‘
 Try
 If objcon.State = ConnectionState.Closed Then
objcon.Open()
 com = New OleDb.OleDbCommand(“Select
IssueDate, IssueName, IssueTo, DueDate from Issue WHERE
BookID=’” & ComboBox1.Text & “‘“, objcon)
 dr = com.ExecuteReader

Lab:.NET Programming

NOTES

Self-Instructional
104 Material

 While dr.Read
 ComboBox5.Text = dr.Item(2)
 TextBox1.Text = dr.Item(1)
 TextBox3.Text = dr.Item(0)
 TextBox7.Text = dr.Item(3)
 End While
 dr.Close()
 objcon.Close()
 Catch ex As Exception

 End Try
 End Sub

 Private Sub Button6_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button6.Click
 Try
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True
Then
 TextBox1.Text = ListView1.Items(i +
1).SubItems(0).Text
 Exit For
 End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 Catch ex As Exception

 End Try
 End Sub

 Private Sub Button5_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button5.Click
 Try
 Dim i As Integer
 For i = 0 To ListView1.Items.Count - 1
 If ListView1.Items(i).Selected = True
Then
 TextBox1.Text = ListView1.Items(i +

NOTES

Self-Instructional
Material 105

Lab:.NET Programming1).SubItems(0).Text
 Exit For
 End If
 Next
 ListView1.Focus()
 ListView1.FullRowSelect = True
 Catch ex As Exception

 End Try
 End Sub
End Class

2. Students Marksheet Processing

Public conDB As New OleDb.OleDbConnection
 Public Sub connectDB()
 If conDB.State = ConnectionState.Closed Then
 conDB.ConnectionString =
“Provider=Microsoft.ACE.OLEDB.12.0; Data Source=” &
Application.StartupPath & “\stuDB.accdb”
 conDB.Open()
 End If
 End Sub
 Function getNewID(tblName As String, fldName As String)
As String
 Dim strVal, sql As String
 Dim cmd As OleDb.OleDbCommand
 connectDB()
 sql = “select max(“ & fldName & “) from “ & tblName
 cmd = New OleDb.OleDbCommand(sql, conDB)
 strVal = Convert.ToString(cmd.ExecuteScalar())
 If strVal = “” Then

Lab:.NET Programming

NOTES

Self-Instructional
106 Material

 strVal = “1”
 Else
 strVal = Convert.ToString(CInt(strVal) + 1)
 End If
 Return strVal
 End Function

Button Click

Dim strSQL As String
 Dim gndr As String
 Dim i As Integer
 If rdbFemale.Checked = True Then
 gndr = “Female”
 Else
 gndr = “Male”
 End If
 strSQL = “insert into studentmaster values(“ &
txtStuID.Text & “,’” & cboClass.Text & “‘,’” &
txtStuName.Text & “‘,’” & txtFName.Text & “‘,’” &
txtMName.Text & “‘,’” & gndr & “‘,’” & txtPhone.Text &
“‘,’” & txtEmail.Text & “‘)”
 cmd = New OleDb.OleDbCommand(strSQL, conDB)
 cmd.ExecuteNonQuery()
 For i = 0 To dgvMarks.RowCount - 2
 strSQL = “insert into studentmarks values(“ &
txtStuID.Text & “,’” & dgvMarks.Item(0, i).Value & “‘,” &
dgvMarks.Item(1, i).Value & “)”
 cmd = New OleDb.OleDbCommand(strSQL, conDB)
 cmd.ExecuteNonQuery()
 Next

NOTES

Self-Instructional
Material 107

Lab:.NET ProgrammingSearch Button:
Dim sid, cnt As Integer
 Dim drl As OleDb.OleDbDataReader
 Dim cmdl As New OleDb.OleDbCommand
 sid = CInt(InputBox(“Enter the StudentID to
search”))
 cmdl = New OleDbPress Ctrl+V to copy the following
code

Dim sid, cnt As Integer
 Dim drl As OleDb.OleDbDataReader
 Dim cmdl As New OleDb.OleDbCommand
 sid = CInt(InputBox(“Enter the StudentID to
search”))
 cmdl = New OleDb.OleDbCommand(“select * from
studentmaster where stuid=” & sid, conDB)
 drl = cmdl.ExecuteReader()
 If drl.Read() Then
 txtStuID.Text = drl.Item(0)
 cboClass.Text = drl.Item(1)
 txtStuName.Text = drl.Item(2)
 txtFName.Text = drl.Item(3)
 txtMName.Text = drl.Item(4)
 If drl.Item(5) = “Female” Then
 rdbFemale.Checked = True
 Else
 rdbMale.Checked = True
 End If
 txtPhone.Text = drl.Item(6)
 txtEmail.Text = drl.Item(7)
 drl.Close()
 cmdl = New OleDb.OleDbCommand(“select subject,
marks from studentmarks where stuid=” & sid, conDB)
 drl = cmdl.ExecuteReader()
 dgvMarks.Rows.Clear()
 cnt = 0
 While drl.Read()
 dgvMarks.Rows.Add()
 dgvMarks.Item(0, cnt).Value =
Convert.ToString(drl.Item(0))
 dgvMarks.Item(1, cnt).Value =

Lab:.NET Programming

NOTES

Self-Instructional
108 Material

Convert.ToString(drl.Item(1))
 cnt = cnt + 1
 End While
 Else
 MsgBox(“No student with this ID”)
 End If

.OleDbCommand(“select * from studentmaster where stuid=”
& sid, conDB)
 drl = cmdl.ExecuteReader()
 If drl.Read() Then
 txtStuID.Text = drl.Item(0)
 cboClass.Text = drl.Item(1)
 txtStuName.Text = drl.Item(2)
 txtFName.Text = drl.Item(3)
 txtMName.Text = drl.Item(4)
 If drl.Item(5) = “Female” Then
 rdbFemale.Checked = True
 Else
 rdbMale.Checked = True
 End If
 txtPhone.Text = drl.Item(6)
 txtEmail.Text = drl.Item(7)
 drl.Close()
 cmdl = New OleDb.OleDbCommand(“select subject,
marks from studentmarks where stuid=” & sid, conDB)
 drl = cmdl.ExecuteReader()
 dgvMarks.Rows.Clear()
 cnt = 0
 While drl.Read()
 dgvMarks.Rows.Add()
 dgvMarks.Item(0, cnt).Value =
Convert.ToString(drl.Item(0))
 dgvMarks.Item(1, cnt).Value =
Convert.ToString(drl.Item(1))
 cnt = cnt + 1
 End While
 Else
 MsgBox(“No student with this ID”)
 End If

NOTES

Self-Instructional
Material 109

Lab:.NET Programming

Button Update:

Dim strSQL As String
 Dim gndr As String
 Dim i As Integer
 If rdbFemale.Checked = True Then
 gndr = “Female”
 Else
 gndr = “Male”
 End If
 strSQL = “update studentmaster set stuClass=’” &
cboClass.Text & “‘, StuName=’” & txtStuName.Text & “‘,
StuFname=’” _
 & txtFName.Text & “‘,StuMName=’” &
txtMName.Text & “‘,StuGender=’” & gndr & “‘,StuPhone=’” &
txtPhone.Text _
 & “‘,StuEmail=’” & txtEmail.Text & “‘ where
StuID=” & CInt(txtStuID.Text)
 cmd = New OleDb.OleDbCommand(strSQL, conDB)
 cmd.ExecuteNonQuery()
 ‘ delete all records from marks table to add the
new marks and subjects
 strSQL = “delete * from studentmarks where StuID=”
& CInt(txtStuID.Text)
 cmd = New OleDb.OleDbCommand(strSQL, conDB)
 cmd.ExecuteNonQuery()
 ‘ Insert the new subjects and marks for the student
 For i = 0 To dgvMarks.RowCount - 2
 strSQL = “insert into studentmarks values(“ &
txtStuID.Text & “,’” & dgvMarks.Item(0, i).Value & “‘,” &
dgvMarks.Item(1, i).Value & “)”
 cmd = New OleDb.OleDbCommand(strSQL, conDB)
 cmd.ExecuteNonQuery()
 Next

Lab:.NET Programming

NOTES

Self-Instructional
110 Material

Button Delete:

Dim strSQL As String
 ‘ delete the record of student from master table
 strSQL = “delete * from studentmaster where StuID=”
& CInt(txtStuID.Text)
 cmd = New OleDb.OleDbCommand(strSQL, conDB)
 cmd.ExecuteNonQuery()
 ‘ delete all records from marks table
 strSQL = “delete * from studentmarks where StuID=”
& CInt(txtStuID.Text)
 cmd = New OleDb.OleDbCommand(strSQL, conDB)
 cmd.ExecuteNonQuery()

Print Button:

Dim frm As New Form2 ‘ creates an object of form containing
the reportviewer
 frm.Show()’ displays the report

Report Viewer:

Private Sub Form2_Load(sender As Object, e As EventArgs)
Handles MyBase.Load
 Dim dt1, dt2 As New DataTable
 Dim sid As Integer
 connectDB()
 sid =
CInt(frmStuDetails.Controls(“txtStuID”).Text)
 Dim cmd1 As New OleDb.OleDbCommand(“SELECT * from
StudentMarks where stuid=” & sid, conDB)
 cmd1.CommandTimeout = 4096
 Dim ta1 As New OleDb.OleDbDataAdapter(cmd1)
 ta1.Fill(dt1)
 Dim cmd2 As New OleDb.OleDbCommand(“SELECT * from
StudentMaster where stuid=” & sid, conDB)
 cmd2.CommandTimeout = 4096
 Dim ta2 As New OleDb.OleDbDataAdapter(cmd2)

NOTES

Self-Instructional
Material 111

Lab:.NET Programming ta2.Fill(dt2)
 With Me.ReportViewer1.LocalReport
 .DataSources.Clear()
 .DataSources.Add(New
Microsoft.Reporting.WinForms.ReportDataSource(“DataSet1”,
dt1))
 .DataSources.Add(New
Microsoft.Reporting.WinForms.ReportDataSource(“DataSet2”,
dt2))
 End With
 Me.ReportViewer1.RefreshReport()
 End Sub

3. Telephone Directory Maintenance

Imports System.IO
Imports System.IO.Directory
Imports System.IO.DirectoryInfo
Imports System.IO.Path
Imports System.Environment
Imports System.IO.FileStream
Imports System.IO.File
Imports System.IO.FileInfo
Imports System.Data.SqlClient
Imports System.Data
Imports System.Data.OleDb

Public Class frmPonBuk

 Dim strPath As String
 Dim dsContact As New DataSet

Lab:.NET Programming

NOTES

Self-Instructional
112 Material

 Dim dsContactNam As New DataSet
 Dim daContact As New OleDbDataAdapter
 Dim daContactNam As New OleDbDataAdapter
 Dim sqlCommand As New OleDbCommand
 Dim strAction As String
 Dim strSQL As String
 Dim dt As New DataTable
 Dim dtContact As New DataTable
 Dim dtSearch As New DataTable
 Dim daSearch As New OleDbDataAdapter
 Dim dsSearch As New DataSet
 Dim drDSRow As DataRow
 Dim drNewRow As DataRow
 Dim cnPhoneBook As New OleDbConnection

