[Accredited with ‘A+> Grade by NAAC (CGPA364) n the Third Cycle
and Graded as Category—I University by MHRD-UGC]

(A State University Established by the Government of Tamil Nadu)

KARAIKUDI - 630 003

Directorate of Distance Education

B.C.A.

VI - Semester
101 64

LAB: VISUAL BASIC
PROGRAMMING

Author
Dr. Preety Khatri, Assistant Professor-SOIT IMS, Noida

"The copyright shall be vested with Alagappa University"

All rights reserved. No part of this publication which is material protected by this copyright notice
may be reproduced or transmitted or utilized or stored in any form or by any means now known or
hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording
or by any information storage or retrieval system, without prior written permission from the Alagappa
University, Karaikudi, Tamil Nadu.

Information contained in this book has been published by VIKAS® Publishing House Pvt. Ltd. and has
been obtained by its Authors from sources believed to be reliable and are correct to the best of their
knowledge. However, the Alagappa University, Publisher and its Authors shall in no event be liable for
any errors, omissions or damages arising out of use of this information and specifically disclaim any

implied warranties or merchantability or fithess for any particular use.

VIKAS®

Vikas® is the registered trademark of Vikas® Publishing House Pvt. Ltd.

VIKAS® PUBLISHING HOUSE PVT.LTD.

E-28, Sector-8, Noida - 201301 (UP)

Phone: 0120-4078900 ¢ Fax: 0120-4078999

Regd. Office: A-27, 2nd Floor, Mohan Co-operative Industrial Estate, New Delhi 1100 44
o Website: www.vikaspublishing.com e Email: helpline@vikaspublishing.com

Work Order No.AU/DDE/DE12-27/Preparation and Printing of Course Materials/2020 Dated 12.08.2020 Copies - 500

LAB: VISUAL BASIC PROGRAMMING

SYLLABI

ok
W N =

—_
=

_
SO NN AW

Building Simple Applications
Working with Intrinsic Controls, Control Arrays
Application with Multiple Forms
Application with Dialogs
Application with Menus
Application using Data Controls
Application using Common Dialogs
Drag and Drop Events
Database Management
. Creating ActiveX Controls
. Database Object (DAO) and Properties
. Active Data Objects (ADO) and OLE DB
. Connecting to the Database, Retrieving a Record Set, Creating a Query Dynamically, Using a Parameterized

Query, Using Action Queries - Adding Records, Editing Records, Closing the Database Connection
. Simple Application Development

(i) Library Information System

(i) Students Mark Sheet Processing

(iii) Telephone Directory Maintenance

(iv) Gas Booking and Delivering

(v) Electricity Bill Processing

(vi) Bank Transaction
(vii) Pay Roll Processing

(vii)) Personal Information System

(ix) Question Database and Conducting Quiz
(®) Personal Diary

INTRODUCTION

Visual Basic (VB) is a third-generation event-driven programming language from
Microsoft known for its Component Object Model (COM) programming model
first released in 1991 and declared legacy during 2008. Microsoft intended Visual
Basic to berelatively easy to learn and use. Visual Basic was derived from BASIC
and enables the Rapid Application Development (RAD) of Graphical User Interface
(GUI) applications, access to databases using Data Access Objects, Remote Data
Objects, or ActiveX Data Objects, and creation of ActiveX controls and objects.

NOTES

A programmer can create an application using the components provided by
the Visual Basic program itself. Programs written in Visual Basic can also make
use of the Windows API, which requires external functions declarations.

This lab manual, Visual Basic Programming, contains several programs
based on Visual Basic (VB) which includes building simple applications, working
with intrinsic controls, control arrays, application with multiple forms, dialogs,
menus, application using data controls, common dialogs, drag and drop events,
database management, creating ActiveX controls, Database Object (DAO) and
properties, Active Data Objects (ADO) and OLE DB, connecting to the database,
retrieving a record set, creating a query dynamically, parameterized query, action
queries, simple application development, such as library information system, students
mark sheet processing, telephone directory maintenance, gas booking and
delivering, electricity bill processing, bank transaction, pay roll processing, personal
information system, etc.

In addition, it will help students in coding and debugging their Visual Basic
(VB) programs. The manual provides all logical, mathematical and conceptual
programs that can help to write programs easily. These exercises shall be taken as
the base reference during lab activities for students.

Self-Instructional
Material

BLOCK 1

This block will cover the following topics:
1. Introduction of VB and building simple applications.
2. Create, save and open the project.