 Private Sub frmPonBuk_KeyDown(ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyEventArgs) Handles
Me.KeyDown
 ‘code for short cut key, note this will work if
you
 ‘set the form’s keypreview property to true

 Select Case e.KeyCode
 Case Keys.F8
 If Me.cmdAdd.Enabled = True Then
 Me.cmdAdd_Click(sender, e)
 End If
 Case Keys.F9
 If Me.cmdEdit.Enabled = True Then
 Me.cmdEdit_Click(sender, e)
 End If
 Case Keys.F10
 If Me.cmdDelete.Enabled = True Then
 Me.cmdDelete_Click(sender, e)
 End If
 Case Keys.F11
 If Me.cmdUpdate.Enabled = True Then
 Me.cmdUpdate_Click(sender, e)
 End If
 Case Keys.F12
 If Me.cmdCancel.Enabled = True Then

NOTES

Self-Instructional
Material 113

Lab:.NET Programming Me.cmdCancel_Click(sender, e)
 End If
 Case Keys.Enter
 SendKeys.Send(“{TAB}”)

 End Select
 End Sub

 Private Sub frmPonBuk_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 ‘Dim strPath As String
 ‘you can use this method in order to get your
database(Access) path
 ‘strPath = System.Environment.CurrentDirectory &
“\Data\PhoneBook.accdb”
 ‘cnPhoneBook.ConnectionString = “
Provider=Microsoft.ACE.OLEDB.12.0;Data Source=” &
specialName & “;Persist Security Info=False;”

 cnPhoneBook.ConnectionString = “
Provider=Microsoft.ACE.OLEDB.12.0;Data Source=../Data/
PhoneBook.accdb;Persist Security Info=False;”
 strSQL = “ SELECT [LastName]+’, ‘+[FirstName]+’
‘+[MiddleName] AS Name, TblContact.* FROM TblContact ORDER
BY [LastName]+’, ‘+[FirstName]+’ ‘+[MiddleName];”
 daContact.SelectCommand = New OleDbCommand(strSQL,
cnPhoneBook)
 daContact.Fill(dsContact, “TblContact”)
 Me.dtContact = dsContact.Tables(“TblContact”)
 ‘binding controls to dataset
 Me.txtLstNam.DataBindings.Add(“Text”, dsContact,
“TblContact.LastName”)
 Me.txtFstNam.DataBindings.Add(“Text”, dsContact,
“TblContact.FirstName”)
 Me.txtMidNam.DataBindings.Add(“Text”, dsContact,
“TblContact.MiddleName”)
 Me.txtHomAdr.DataBindings.Add(“Text”, dsContact,
“TblContact.HomeAdr”)
 Me.txtBusAdr.DataBindings.Add(“Text”, dsContact,
“TblContact.BusAdr”)
 Me.txtTelNo.DataBindings.Add(“Text”, dsContact,

Lab:.NET Programming

NOTES

Self-Instructional
114 Material

“TblContact.TelNo”)
 Me.txtMobNo.DataBindings.Add(“Text”, dsContact,
“TblContact.MobNo”)
 Me.txtEml.DataBindings.Add(“Text”, dsContact,
“TblContact.EMail”)

 ‘setting datagrid properties
 Me.dtgContact.DataSource = dsContact
 Me.dtgContact.DataMember = “TblContact”
 Me.dtgContact.Columns(0).HeaderText = “Name”
 Me.dtgContact.Columns(1).Visible = False
 Me.dtgContact.Columns(2).Visible = False
 Me.dtgContact.Columns(3).Visible = False
 Me.dtgContact.Columns(4).Visible = False
 Me.dtgContact.Columns(5).HeaderText = “Home
Address”
 Me.dtgContact.Columns(6).HeaderText = “Bus.
Address”
 Me.dtgContact.Columns(7).HeaderText = “Telephone”
 Me.dtgContact.Columns(8).HeaderText = “Mobile”
 Me.dtgContact.Columns(9).HeaderText = “E-Mail”

 ‘Used SQL statement for Combo box to display the
name of contact person
 strSQL = “ SELECT TblContact.ContactID,
[LastName]+’, ‘+[FirstName]+’ ‘+[MiddleName] AS Name FROM
TblContact ORDER BY [LastName]+’, ‘+[FirstName]+’
‘+[MiddleName];”
 daContactNam.SelectCommand = New
OleDbCommand(strSQL, cnPhoneBook)
 daContactNam.Fill(dsContactNam, “TblContact”)

 ‘datatable for combo box
 Me.dt = dsContactNam.Tables(“TblContact”)
 Me.cmbSearch.DataSource = dt
 Me.cmbSearch.DisplayMember = “Name”
 Me.cmbSearch.ValueMember = “ContactID”
 Me.cmbSearch.SelectedIndex = -1
 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1
& “ of : “ & dsContact.Tables(“TblContact”).Rows.Count
 ‘ call procedure to lock the text field
 lockField()

NOTES

Self-Instructional
Material 115

Lab:.NET Programming ‘ call procedure to disabled update
 UpdtOff()
 End Sub

 Private Sub cmdFstRec_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdFstRec.Click
 Me.BindingContext(dsContact,
“TblContact”).Position = 0
 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1
& “ of : “ & dsContact.Tables(“TblContact”).Rows.Count
 End Sub

 Private Sub cmdPrv_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdPrv.Click
 Me.BindingContext(dsContact,
“TblContact”).Position = Me.BindingContext(dsContact,
“TblContact”).Position - 1
 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1
& “ of : “ & dsContact.Tables(“TblContact”).Rows.Count
 End Sub

 Private Sub cmdNext_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdNext.Click
 Me.BindingContext(dsContact,
“TblContact”).Position = Me.BindingContext(dsContact,
“TblContact”).Position + 1
 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1
& “ of : “ & dsContact.Tables(“TblContact”).Rows.Count
 End Sub

 Private Sub cmdLst_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdLst.Click
 Me.BindingContext(dsContact,
“TblContact”).Position = Me.BindingContext(dsContact,
“TblContact”).Count - 1
 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1
& “ of : “ & dsContact.Tables(“TblContact”).Rows.Count
 End Sub
 Private Sub UnlockField()

Lab:.NET Programming

NOTES

Self-Instructional
116 Material

 Me.txtFstNam.ReadOnly = False
 Me.txtLstNam.ReadOnly = False
 Me.txtMidNam.ReadOnly = False
 Me.txtHomAdr.ReadOnly = False
 Me.txtBusAdr.ReadOnly = False
 Me.txtTelNo.ReadOnly = False
 Me.txtMobNo.ReadOnly = False
 Me.txtEml.ReadOnly = False

 End Sub
 Private Sub lockField()

 Me.txtFstNam.ReadOnly = True
 Me.txtLstNam.ReadOnly = True
 Me.txtMidNam.ReadOnly = True
 Me.txtHomAdr.ReadOnly = True
 Me.txtBusAdr.ReadOnly = True
 Me.txtTelNo.ReadOnly = True
 Me.txtMobNo.ReadOnly = True
 Me.txtEml.ReadOnly = True

 End Sub
 Private Sub UpdtOff()

 Me.cmdAdd.Enabled = True
 Me.cmdEdit.Enabled = True
 Me.cmdDelete.Enabled = True
 Me.cmdUpdate.Enabled = False
 Me.cmdCancel.Enabled = False

 Me.cmdAdd.BackColor = Color.Tan
 Me.cmdEdit.BackColor = Color.Tan
 Me.cmdDelete.BackColor = Color.Tan
 Me.cmdUpdate.BackColor = Color.Black
 Me.cmdCancel.BackColor = Color.Black
 End Sub
 Private Sub UpdtOn()

 Me.cmdAdd.Enabled = False

NOTES

Self-Instructional
Material 117

Lab:.NET Programming Me.cmdEdit.Enabled = False
 Me.cmdDelete.Enabled = False
 Me.cmdUpdate.Enabled = True
 Me.cmdCancel.Enabled = True

 Me.cmdAdd.BackColor = Color.Black
 Me.cmdEdit.BackColor = Color.Black
 Me.cmdDelete.BackColor = Color.Black
 Me.cmdUpdate.BackColor = Color.Tan
 Me.cmdCancel.BackColor = Color.Tan

 End Sub

 Private Sub cmdAdd_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdAdd.Click
 strAction = “ADD”
 UpdtOn()
 UnlockField()
 Me.BindingContext(dsContact,
“TblContact”).AddNew()
 Me.txtLstNam.Focus()
 End Sub

 Private Sub cmdEdit_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdEdit.Click
 strAction = “EDIT”
 UpdtOn()
 UnlockField()
 End Sub

 Private Sub cmdDelete_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdDelete.Click
 Dim delCommand As New OleDbCommand
 Dim intPos As Integer
 Dim intContactID As Integer
 Dim strUsrRsp As String
 intPos = Me.BindingContext(dsContact,
“TblContact”).Position
 intContactID = dtContact.Rows(intPos).Item(1)
 strUsrRsp = MsgBox(“Do you want to delete this

Lab:.NET Programming

NOTES

Self-Instructional
118 Material

record”, MsgBoxStyle.YesNo + MsgBoxStyle.Question +
MsgBoxStyle.ApplicationModal, “Phone Book”)
 If strUsrRsp = MsgBoxResult.Yes Then
 Try
 cnPhoneBook.Open()
 strSQL = “Delete from TblContact where
(ContactID = “ & intContactID & “)”

 sqlCommand = New OleDbCommand(strSQL,
cnPhoneBook)

 sqlCommand.ExecuteNonQuery()

 cnPhoneBook.Close()
 dsContact.Clear()
 daContact.Fill(dsContact, “TblContact”)
 MsgBox(“Record has been deleted”,
MsgBoxStyle.OkOnly + MsgBoxStyle.Information +
MsgBoxStyle.ApplicationModal, “Phone Book”)
 Catch ex As Exception
 MsgBox(Err.Description)
 End Try
 Else

 End If
 dsContactNam.Clear()
 daContactNam.Fill(dsContactNam, “TblContact”)
 cmbSearch.SelectedIndex = -1
 End Sub

 Private Sub cmdUpdate_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdUpdate.Click
 Dim SubPos As Integer
 Dim intPos As Integer
 Dim intContactID As Integer

 Try
 Select Case strAction
 Case “ADD”
 Me.BindingContext(dsContact,
“TblContact”).EndCurrentEdit()

NOTES

Self-Instructional
Material 119

Lab:.NET Programming cnPhoneBook.Open()
 strSQL = “INSERT INTO TblContact
(LastName, FirstName, MiddleName, HomeAdr, BusAdr, TelNo,
MobNo, EMail) “
 strSQL = strSQL & “ VALUES (‘“ &
Me.txtLstNam.Text & “‘,’” & Me.txtFstNam.Text & “‘,’” &
Me.txtMidNam.Text & “‘,’” & Me.txtHomAdr.Text & “‘,’” &
Me.txtBusAdr.Text & “‘,’” & Me.txtTelNo.Text & “‘,’” &
Me.txtMobNo.Text & “‘,’” & Me.txtEml.Text & “‘);”
 sqlCommand = New OleDbCommand(strSQL,
cnPhoneBook)

 sqlCommand.ExecuteNonQuery()

 cnPhoneBook.Close()
 dsContact.Clear()
 daContact.Fill(dsContact,
“TblContact”)

 Case “EDIT”
 intPos = Me.BindingContext(dsContact,
“TblContact”).Position
 intContactID =
dtContact.Rows(intPos).Item(1)

 Me.BindingContext(dsContact,
“TblContact”).EndCurrentEdit()
 cnPhoneBook.Open()

 strSQL = “UPDATE TblContact SET
LastName = ‘“ & Me.txtLstNam.Text & “‘, FirstName = ‘“ &
Me.txtFstNam.Text & “‘, MiddleName = ‘“ & Me.txtMidNam.Text
& “‘, HomeAdr = ‘“ & Me.txtHomAdr.Text & “‘, “
 strSQL = strSQL & “ BusAdr = ‘“ &
Me.txtBusAdr.Text & “‘, TelNo = ‘“ & Me.txtTelNo.Text &
“‘, MobNo = ‘“ & Me.txtMobNo.Text & “‘, EMail = ‘“ &
Me.txtEml.Text & “‘ WHERE (((TblContact.ContactID)=” &
intContactID & “));”
 sqlCommand = New OleDbCommand(strSQL,
cnPhoneBook)

 sqlCommand.ExecuteNonQuery()
 cnPhoneBook.Close()
 SubPos = Me.BindingContext(dsContact,
“TblContact”).Position

Lab:.NET Programming

NOTES

Self-Instructional
120 Material

 dsContact.Clear()
 daContact.Fill(dsContact,
“TblContact”)
 Me.BindingContext(dsContact,
“TblContact”).Position = SubPos

 End Select
 UpdtOff()
 lockField()
 Catch ex As Exception
 MsgBox(strSQL)
 End Try
 dsContactNam.Clear()
 daContactNam.Fill(dsContactNam, “TblContact”)
 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1
& “ of : “ & dsContact.Tables(“TblContact”).Rows.Count
 End Sub

 Private Sub cmdCancel_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdCancel.Click

 Me.BindingContext(dsContact,
“TblContact”).CancelCurrentEdit()
 UpdtOff()
 lockField()
 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1
& “ of : “ & dsContact.Tables(“TblContact”).Rows.Count

 End Sub

 Private Sub cmdSearch_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
cmdSearch.Click
 Dim ContactIDSrh As Integer
 Dim ColNum As Integer
 Dim RowNum As Integer
 Dim RecCount As Integer
 ColNum = 0
 RowNum = 0
 ‘Check Combo box if it has a value

NOTES

Self-Instructional
Material 121

Lab:.NET Programming If Me.cmbSearch.SelectedValue <> 0 Then
 RecCount = Me.BindingContext(dsContact,
“TblContact”).Count
 ContactIDSrh = Me.cmbSearch.SelectedValue
 ‘move at first record
 Me.BindingContext(dsContact,
“TblContact”).Position = 0
 ‘loop until we find the desired Contact Person
 Do While ContactIDSrh <>
dtContact.Rows(RowNum).Item(1)
 If RowNum <> RecCount Then
 ‘move record position
 Me.BindingContext(dsContact,
“TblContact”).Position = RowNum + 1
 RowNum = RowNum + 1
 Else
 ‘exit loop if record found
 Exit Do
 End If
 Loop
 Else
 MsgBox(“Please Select the Student name to be
searched”)
 End If
 End Sub

 Private Sub txtLstNam_LostFocus(ByVal sender As
Object, ByVal e As System.EventArgs) Handles
txtLstNam.LostFocus
 ‘this will trigger if the txtLstNam has lost the
focus and during adding new or editting existing record
 If strAction = “ADD” Or strAction = “EDIT” Then
 ‘transform the string into proper case
 Me.txtLstNam.Text = StrConv(Me.txtLstNam.Text,
VbStrConv.ProperCase)
 End If
 End Sub

 Private Sub txtFstNam_LostFocus(ByVal sender As
Object, ByVal e As System.EventArgs) Handles
txtFstNam.LostFocus
 If strAction = “ADD” Or strAction = “EDIT” Then
 Me.txtFstNam.Text = StrConv(Me.txtFstNam.Text,

Lab:.NET Programming

NOTES

Self-Instructional
122 Material

VbStrConv.ProperCase)
 End If
 End Sub

 Private Sub txtMidNam_LostFocus(ByVal sender As
Object, ByVal e As System.EventArgs) Handles
txtMidNam.LostFocus
 If strAction = “ADD” Or strAction = “EDIT” Then
 Me.txtMidNam.Text =
StrConv(Me.txtMidNam.Text, VbStrConv.ProperCase)
 End If
 End Sub

 Private Sub txtHomAdr_LostFocus(ByVal sender As
Object, ByVal e As System.EventArgs) Handles
txtHomAdr.LostFocus
 If strAction = “ADD” Or strAction = “EDIT” Then
 Me.txtHomAdr.Text =
StrConv(Me.txtHomAdr.Text, VbStrConv.ProperCase)
 End If
 End Sub

 Private Sub txtBusAdr_LostFocus(ByVal sender As
Object, ByVal e As System.EventArgs) Handles
txtBusAdr.LostFocus
 If strAction = “ADD” Or strAction = “EDIT” Then
 Me.txtBusAdr.Text =
StrConv(Me.txtBusAdr.Text, VbStrConv.ProperCase)
 End If
 End Sub

 Private Sub txtTelNo_LostFocus(ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtTelNo.LostFocus
 If strAction = “ADD” Or strAction = “EDIT” Then
 If Len(Me.txtTelNo.Text) = 7 Then
 Me.txtTelNo.Text = Mid(Me.txtTelNo.Text,
1, 3) & “-” & Mid(Me.txtTelNo.Text, 4, 2) & “-” &
Mid(Me.txtTelNo.Text, 6, 2)
 End If
 End If
 End Sub

 Private Sub dtgContact_CellClick(ByVal sender As

NOTES

Self-Instructional
Material 123

Lab:.NET ProgrammingObject, ByVal e As
System.Windows.Forms.DataGridViewCellEventArgs) Handles
dtgContact.CellClick
 Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext(dsContact, “TblContact”).Position + 1
& “ of : “ & dsContact.Tables(“TblContact”).Rows.Count
 End Sub

End Class

4. Gas Booking and Delivering

Main:

Private Sub Command1_Click() Handles Command1.Click
‘#Const Compile_Command1_Click = True
#If Compile_Command1_Click Or CompileAll_Form1 Then
 Form2.Load()
 Form2.Show()
 Close()
#End If ‘ Compile_Command1_Click
 End Sub

 Private Sub Command2_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Command2.Click
‘#Const Compile_Command2_Click = True
#If Compile_Command2_Click Or CompileAll_Form1 Then

Lab:.NET Programming

NOTES

Self-Instructional
124 Material

 Form15.Load()
 Form15.Show()
 Close()
#End If ‘ Compile_Command2_Click
 End Sub

 Private Sub Command3_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Command3.Click
‘#Const Compile_Command3_Click = True
#If Compile_Command3_Click Or CompileAll_Form1 Then
 ‘b = InputBox(“Enter Record No”, “Find to Modify”)
 Form6.Load()
 Form6.Show()
 Close()
#End If ‘ Compile_Command3_Click
 End Sub

 Private Sub Command4_Click() Handles Command4.Click
‘#Const Compile_Command4_Click = True
#If Compile_Command4_Click Or CompileAll_Form1 Then
 Form16.Load()
 Form16.Show()
 Close()
#End If ‘ Compile_Command4_Click
 End Sub

 Private Sub Command5_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Command5.Click
‘#Const Compile_Command5_Click = True
#If Compile_Command5_Click Or CompileAll_Form1 Then
 Form5.Load()
 Form5.Show()
 Close()
#End If ‘ Compile_Command5_Click
 End Sub

 Private Sub Command6_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Command6.Click
‘#Const Compile_Command6_Click = True
#If Compile_Command6_Click Or CompileAll_Form1 Then
 Form7.Load()

NOTES

Self-Instructional
Material 125

Lab:.NET Programming Form7.Show()
 Close()
#End If ‘ Compile_Command6_Click
 End Sub

 Private Sub Command7_Click() Handles Command7.Click
‘#Const Compile_Command7_Click = True
#If Compile_Command7_Click Or CompileAll_Form1 Then
 Application.Exit()
#End If ‘ Compile_Command7_Click
 End Sub

 Private Sub Command8_Click() Handles Command8.Click
‘#Const Compile_Command8_Click = True
#If Compile_Command8_Click Or CompileAll_Form1 Then
 Form8.Load()
 Form8.Show()
 Close()
#End If ‘ Compile_Command8_Click
 End Sub

 Private Sub Command9_Click(ByVal sender As Object,
ByVal e As System.EventArgs) Handles Command9.Click
‘#Const Compile_Command9_Click = True
#If Compile_Command9_Click Or CompileAll_Form1 Then
 Form14.Load()
 Form14.Show()
 Close()
#End If ‘ Compile_Command9_Click
 End Sub

 Private Sub Form1_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
‘#Const Compile_Form_Load = True
#If Compile_Form_Load Or CompileAll_Form1 Then
 Timer1.Interval = 50
#End If ‘ Compile_Form_Load
 End Sub

 Private Sub Timer1_Tick(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Timer1.Tick

Lab:.NET Programming

NOTES

Self-Instructional
126 Material

‘#Const Compile_Timer1_Timer = True
#If Compile_Timer1_Timer Or CompileAll_Form1 Then
 l1.Top -= 60
 If l1.Top<=100 Then
 l1.Top = 13000
 End If

 L2.Top -= 60
 If L2.Top<=100 Then
 L2.Top = 13000
 End If

 L3.Top -= 60
 If L3.Top<=100 Then
 L3.Top = 13000
 End If

 L4.Top -= 60
 If L4.Top<=100 Then
 L4.Top = 13000
 End If

 L5.Top -= 60
 If L5.Top<=100 Then
 L5.Top = 13000
 End If

 L6.Top -= 60
 If L6.Top<=60 Then
 L6.Top = 13000
 End If

 l7.Top -= 60
 If l7.Top<=60 Then
 l7.Top = 13000
 End If

 l8.Top -= 60
 If l8.Top<=60 Then
 l8.Top = 13000

NOTES

Self-Instructional
Material 127

Lab:.NET Programming End If

 l9.Top -= 60
 If l9.Top<=60 Then
 l9.Top = 13000
 End If
#End If ‘ Compile_Timer1_Timer
 End Sub

 Private Sub Timer2_Tick(ByVal sender As Object, ByVal
e As System.EventArgs) Handles Timer2.Tick
‘#Const Compile_Timer2_Timer = True
#If Compile_Timer2_Timer Or CompileAll_Form1 Then
 Label4.ForeColor =
ColorTranslator.FromOle(QBColor(Rnd()*15))
 Label5.ForeColor =
ColorTranslator.FromOle(QBColor(Rnd()*15))
#End If ‘ Compile_Timer2_Timer
 End Sub

End Class

Lab:.NET Programming

NOTES

Self-Instructional
128 Material

File Menu:

Booking Menu:

Add Menu:

5. Electricity Bill Management Main form:

Private Sub Cmdexit_Click()
End
End Sub

Private Sub Cmd1_Click()
txtuser.Text = UCase(txtuser)
txtpass.Text = UCase(txtpass) ‘& LCase(txtpass)
If txtuser.Text = “ELECTRICITY” And txtpass = “KULKARNI”
Then

NOTES

Self-Instructional
Material 129

Lab:.NET ProgrammingMain.Show
Me.Hide
Else
MsgBox (“Please try again”)
txtuser.SetFocus
End If
End Sub

Private Sub Cmd2_Click()
End
End Sub

Customer Form:
Private Sub Cmdadd_Click()
Adodc1.Refresh
Adodc1.Recordset.AddNew
End Sub

Private Sub cmdclear_Click()
Adodc1.Refresh
cmbgn.Text = “”
txtnm.Text = “”
txtad.Text = “”
cmbec.Text = “”
cmbct.Text = “”
Txtpn.Text = “”
cmbpro.Text = “”
Txtdob.Text = “”
End Sub

Private Sub cmdsv_Click()
If cmbgn.Text = “” Or txtnm.Text = “” Or cmbec.Text = “”
Or cmbpro.Text = “” Or Txtdob.Text = “” Then
MsgBox “Please Fill Requireds Fields Then Save Your Record”
Else
Adodc1.Recordset.Fields(0) = cmbgn.Text
Adodc1.Recordset.Fields(1) = txtnm.Text
Adodc1.Recordset.Fields(2) = txtad.Text
Adodc1.Recordset.Fields(3) = cmbec.Text
Adodc1.Recordset.Fields(4) = cmbct.Text

Lab:.NET Programming

NOTES

Self-Instructional
130 Material

Adodc1.Recordset.Fields(5) = Txtpn.Text
Adodc1.Recordset.Fields(6) = cmbpro.Text
Adodc1.Recordset.Fields(7) = Text1.Text ‘lbldt.Caption
Adodc1.Recordset.Fields(8) = Txtdob.Text
Adodc1.Recordset.Save
Adodc1.Refresh
MsgBox “Record Save Successfully”

cmbgn.Text = “”
txtnm.Text = “”
txtad.Text = “”
cmbec.Text = “”
cmbct.Text = “”
Txtpn.Text = “”
cmbpro.Text = “”
Txtdob.Text = “”
End If
End Sub

Private Sub Command5_Click()
Unload Me
End Sub

Private Sub Form_Load()
‘Adodc1.Refresh
cmbgn.Text = “”
txtnm.Text = “”
txtad.Text = “”
cmbec.Text = “”
cmbct.Text = “”
Txtdob.Text = “”
Txtpn.Text = “”
cmbpro.Text = “”
Text1.Text = Date

‘FormatDateTime((DateTime.Day) & (“-”) & (DateTime.Month)
& (“-”) & (DateTime.Year))
‘d & “/” & m & “/” & y
‘lbldt.Caption = FormatDateTime(DateTime.Date, vbLongDate)

NOTES

Self-Instructional
Material 131

Lab:.NET Programming‘vbGeneralDate
‘DateTime.Date
End Sub

Bill:

Private Sub Cmbnm2_LostFocus()
‘On Error Resume Next
‘Adodc1.Refresh
‘While Not Adodc1.Recordset.EOF = True
‘If Adodc1.Recordset!Name = Cmbnm2.Text Then
‘txtadd.Text = Adodc1.Recordset!Add ‘ress
‘Txtex.Text = Adodc1.Recordset!Exchange
‘Txtpin.Text = Adodc1.Recordset!pincode
‘Else
‘’
‘’Exit Do
‘End If
‘Loop
Adodc1.Refresh
Adodc2.Refresh
Do While Adodc1.Recordset.EOF = False
If Adodc1.Recordset!Name = Cmbnm2.Text Then
Txtadd.Text = Adodc1.Recordset!Add
Txtex.Text = Adodc1.Recordset!Exchange
Txtpin.Text = Adodc1.Recordset!pincode
Text1.Text = Adodc1.Recordset!plan
Exit Do
End If
‘End If

Lab:.NET Programming

NOTES

Self-Instructional
132 Material

Adodc1.Recordset.MoveNext
‘Adodc2.Recordset.MoveNext
Loop

‘Do While Adodc2.Recordset.EOF = False
‘If Adodc2.Recordset!planname = Text1.Text Then
‘Txtmcc.Text = Adodc2.Recordset!MonthlyCharges
‘txtfc.Text = Adodc2.Recordset!free_calls
‘Exit Do
‘End If
‘Adodc2.Recordset.MoveNext
‘Loop

‘Adodc2.Recordset.MoveNext

Txtn2.Text = Cmbnm2.Text
Txtn3.Text = Txtadd.Text
Txtn4.Text = txtcust.Text
Txtn5.Text = Txttel.Text
Txtn6.Text = Txtex.Text
Txtn7.Text = Txtpin.Text
Txtdb.Text = Txtfmc.Text
Txtdb1.Text = txtfc.Text
‘Wend
End Sub

Private Sub Cmdadd_Click()
Adodc3.Refresh
Adodc3.Recordset.MoveNext
Adodc3.Recordset.AddNew
Cmdadd.Visible = False
cmdsv.Visible = True
End Sub

Private Sub cmdcalc_Click()
‘Txtgmc.Text = Val(Txtcmr.Text) - Val(Txtomr.Text)
‘Txtncc.Text = Val(Txtgmc.Text) - Val(txtfc.Text)
‘If Txtncc.Text <= 0 Then

NOTES

Self-Instructional
Material 133

Lab:.NET Programming‘Txtncc.Text = “0”
‘Txtmcc.Text = Txtncc.Text
‘Else
‘Txtmcc.Text = Txtncc.Text
‘End If
End Sub

Private Sub cmdsv_Click()
‘Txtn2.Text = Cmbnm2.Text
‘Txtn3.Text = txtadd.Text
‘Txtn4.Text = txtcust.Text
‘Txtn5.Text = txttel.Text
‘Txtn6.Text = Txtex.Text
‘Txtn7.Text = txtpin.Text
‘Txtdb.Text = Txtfmc.Text
‘Txtdb1.Text = txtfc.Text
Adodc3.Recordset.Fields(0) = Txtn2.Text
Adodc3.Recordset.Fields(1) = Txtn4.Text
Adodc3.Recordset.Fields(2) = Txtn5.Text
Adodc3.Recordset.Fields(3) = Txtn6.Text
Adodc3.Recordset.Fields(4) = Txtn7.Text
Adodc3.Recordset.Fields(5) = Txtn3.Text
Adodc3.Recordset.Fields(6) = Txtomr.Text
Adodc3.Recordset.Fields(7) = Txtcmr.Text
Adodc3.Recordset.Fields(8) = Txtgmc.Text
Adodc3.Recordset.Fields(9) = txtfc.Text
Adodc3.Recordset.Fields(10) = Txtncc.Text
Adodc3.Recordset.Fields(11) = Txtfmc.Text
Adodc3.Recordset.Fields(12) = Txtmcc.Text
‘Adodc3.Recordset.Fields(13) = Txtdb.Text
Adodc3.Recordset.Fields(14) = Txttx.Text
‘Adodc3.Recordset.Fields(15) = Txtdb1.Text
Adodc3.Recordset.Fields(18) = Txtapb.Text
Adodc3.Recordset.Fields(19) = Txtsfdp.Text
Adodc3.Recordset.Fields(20) = Txtapdd.Text

‘Adodc1.Recordset.Save
‘Adodc2.Recordset.Save
Adodc3.Recordset.Save
MsgBox “BILL SAVE Successfully”

Lab:.NET Programming

NOTES

Self-Instructional
134 Material

Adodc3.Refresh
While Adodc3.Recordset.EOF = False
Combo1.AddItem (Adodc3.Recordset!Name)
Adodc3.Recordset.MoveNext
Wend

‘Val(Txtgmc.Text) = Val(Txtcmr.Text) - Val(Txtomr.Text)
‘End
End Sub

Private Sub cmdx_Click()
Unload Me
End Sub

Private Sub Combo1_LostFocus()
‘Text2.Text = Combo1.Text
‘Adodc3.Refresh
‘On Error Resume Next
‘If DataEnvironment1.con1.State = 1 Then
DataEnvironment1.con1.Open
‘DataEnvironment1.con1.Close
‘DataEnvironment1.con1.Open
‘DataEnvironment1.Bill_details (Text2.Text)
‘’DataReport3.Show
‘BillReport.Show
End Sub

Private Sub Command1_Click()
Text2.Text = Combo1.Text
Adodc3.Refresh
On Error Resume Next
If DataEnvironment1.con1.State = 1 Then
DataEnvironment1.con1.Open
DataEnvironment1.con1.Close
DataEnvironment1.con1.Open
DataEnvironment1.Bill_details (Text2.Text)
‘DataReport3.Show
BillReport.Show
End Sub

NOTES

Self-Instructional
Material 135

Lab:.NET Programming

Private Sub Form_Load()
While Adodc1.Recordset.EOF = False
Cmbnm2.AddItem (Adodc1.Recordset!Name)
Adodc1.Recordset.MoveNext
Wend
txtfc.Text = “”
Txtfmc.Text = “”

‘Label5.Caption = DateTime.Month(Date) & “/” &
DateTime.Year(Date)
Adodc3.Refresh
While Adodc3.Recordset.EOF = False
Combo1.AddItem (Adodc3.Recordset!Name)
Adodc3.Recordset.MoveNext
Wend

cmdsv.Visible = False
‘Val(Txtgmc.Text) = Val(Txtcmr.Text) - Val(Txtomr.Text)
End Sub

Private Sub Frame1_DragDrop(Source As Control, X As Single,
Y As Single)
‘BillReport.Show
End Sub

Private Sub Label5_Click()
End Sub

Private Sub Txtgmc_GotFocus()
Txtgmc.Text = Val(Txtcmr.Text) - Val(Txtomr.Text)
Txtncc.Text = Val(Txtgmc.Text) - Val(txtfc.Text)
If Txtncc.Text <= 0 Then
Txtncc.Text = “0”
Txtmcc.Text = Txtncc.Text
Else
Txtmcc.Text = Txtncc.Text
End If
Txttx.Text = (Val(Txtfmc.Text) + Val(Txtmcc.Text)) * 0.1023
Txttx.Text = Round(Txttx.Text)
Txtapb.Text = Val(Txttx.Text) + Val(Txtfmc.Text) +

Lab:.NET Programming

NOTES

Self-Instructional
136 Material

Val(Txtmcc.Text)
If Val(Txtapb.Text) > 0 Then
Txtsfdp.Text = “10”
Txtapdd.Text = Val(Txtapb.Text) + Val(Txtsfdp.Text)
Else
MsgBox “Wrong Bill Amount”
End If
End Sub

Private Sub Txtomr_GotFocus()
Do While Adodc2.Recordset.EOF = False
If Adodc2.Recordset!planname = Text1.Text Then
‘Txtmcc.Text = Adodc2.Recordset!MonthlyCharges
txtfc.Text = Adodc2.Recordset!free_calls
Exit Do
End If
Adodc2.Recordset.MoveNext
Loop
End Sub

6. Bank Transaction System

Bank Details:

Public Class bankd
 Private Sub Label2_Click(sender As Object, e As
EventArgs)
 End Sub

NOTES

Self-Instructional
Material 137

Lab:.NET Programming Private Sub PictureBox1_Click(sender As Object, e As
EventArgs)
 End Sub

 Private Sub cls_Click(sender As Object, e As EventArgs)
Handles cls.Click
 Me.Close()
 End Sub

 Private Sub Button1_Click(sender As Object, e As
EventArgs) Handles Button1.Click
 home.managername.Text = TextBox1.Text
 home.brnamee.Text = TextBox2.Text
 home.Label6.Text = TextBox3.Text
 MsgBox(“Bank Details Updated”)
 End Sub

 Private Sub RectangleShape1_Click(sender As Object,
e As EventArgs) Handles RectangleShape1.Click
 End Sub
 Private Sub PictureBox1_Click_1(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 End Sub
End Class

Deposit:

Public Class Deposit
 Private Sub cls_Click(sender As Object, e As EventArgs)
Handles cls.Click
 Me.Hide()
 End Sub

Lab:.NET Programming

NOTES

Self-Instructional
138 Material

 Private Sub Deposit_Load(sender As Object, e As
EventArgs) Handles MyBase.Load
 ‘TODO: This line of code loads data into the
‘BankaccountsDataSet.baccounts’ table. You can move, or
remove it, as needed.
 Me.BaccountsTableAdapter.Fill
(Me.BankaccountsDataSet.baccounts)
 dat.Text = Date.Now.ToString(“MM/dd/yyyy”)
 Timer1.Start()
 End Sub

 Private Sub Label3_Click(sender As Object, e As
EventArgs) Handles Label3.Click
 End Sub

 Private Sub dat_Click(sender As Object, e As EventArgs)
Handles dat.Click
 End Sub

 Private Sub Button1_Click(sender As Object, e As
EventArgs) Handles Button1.Click
 Me.Close()
 End Sub

 Private Sub Timer1_Tick(sender As Object, e As
EventArgs) Handles Timer1.Tick
 clock.Text = TimeOfDay
 End Sub

 Private Sub Button2_Click(sender As Object, e As
EventArgs) Handles Button2.Click
 Dim con As New OleDb.OleDbConnection
 con.ConnectionString = “PROVIDER =
Microsoft.Ace.OLEDB.12.0; Data Source =F:\Sem.4\extra vs
code\bankmanagementsystem\bankmanagementsystem\proje
ct\BankManageMentSystem\BankManage
MentSystem\bankaccounts.accdb”

 Dim SqlString As String = “update [baccounts]
set [Balance] = Balance+@TextBox2.Text where [Acc_Id] =
@TextBox1.Text”

NOTES

Self-Instructional
Material 139

Lab:.NET Programming Using conn As New
OleDb.OleDbConnection(con.ConnectionString)
 Using cmd As New OleDb.OleDbCommand(SqlString,
con)
 cmd.CommandType = CommandType.Text
 cmd.Parameters.AddWithValue(“column”,
TextBox2.Text)
 cmd.Parameters.AddWithValue(“column”,
TextBox1.Text)
 con.Open()
 MsgBox(“Amount Deposited Successfully”)
 cmd.ExecuteNonQuery()
 Me.DataGridView1.Refresh()
 TextBox2.Text = “”
 TextBox1.Text = “”
 End Using
 End Using
 End Sub

 Private Sub HomeToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles HomeToolStripMenuItem.Click
 home.Show()
 End Sub

 Private Sub AccountsToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles
AccountsToolStripMenuItem.Click
 End Sub

 Private Sub AddAccountToolStripMenuItem_Click(sender
As Object, e As EventArgs) Handles
AddAccountToolStripMenuItem.Click
 addaccount.Show()
 End Sub

 Private Sub
UpdateAccountToolStripMenuItem_Click(sender As Object, e
As EventArgs) Handles UpdateAccountToolStripMenuItem.Click
 updateaccount.Show()
 End Sub

 Private Sub
DeleteAccountToolStripMenuItem_Click(sender As Object, e

Lab:.NET Programming

NOTES

Self-Instructional
140 Material

As EventArgs) Handles DeleteAccountToolStripMenuItem.Click
 deleteaccount.Show()
 End Sub

 Private Sub DepositToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles
DepositToolStripMenuItem.Click
 Me.Show()
 End Sub

 Private Sub WithdrawToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles
WithdrawToolStripMenuItem.Click
 Withdraw.Show()

 End Sub

 Private Sub
RegisterProductToolStripMenuItem_Click(sender As Object,
e As EventArgs) Handles
RegisterProductToolStripMenuItem.Click
 Register.Show()
 End Sub

 Private Sub CreditsToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles
CreditsToolStripMenuItem.Click
 about.Show()
 End Sub

 Private Sub HelpToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles HelpToolStripMenuItem.Click
 Help.Show()
 End Sub

 Private Sub AboutToolStripMenuItem_Click(sender As
Object, e As EventArgs) Handles
AboutToolStripMenuItem.Click
 End Sub
End Class

NOTES

Self-Instructional
Material 141

Lab:.NET Programming

Withdraw:
Public Class Withdraw
 Private Sub AddAccountToolStripMenuItem_Click(sender
As Object, e As EventArgs) Handles
AddAccountToolStripMenuItem.Click
 End Sub

 Private Sub cls_Click(sender As Object, e As EventArgs)
Handles cls.Click
 Me.Hide()
 End Sub

 Private Sub Withdraw_Load(sender As Object, e As
EventArgs) Handles MyBase.Load
 ‘TODO: This line of code loads data into the
‘BankaccountsDataSet.baccounts’ table. You can move, or
remove it, as needed.
 Me.BaccountsTableAdapter.Fill(Me.BankaccountsDataSet.baccounts)
 dat.Text = Date.Now.ToString(“MM/dd/yyyy”)
 Timer1.Start()
 End Sub

 Private Sub dat_Click(sender As Object, e As EventArgs)
Handles dat.Click
 End Sub

 Private Sub Timer1_Tick(sender As Object, e As
EventArgs) Handles Timer1.Tick
 clock.Text = TimeOfDay
 End Sub

 Private Sub Button2_Click(sender As Object, e As
EventArgs) Handles Button2.Click

Lab:.NET Programming

NOTES

Self-Instructional
142 Material

 Dim con As New OleDb.OleDbConnection
 con.ConnectionString = “PROVIDER =
Microsoft.Ace.OLEDB.12.0; Data Source =F:\Sem.4\extra vs
code\bankmanagementsystem\bankmanagementsystem\project\
BankManageMentSystem\BankManageMentSystem\bankaccounts.accdb”
 Dim SqlString As String = “update [baccounts]
set [Balance] = Balance-@TextBox2.Text where [Acc_Id] =
@TextBox1.Text”
 Using conn As New
OleDb.OleDbConnection(con.ConnectionString)
 Using cmd As New OleDb.OleDbCommand(SqlString,
con)
 cmd.CommandType = CommandType.Text
 cmd.Parameters.AddWithValue(“column”,
TextBox2.Text)
 cmd.Parameters.AddWithValue(“column”,
TextBox1.Text)
 con.Open()
 MsgBox(“Amount Withdrawn Successfully”)
 cmd.ExecuteNonQuery()
 Me.DataGridView1.Refresh()
 TextBox2.Text = “”
 TextBox1.Text = “”
 End Using
 End Using
 End Sub
End Class

7. Payroll Processing

Login:

Imports System.Data.OleDb
Public Class frmloginA

NOTES

Self-Instructional
Material 143

Lab:.NET Programming

 Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 Dim con As New
System.Data.OleDb.OleDbConnection(“Provider =
Microsoft.jet.OleDB.4.0;Data Source = “ &
Application.StartupPath & “\datastorage.mdb;”)
 Dim cmd As OleDbCommand = New OleDbCommand(_
 “SELECT * FROM logininfo WHERE Username
= ‘“ & _
 TextBox1.Text & “‘ AND [Password] =
‘“ & txtPassword.Text & “‘ “, con)
 con.Open()
 Dim sdr As OleDbDataReader = cmd.ExecuteReader()
 If (sdr.Read() = True) Then
 MessageBox.Show(“You are Now Logged In”)
 frmMainA.Show()
 TextBox1.Focus()
 TextBox1.Clear()
 txtPassword.Clear()
 Me.Hide()
 Else
 MessageBox.Show(“Invalid Username or
Password!”)
 End If
 End Sub

 Private Sub Button2_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button2.Click
 If MsgBox(“Do you want to switch user?”, vbYesNo
+ vbQuestion) = vbYes Then
 Me.Hide()
 TextBox1.Clear()
 txtPassword.Clear()
 Frmchoose.Show()
 End If
 End Sub

 Private Sub txtUsername_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 End Sub

Lab:.NET Programming

NOTES

Self-Instructional
144 Material

 Private Sub CheckBox1_CheckedChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
CheckBox1.CheckedChanged
 If CheckBox1.Checked = True Then
 txtPassword.PasswordChar = “”
 Else
 txtPassword.PasswordChar = “•”
 End If
 End Sub

 Private Sub txtPassword_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs)

 End Sub

 Private Sub log_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
 End Sub

 Private Sub GroupBox1_Enter(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
GroupBox1.Enter
 End Sub

 Private Sub PictureBox1_Click_1(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 End Sub
End Class

Form Main:

Imports System.IO
Public Class frmMainA
 Private Sub Timer1_Tick(ByVal sender As System.Object,

NOTES

Self-Instructional
Material 145

Lab:.NET ProgrammingByVal e As System.EventArgs) Handles Timer1.Tick
 lblTime.Text = DateTime.Now.ToString(“hh:mm:ss
tt”)
 lblDate.Text = DateTime.Now.ToString(“MMMM dd
yyyy”)
 End Sub

 Private Sub frmmainuser_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 Label2.Text = frmloginA.TextBox1.Text
 Timer1.Start()
 End Sub

 Private Sub btnMaintenance_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnMaintenance.Click
 Try
 Dim fbd As New FolderBrowserDialog
 If fbd.ShowDialog() = vbOK Then
 File.Copy(“GenerallPayroll.accdb”,
fbd.SelectedPath & “\GenerallPayroll.accdb”)
 MsgBox(“Done...”)
 End If
 Catch ex As Exception
 MsgBox(ex.Message)
 End Try
 End Sub

 Private Sub btnMini_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnMini.Click
 Me.WindowState = FormWindowState.Minimized
 End Sub

 Private Sub btnLogout_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnLogout.Click
 btnLogout.BackColor = Color.White
 btnLogout.ForeColor = Color.Black
 If MsgBox(“Do you want to switch user?”, vbYesNo
+ vbQuestion) = vbYes Then
 Me.Hide()

Lab:.NET Programming

NOTES

Self-Instructional
146 Material

 Frmchoose.Show()
 End If
 End Sub

 Private Sub NotePadToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles NotePadToolStripMenuItem.Click
 Try
 System.Diagnostics.Process.Start(“Notepad.exe”)
 Catch ex As Exception
 MessageBox.Show(ex.Message, “Error”,
MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 End Sub

 Private Sub CalculatorToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles CalculatorToolStripMenuItem.Click
 Try
 System.Diagnostics.Process.Start(“Calc.exe”)
 Catch ex As Exception
 MessageBox.Show(ex.Message, “Error”,
MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 End Sub

 Private Sub SystemInfoToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles SystemInfoToolStripMenuItem.Click
 End Sub

 Private Sub btnCataloging_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCataloging.Click
 frmregister.Show()
 End Sub

 Private Sub btnCirculation_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCirculation.Click
 frmpayslip.Show()
 End Sub

NOTES

Self-Instructional
Material 147

Lab:.NET Programming

 Private Sub AddStaffToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles AddStaffToolStripMenuItem.Click
 frmaddstaff.Show()
 End Sub

 Private Sub RemoveStaffToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs)
Handles RemoveStaffToolStripMenuItem.Click
 frmremovestaff.Show()
 End Sub

 Private Sub ToolStripMenuItem1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ToolStripMenuItem1.Click
 About.Show()
 End Sub

 Private Sub EmployeeToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs)
 End Sub

 Private Sub SearchRecordsToolStripMenuItem_Click(ByVal
sender As System.Object, ByVal e As System.EventArgs)
 End Sub
End Class

Print Slip:
Public Class frmpayslip
 Private Sub
GenPayFinalBindingNavigatorSaveItem_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 Me.Validate()
 Me.GenPayFinalBindingSource.EndEdit()

Lab:.NET Programming

NOTES

Self-Instructional
148 Material

 Me.TableAdapterManager.UpdateAll(Me.GenerallPayrollDataSet)
 End Sub

 Private Sub frmpayslip_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 ‘TODO: This line of code loads data into the
‘GenerallPayrollDataSet.GenPayFinal’ table. You can move,
or remove it, as needed.
 Me.GenPayFinalTableAdapter.Fill(Me.GenerallPayrollDataSet.GenPayFinal)
 End Sub

 Private Sub FacultyUnionLabel_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 End Sub

 Private Sub TuitionLabel_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 End Sub

 Private Sub Button5_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button5.Click
 Me.Validate()
 Me.GenPayFinalBindingSource.EndEdit()
 Me.TableAdapterManager.UpdateAll(Me.GenerallPayrollDataSet)
 MessageBox.Show(“Successfully Added”)
 End Sub

 Private Sub btnLogin_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)
 End Sub

 Private Sub btnDeleteJHS_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnDeleteJHS.Click
 Try
 If PlantIDTextBox.Text = “” Then
 MessageBox.Show(“Please select employee
id”, “Entry”, MessageBoxButtons.OK,
MessageBoxIcon.Warning)
 Exit Sub
 End If

NOTES

Self-Instructional
Material 149

Lab:.NET Programming If PlantIDTextBox.Text.Count > 0 Then
 If MessageBox.Show(“Do you really want
to delete the record?” & vbCrLf & “You can not restore the
record” & vbCrLf & “It will delete record permanently” &
vbCrLf & “related to selected employee”, “Warning!!!”,
MessageBoxButtons.YesNo, MessageBoxIcon.Warning) =
Windows.Forms.DialogResult.Yes Then
 GenPayFinalBindingSource.RemoveCurrent()
 Me.TableAdapterManager.UpdateAll(Me.GenerallPayrollDataSet)
 End If
 End If

 Catch ex As Exception
 MessageBox.Show(ex.Message, “Error”,
MessageBoxButtons.OK, MessageBoxIcon.Error)
 End Try
 End Sub

 Private Sub Button2_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button2.Click
 txtReceipt.Text = “”
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(vbTab + vbTab + vbTab +
vbTab + vbTab + vbTab & “PAY-SLIP” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“Plantilla Number: “ + vbTab
& PlantIDTextBox.Text + vbTab + vbTab + vbTab + vbNewLine)
 txtReceipt.AppendText(“Employee Name: “ + vbTab
& EmployeeNameTextBox.Text + vbTab + vbTab + vbNewLine)
 txtReceipt.AppendText(“Number: “ + vbTab + vbTab
& NoTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“Basic Salary: “ + vbTab &

Lab:.NET Programming

NOTES

Self-Instructional
150 Material

BasicTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“Pera: “ + vbTab + vbTab &
PERATextBox.Text + vbNewLine)
 txtReceipt.AppendText(“Gross Amount: “ + vbTab &
GrossAmountTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“= = = = = = = = = = = = =
= =
= = = = = = = = = = = = “ + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(vbTab + vbTab & “Deductions”
+ vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“W/ Tax: “ + vbTab + vbTab
+ vbTab & WtaxTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“GSIS Premium: “ + vbTab +
vbTab & GSISPremiumTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“GSIS Salary Loan: “ + vbTab
& GSISSalaryLoanTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“GSIS EL: “ + vbTab + vbTab
& GSISELTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“GSIS EMRGL: “ + vbTab +
vbTab & GSISEMRGLTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“GSIS PL: “ + vbTab + vbTab
& GSISPLTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“Pag-Ibig Premium: “ + vbTab
& PagIbigPremTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“Pag-Ibig ML: “ + vbTab +
vbTab & PagIbigMLTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“Pag-Ibig 2: “ + vbTab +
vbTab & PagIbig2TextBox.Text + vbNewLine)
 txtReceipt.AppendText(“Phil Health Premium: “ +
vbTab & PhilHealthPremiunTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“LEAP: “ + vbTab + vbTab +
vbTab & LEAPTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“IGP: “ + vbTab + vbTab +
vbTab & IGPTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“Faculty Union: “ + vbTab
+ vbTab & FacultyUnionTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“Refund Disallow: “ + vbTab
& RefundDisallowTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“Tuition: “ + vbTab + vbTab
+ vbTab & TuitionTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“LBP Payment: “ + vbTab +
vbTab & LBPPaymentTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“City Savings: “ + vbTab +

NOTES

Self-Instructional
Material 151

Lab:.NET ProgrammingvbTab & CitySavingsTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“Total Deductions: “ + vbTab
& TotalDeductionTextBox.Text + vbTab + vbTab & “Net Amount:
“ + vbTab & NetAmountTextBox.Text + vbNewLine)
 txtReceipt.AppendText(“= = = = = = = = = = = = =
= =
= = = = = = = = = = = = “ + vbNewLine)
 txtReceipt.AppendText(vbTab & “Due Date: “ + Today
& vbTab + vbTab + vbTab + vbTab + vbTab + vbTab & “Time:
“ & TimeOfDay + vbNewLine)
 txtReceipt.AppendText(“= = = = = = = = = = = = =
= =
= = = = = = = = = = = = “ + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(vbTab + “Recieve by:” +
vbNewLine)
 txtReceipt.AppendText(vbTab + vbTab + vbTab +
“___________________” + vbNewLine)
 txtReceipt.AppendText(vbTab + vbTab + vbTab +
EmployeeNameTextBox.Text + vbNewLine)
 txtReceipt.AppendText(vbTab + vbTab + vbTab + “
Employee” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“” + vbNewLine)
 txtReceipt.AppendText(“= = = = = = = = = = = = =
= =
= = = = = = = = = = = = “ + vbNewLine)
 txtReceipt.AppendText(“
Need Help? Contact Us: 09096510899
“ + vbNewLine)
 txtReceipt.AppendText(“= = = = = = = = = = = = =
= =
= = = = = = = = = = = = “ + vbNewLine)
 txtReceipt.AppendText(vbTab + vbTab + vbTab +
PictureBox1.Text + vbNewLine)
 PrintPreviewDialog1.ShowDialog()
 End Sub

 Private Sub PrintDocument1_PrintPage(ByVal sender As
System.Object, ByVal e As

Lab:.NET Programming

NOTES

Self-Instructional
152 Material

System.Drawing.Printing.PrintPageEventArgs) Handles
PrintDocument1.PrintPage
 e.Graphics.DrawString(txtReceipt.Text, Font,
Brushes.Black, 140, 140)
 e.Graphics.DrawImage(Me.PictureBox1.Image, 120,
130, PictureBox1.Width - 15, PictureBox1.Height - 25)
 e.Graphics.DrawImage(Me.PictureBox2.Image, 300,
130, PictureBox2.Width - 15, PictureBox2.Height - 25)
 End Sub
 Private Sub Button1_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button1.Click
 TotalDeductionTextBox.Text = Val(WtaxTextBox.Text)
+ Val(GSISPremiumTextBox.Text) +
Val(GSISSalaryLoanTextBox.Text) + Val(GSISELTextBox.Text)
+ Val(GSISEMRGLTextBox.Text) + Val(GSISPLTextBox.Text) +
Val(PagIbigPremTextBox.Text) + Val(PagIbigMLTextBox.Text)
+ Val(PagIbig2TextBox.Text) +
Val(PhilHealthPremiunTextBox.Text) + Val(LEAPTextBox.Text)
+ Val(IGPTextBox.Text) + Val(FacultyUnionTextBox.Text) +
Val(RefundDisallowTextBox.Text) + Val(TuitionTextBox.Text)
+ Val(LBPPaymentTextBox.Text) +
Val(CitySavingsTextBox.Text)
 GrossAmountTextBox.Text = Val(BasicTextBox.Text)
+ Val(PERATextBox.Text)
 NetAmountTextBox.Text =
Val(GrossAmountTextBox.Text) -
Val(TotalDeductionTextBox.Text)
 NetAmountTextBox.Text =
FormatCurrency(NetAmountTextBox.Text)
 TotalDeductionTextBox.Text =
FormatCurrency(TotalDeductionTextBox.Text)
 GrossAmountTextBox.Text =
FormatCurrency(GrossAmountTextBox.Text)
 MessageBox.Show(“Successfully Computed”)
 End Sub

 Private Sub Button9_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button9.Click
 Me.TableAdapterManager.UpdateAll(Me.GenerallPayrollDataSet)
 Me.Close()
 End Sub

 Private Sub Button8_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles

NOTES

Self-Instructional
Material 153

Lab:.NET ProgrammingButton8.Click
 GenPayFinalBindingSource.MovePrevious()
 End Sub

 Private Sub Button7_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
Button7.Click
 GenPayFinalBindingSource.MoveNext()
 End Sub

 Private Sub TextBox14_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox14.TextChanged
 Me.GenPayFinalBindingSource.Filter = “PlantID LIKE
‘“ & TextBox14.Text & “%’”
 End Sub
End Class

8. Personal Information System
Main:

Imports System.Data.OleDb
Public Class frmmain
 Dim Oledr As OleDbDataReader
 Dim Item As New ListViewItem()
 Dim ItemSearch As New ListViewItem
 Private Sub frmmain_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
 Call ListStudentColumns(lststudent)
 Call openconnection()
 Call Initialized()
 Call LoadListView()
 Call closeconnection()

Lab:.NET Programming

NOTES

Self-Instructional
154 Material

 End Sub
 Public Sub LoadListView()
 lststudent.Items.Clear()
 Call Initialized()
 Oledr = OleDa.SelectCommand.ExecuteReader()
 Do While Oledr.Read()
 Item =
lststudent.Items.Add(Oledr(“studentno”).ToString())
 Item.SubItems.Add(Oledr(“firstname”).ToString())
 Item.SubItems.Add(Oledr(“lastname”).ToString())
 Item.SubItems.Add(Oledr(“course”).ToString())

 Loop
 Oledr.Close()
 End Sub

 Private Sub btnAdd_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnAdd.Click
 frmadd.ShowDialog()
 End Sub
 Private Function UpdateValidateStudent() As Boolean
 If lststudent.Items.Count = 0 Then
 MsgBox(“No records.”,
MsgBoxStyle.Information, “No Records”)
 Return True
 Exit Function
 End If
 If lststudent.SelectedItems.Count > 1 Then
 MsgBox(“Double click the record”,
MsgBoxStyle.Information)
 lststudent.SelectedItems.Clear()
 Return True
 Exit Function
 End If
 If lststudent.SelectedItems.Count = 0 Then
 MsgBox(“Please choose the record you want to
edit”, MsgBoxStyle.Information)
 Return True
 Exit Function
 End If
 End Function

NOTES

Self-Instructional
Material 155

Lab:.NET Programming

 Private Sub btnEdit_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnEdit.Click
 If UpdateValidateStudent() = True Then
 Return
 End If
 frmedit.ShowDialog()
 End Sub
 Private Function DeleteStudentValidate() As Boolean
 If lststudent.Items.Count = 0 Then
 MsgBox(“No Records to delete”)
 Return True
 Exit Function
 End If
 If lststudent.SelectedItems.Count = 0 Then
 MsgBox(“Please choose the record you want to
delete.”)
 Return True
 Exit Function
 End If
 End Function

 Private Sub btnDelete_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnDelete.Click
 If DeleteStudentValidate() = True Then
 Return
 End If

 If MsgBox(“Do you really want to delete this
record?”, MsgBoxStyle.YesNo + MsgBoxStyle.Question,
“Delete?”) = MsgBoxResult.No Then
 MsgBox(“Delete Cancelled.”,
MsgBoxStyle.Information)
 lststudent.SelectedItems.Clear()
 Exit Sub
 End If
 For Each Item As ListViewItem In
lststudent.SelectedItems
 Item.Remove()
 OleDa.DeleteCommand = New OleDbCommand()

Lab:.NET Programming

NOTES

Self-Instructional
156 Material

 Call openconnection()
 OleDa.DeleteCommand.CommandText = “DELETE
FROM tblstudent WHERE studentno = @studentno”
 OleDa.DeleteCommand.Connection = OleCn
 OleDa.DeleteCommand.Parameters.Add(“@studentno”,
OleDbType.VarChar, 50, “studentno”).Value =
Item.Text.ToString()
 OleDa.DeleteCommand.ExecuteNonQuery()
 Call LoadListView()
 Call closeconnection()
 Next
 MsgBox(“Record Deleted”)
 lststudent.SelectedItems.Clear()
 End Sub

 Private Sub btnRefresh_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnRefresh.Click
 Call openconnection()
 Call Initialized()
 Call LoadListView()
 Call closeconnection()
 txtSearch.Clear()
 MsgBox(“Total Records = “ &
lststudent.Items.Count, MsgBoxStyle.Information, “Record”)
 End Sub
 Private Sub SearchStudent()
 lststudent.Items.Clear()
 Call Initialized()
 OleDa.SelectCommand.CommandText = “SELECT * FROM
tblstudent WHERE studentno Like ‘%%” &
txtSearch.Text.Trim.ToString() & “%%’”

 OleDa.SelectCommand.Connection = OleCn
 Oledr = OleDa.SelectCommand.ExecuteReader()
 Do While Oledr.Read()
 ItemSearch =
lststudent.Items.Add(Oledr(“studentno”).ToString())
 ItemSearch.SubItems.Add(Oledr(“firstname”).ToString())
 ItemSearch.SubItems.Add(Oledr(“lastname”).ToString())
 ItemSearch.SubItems.Add(Oledr(“course”).ToString())

NOTES

Self-Instructional
Material 157

Lab:.NET Programming Loop
 Oledr.Close()
 End Sub

 Private Sub txtSearch_TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
txtSearch.TextChanged
 OleDa.SelectCommand = New OleDbCommand()
 OleDa.SelectCommand.CommandText = “SELECT * FROM
tblstudent WHERE studentno Like ‘%%’”
 OleDa.SelectCommand.Connection = OleCn
 Call openconnection()
 OleDa.SelectCommand.ExecuteNonQuery()
 Call SearchStudent()
 Call closeconnection()
 End Sub
End Class

Add Information:
Imports System.Data.OleDb
Public Class frmadd
 Private Sub frmadd_FormClosing(ByVal sender As Object,
ByVal e As System.Windows.Forms.FormClosingEventArgs)
Handles Me.FormClosing
 Call cleartext()
 txtsn.Focus()
 frmmain.lststudent.SelectedItems.Clear()
 End Sub

 Private Sub frmadd_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Lab:.NET Programming

NOTES

Self-Instructional
158 Material

 End Sub
 Private Sub cleartext()
 Me.txtsn.Clear()
 Me.txtfn.Clear()
 Me.txtln.Clear()
 End Sub

 Private Sub btnCancel_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCancel.Click
 Me.Close()
 End Sub

 Private Sub btnSave_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnSave.Click
 If txtsn.Text = “” Or txtfn.Text = “” Or
cmbcourse.Text = “” Then
 MsgBox(“Please don’t leave blank textfields”,
MsgBoxStyle.Information, “Missing data”)
 Exit Sub
 End If
 Try
 Call openconnection()
 OleDa.InsertCommand = New OleDbCommand()
 OleDa.InsertCommand.CommandText = “INSERT
INTO tblstudent (studentno, firstname, lastname, course)”
& _
 “VALUES (@studentno , @firstname, @lastname,
@course)”
 OleDa.InsertCommand.Connection = OleCn
 OleDa.InsertCommand.Parameters.Add(“@studentno”,
OleDbType.VarWChar, 50, “studentno”).Value = txtsn.Text
 OleDa.InsertCommand.Parameters.Add(“@firstname”,
OleDbType.VarWChar, 50, “firstname”).Value = txtfn.Text
 OleDa.InsertCommand.Parameters.Add(“@lastname”,
OleDbType.VarWChar, 50, “lastname”).Value = txtln.Text
 OleDa.InsertCommand.Parameters.Add(“@course”,
OleDbType.VarWChar, 50, “course”).Value = cmbcourse.Text
 OleDa.InsertCommand.ExecuteNonQuery()
 Call frmmain.LoadListView()
 Call closeconnection()
 MsgBox(“Records Saved”,

NOTES

Self-Instructional
Material 159

Lab:.NET ProgrammingMsgBoxStyle.Information, “Saved”)
 Me.Close()
 Catch ex As Exception
 MsgBox(“Cannot Save this record, Existing
Student Number”, MsgBoxStyle.Information, “Error”)
 Call closeconnection()
 txtsn.Focus()
 txtsn.SelectAll()
 End Try
 End Sub
End Class

Delete Record:

Edit Record:

Imports System.Data.OleDb
Public Class frmedit
 Private Sub frmedit_FormClosing(ByVal sender As
Object, ByVal e As
System.Windows.Forms.FormClosingEventArgs) Handles
Me.FormClosing
 Call cleartext()
 txtsn.Focus()
 frmmain.lststudent.SelectedItems.Clear()
 End Sub

 Private Sub frmedit_Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load
 Call openconnection()
 Call Initialized()
 txtsn.Text =
CStr(frmmain.lststudent.SelectedItems(0).Text)
 Call Fill()
 Call closeconnection()

Lab:.NET Programming

NOTES

Self-Instructional
160 Material

 End Sub
 Private Sub cleartext()
 Me.txtsn.Clear()
 Me.txtfn.Clear()
 Me.txtln.Clear()
 End Sub
 Private Sub Fill()
 Dim OleDr As OleDbDataReader
 OleDa.SelectCommand = New OleDbCommand()
 OleDa.SelectCommand.CommandText = “SELECT * From
tblstudent WHERE studentno = @studentno”
 OleDa.SelectCommand.Parameters.Add(“@studentno”,
OleDbType.VarWChar, 50, “studentno”).Value = txtsn.Text
 OleDa.SelectCommand.Connection = OleCn
 OleDr = OleDa.SelectCommand.ExecuteReader()
 If OleDr.HasRows() Then
 OleDr.Read()
 txtsn.Text = OleDr(“studentno”).ToString()
 txtfn.Text = OleDr(“firstname”).ToString()
 txtln.Text = OleDr(“lastname”).ToString()
 cmbcourse.Text = OleDr(“course”).ToString()
 End If
 OleDr.Close()
 End Sub

 Private Sub btnCancel_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCancel.Click
 Me.Close()
 End Sub

 Private Sub btnSave_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnSave.Click
 If txtsn.Text = “” Or txtfn.Text = “” Or txtln.Text
= “” Or cmbcourse.Text = “” Then
 MsgBox(“Dont leave blank textfields”)
 Exit Sub
 End If
 Try
 Call openconnection()
 OleDa.UpdateCommand = New OleDbCommand()

NOTES

Self-Instructional
Material 161

Lab:.NET Programming OleDa.UpdateCommand.CommandText = “UPDATE
tblstudent SET studentno = @studentno, firstname =
@firstname, lastname = @lastname, course = @course WHERE
studentno = ?”
 OleDa.UpdateCommand.Connection = OleCn
 OleDa.UpdateCommand.Parameters.Add(“@studentno”,
OleDbType.VarWChar, 50, “studentno”).Value = txtsn.Text
 OleDa.UpdateCommand.Parameters.Add(“@firstname”,
OleDbType.VarWChar, 50, “firstname”).Value = txtfn.Text
 OleDa.UpdateCommand.Parameters.Add(“@lastName”,
OleDbType.VarWChar, 50, “lastName”).Value = txtln.Text
 OleDa.UpdateCommand.Parameters.Add(“@Course”,
OleDbType.VarWChar, 50, “Course”).Value = cmbcourse.Text
 OleDa.UpdateCommand.Parameters.Add(New
Sy st e m .D at a .O l e Db. O le D b P ar a m et e r (“E m p ID ” ,
System.Data.OleDb.OleDbType.VarWChar, 50, _
 System.Data.ParameterDirection.Input, False, CType(0,
Byte), CType(0, Byte), “studentno”, _
 System.Data.DataRowVersion.Original, Nothing)).Value =
frmmain.lststudent.SelectedItems(0).Text
 OleDa.UpdateCommand.ExecuteNonQuery()
 Call frmmain.LoadListView()
 Call closeconnection()
 MsgBox(“Records Updated”)
 Me.Close()
 Catch ex As Exception
 MsgBox(“Cannot Update StudentNo is present”)
 Call closeconnection()
 txtsn.Focus()
 txtsn.SelectAll()
 End Try
 End Sub
End Class

Lab:.NET Programming

NOTES

Self-Instructional
162 Material

9. Question Database and Conducting Quiz

Register:

Public Class Form2
 Private Sub Form2_Load(sender As Object, e As
EventArgs) Handles MyBase.Load
 End Sub

 Private Sub LinkLabel1_LinkClicked(sender As Object,
e As LinkLabelLinkClickedEventArgs)
 SIGN_IN.Show()
 Me.Close()
 End Sub

 Private Sub Button1_Click(sender As Object, e As
EventArgs)
 Home.Show()
 Me.Close()
 End Sub

 Private Sub Button2_Click(sender As Object, e As
EventArgs)
 End Sub

 Private Sub GroupBox1_Enter(sender As Object, e As
EventArgs)
 End Sub

 Private Sub Button3_Click(sender As Object, e As
EventArgs)
 quest6.Show()
 End Sub

 Private Sub Button1_Click_1(sender As Object, e As
EventArgs) Handles Button1.Click
 My.Settings.Username = username1.Text
 My.Settings.Password = password1.Text
 My.Settings.Save()
 MsgBox(“Your Account Has Been Created”)
 SIGN_IN.Show()
 Me.Close()
 End Sub

NOTES

Self-Instructional
Material 163

Lab:.NET Programming

 Private Sub LinkLabel1_LinkClicked_1(sender As Object,
e As LinkLabelLinkClickedEventArgs) Handles
LinkLabel1.LinkClicked
 SIGN_IN.Show()
 Me.Close()
 End Sub

 Private Sub Button2_Click_1(sender As Object, e As
EventArgs) Handles Button2.Click
 Form1.Show()
 End Sub

 Private Sub CheckBox1_CheckedChanged(sender As Object,
e As EventArgs) Handles CheckBox1.CheckedChanged

 If CheckBox1.Checked Then
 password1.UseSystemPasswordChar = False
 Else
 password1.UseSystemPasswordChar = True
 End If
 End Sub
End Class

Sign In:
Public Class SIGN_IN
 Private Sub Button1_Click(sender As Object, e As
EventArgs) Handles Button1.Click
 If username2.Text = My.Settings.Username And
 password2.Text = My.Settings.Password = True
Then
 Home.Show()
 Me.Close()
 Else

Lab:.NET Programming

NOTES

Self-Instructional
164 Material

 MsgBox(“Incorrect Username Or Password”)
 username2.Clear()
 password2.Clear()
 End If
 End Sub

 Private Sub Button2_Click(sender As Object, e As
EventArgs) Handles Button2.Click
 Form1.Show()
 Me.Close()
 End Sub

 Private Sub Button3_Click(sender As Object, e As
EventArgs)
 End Sub

 Private Sub SIGN_IN_Load(sender As Object, e As
EventArgs) Handles MyBase.Load
 End Sub

 Private Sub CheckBox1_CheckedChanged(sender As Object,
e As EventArgs) Handles CheckBox1.CheckedChanged
 If CheckBox1.Checked Then
 password2.UseSystemPasswordChar = False
 Else
 password2.UseSystemPasswordChar = True
 End If
 End Sub
End Class

Question1:
Public Class quest2
 Private Sub Button2_Click(sender As Object, e As
EventArgs) Handles Button2.Click

NOTES

Self-Instructional
Material 165

Lab:.NET Programming Button2.Invalidate()
 If RadioButton3.Checked Then
 MsgBox(“You are correct”)
 quest8.LBLRIGHT.Text = quest8.LBLRIGHT.Text
+ 1
 Else
 MsgBox(“You are wrong”)
 quest8.LBLWRONG.Text = quest8.LBLWRONG.Text
+ 1
 End If
 Dim quest6 As New quest2
 Dim quest2 As New quest4
 quest4.Show()
 Me.Hide()
 End Sub

 Private Sub Label2_Click(sender As Object, e As
EventArgs) Handles Label2.Click
 End Sub

 Private Sub RadioButton4_CheckedChanged(sender As
Object, e As EventArgs) Handles RadioButton4.CheckedChanged
 End Sub

 Private Sub RadioButton3_CheckedChanged(sender As
Object, e As EventArgs) Handles RadioButton3.CheckedChanged
 End Sub
End Class

10. Personal Diary

Main:
Class clsEntry
 Public Property dtDateOfentry As DateTime

Lab:.NET Programming

NOTES

Self-Instructional
166 Material

 Public Property strContent As String

 Public Sub New(ByVal dtDate As DateTime, _
 ByVal strText As String)
 dtDateOfentry = dtDate
 strContent = strText
 End Sub

 Public Overrides Function ToString() As String
 Return dtDateOfentry & “ “ & strContent
 End Function
 End Class

Module Module1
 Sub Main(ByVal args As String())
 Dim objDiary As clsDiary = New clsDiary()
 Dim cSelection As Char = “0”c
 While cSelection <> “4”c
 objDiary.Welcome()
 Console.WriteLine()
 Console.WriteLine(“MAIN MENU”)
 Console.WriteLine(“1 – ADD RECORD”)
 Console.WriteLine(“2 – VIEW RECORD”)
 Console.WriteLine(“3 – EDIT RECORD”)
 Console.WriteLine(“4 – DELETE RECORD”)
 Console.WriteLine(“5 – EDIT PASSWORD”)
 Console.WriteLine(“6 – EXIT”)
Console.WriteLine(“ENTER YOUR CHOICE”)

 cSelection = Console.ReadKey().KeyChar
 Console.WriteLine()
 Select Case cSelection
 Case “1”c
 objDiary.Add()
 Case “2”c
 objDiary.View()
 Case “3”c
 objDiary.Edit()
Case “4”c
 objDiary.Delete()

NOTES

Self-Instructional
Material 167

Lab:.NET ProgrammingCase “5”c
 objDiary.Edit()
 Case “6”c
 Console.WriteLine(“Press any key to exit.”)
 Case Else
 Console.WriteLine(“Error.”)
 End Select
 Console.ReadKey()
 End While
 End Sub
 End Module

Public Sub Add(ByVal dtDate As DateTime, ByVal strText _
 As String)
 lstEntries.Add(New clsEntry(dtDate, strText))
 End Sub

 Public Sub Delete(ByVal dtDate As DateTime)
 Dim lstResults As List(Of clsEntry) = Find(dtDate,
True)
 For Each Entry As clsEntry In lstResults
 lstEntries.Remove(Entry)
 Next
 End Sub

Public Function Find(ByVal dtDate As DateTime, ByVal
blnTime _
 As Boolean) As List(Of clsEntry)
 Dim lstResults As List(Of clsEntry) = New List(Of
clsEntry)()
 For Each Entry As clsEntry In lstEntries

Lab:.NET Programming

NOTES

Self-Instructional
168 Material

 If ((blnTime) AndAlso (Entry.dtDateOfentry = _
 dtDate)) OrElse ((Not blnTime) AndAlso _
 (Entry.dtDateOfentry.Date = dtDate.Date))
 Then lstResults.Add(Entry)
 Next
 Return lstResults
 End Function

Class clsDiary
 Private dbData As clsDatabase
 Public Sub New()
 dbData = New clsDatabase()
 End Sub

 Private Function GetDate() As DateTime
 Dim dtDate As DateTime
 While Not DateTime.TryParse(Console.ReadLine(),
dtDate)
 Console.WriteLine(“Error. Try again:”)
 End While
 Return dtDate
 End Function

 Public Sub Print(ByVal dtDay As DateTime)
 Dim lstResults As List(Of clsEntry) =
dbData.Find(dtDay, _
 False)
 For Each Entry As clsEntry In lstResults
 Console.WriteLine(Entry)
 Next
 End Sub

 Public Sub Add()

 Dim dtDate As DateTime = GetDate()
 Console.WriteLine(“Enter the entry text:”)
 Dim strText As String = Console.ReadLine()
 dbData.Add(dtDate, strText)
 End Sub

NOTES

Self-Instructional
Material 169

Lab:.NET Programming

 Public Sub Search()
 Dim dtDate As DateTime = GetDate()
 Dim lstResults As List(Of clsEntry) =
dbData.Find(dtDate, _
 False)
 If lstResults.Count() > 0 Then
 Console.WriteLine(“Found:”)
 For Each Entry As clsEntry In lstResults
 Console.WriteLine(Entry)
 Next
 Else
 Console.WriteLine(“Nothing found.”)
 End If
 End Sub

 Public Sub Delete()
 Dim dtDate As DateTime = GetDate()
 dbData.Delete(dtDate)
 End Sub

 Public Sub Welcome()
 Console.Clear()
 Console.WriteLine(“ENTER DATE OF YOUR RECORD: [yyyy-
mm-dd]:”, DateTime.Now))
 Console.WriteLine(“ENTER TIME:”)
Console.WriteLine(“ENTER NAME:”)
Console.WriteLine(“ENTER PLACE:”)
Console.WriteLine(“ENTER DURATION:”)
Console.WriteLine(“NOTE:”)
 Console.WriteLine(“ADD ANOTHER RECORD…<Y/N>”
 Print(DateTime.Today)
 Console.WriteLine()
 Print(DateTime.Now.AddDays(1))
 Console.WriteLine()
 End Sub
 End Class

Lab:.NET Programming

NOTES

Self-Instructional
170 Material

NOTES

Self-Instructional
Material 171

Lab:.NET Programming

	Pre
	Text