3. Work with intrinsic controls and control arrays.
Visual Basic

Visual Basic (or VB) is a programming language that runs on the NET framework
and developed by Microsoft. It is a third generation event-driven programming
language known for its Component Object Model (COM) programming model.
It can be used to build Windows applications, web applications and Windows
phone applications. Programs in VB will only run on a Windows operating system.
It is easy to learn and powerful.

Building Simple Applications

Following are the steps for building new application in Visual Basic.
Step 1: Download Visual Basic

You can download Visual Basic from Microsoft NET (Visual Studio).
Step 2: Creating your New Project

Choose Standard EXE to enter VB integrated development environment in the
New Project Dialog. In the VB IDE, a default form with the name Form1 will
appear. Next, double click on Form1 to bring up the source code window for
Forml, as shown in screenshot given below.

Visual Studio 2019

Open recent Get started

ﬁ Open a project or solu
Opena

f-)ﬂ Open a local folder
Navigat

=]

Now, follow the steps given below:
1. Open Visual Studio.
2. Choose Create a new project on the start Window.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 1

Lab: Visual Basic

Programming
NOTES
Self-Instructional
2 Material

3. Enter or type console in the search box on the Create a new project Window.
After that select Visual Basic from the Language list, and then choose
Windows from the Platform list.

After selecting language and platform filters, choose the Console App (NET
Core) template, and then select Next.

Create a new project . T tegese - Paom - Projetype -

Recent project templates
B Console App (NET Core)

App (NET Framework)

Not finding what.

Type or enter WhatlsYourName in the Project name box in the Configure
your new project window and then select Create.

Configure your new project

"] Pace solution and project n the same directory

Step 3: Creating Your First Application

Visual Studio creates a simple “Hello World” application for you on selecting
Visual Basic project template and name of project. WriteLine method is called
to display the literal string “Hello World!” in the console window.

rogramve = < |

["8] HelloWorld - =. Program
1 |] mports-System
2
3 —Module:Program
=+ ---5ub-Main(args-As String())

beee Co le.WritelLine("Hello World!")

End-Module

Now, add some code to pause the application and requesting for the user input.
Console.Write (“Press any key to continue...”)

Console.ReadKey (true)
Note: Select Build = Build Solution on the menu bar.

It will compile the program in intermediate language (IL) that is converted by Just-
In-Time (JIT) compiler into binary code.

Step 4: Save and Test
Run the program in Debug mode.

photoapp - Microsoft Vistal Studio Int Preview

* photoapp

ce SDKSamples.ImageSample

Press any key to close the console window.

C\Program Files\dotnet\dotnet.exe w5 O Pt

Hello World!
Press any key to continue...

Working with Intrinsic Controls

Intrinsic controls are the basic set of twenty controls in the Toolbox. These controls
exist within the Visual Basic .exe file. Intrinsic controls do not have to add to
Toolbox. They can not be removed from the Toolbox. They are available during
the use of VB and you can access them from the Toolbox and lists the intrinsic
controls during design time.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 3

Lab: Visual Basic Table 1.1 Intrinsic Controls and their Description
Programming

S. Control Prefix Description

NO.

1 Label Ibl Displays text on a form

2 Frame fra Serves as a container for other controls

NOTES 3 CheckBox chk Enables users to select or deselect an option

4 ComboBox Cbo Allows users to select from a list of items or add a new value

5 HscrollBar hsb Allows users to scroll horizontally through a list of data in another
control

6 Timer tmr Lets your program perform actions in real time, without user interaction

7 DirListBox dir Enables users to select a directory or folder

8 Shape shp Displays a shape on a form

9 Image img Displays graphics (images) on a form but can't be a container

10 OLE Container ole Enables you to add the functionality of another Control program to your
program

11 PictureBox pic Displays graphics (images) on a form and can serve as a container

12 TextBox txt Can be used to display text but also enables users to enter or edit new or
existing text

13 CommandButton | cmd Enables users to initiate actions

14 OptionButton opt Lets users select one choice from a group; must be used in groups of two
or more

15 ListBox Ist Enables users to select from a list of items

16 VscrollBar vsb Enables users to scroll vertically through a list of data in another control

17 DriveListBox drv Lets users select a disk drive

18 FileListBox fil Lets users select a file

19 Line lin Displays a line on a form

20 Data dat Lets your program connect to a database

Control Arrays

A control array is a group of controls having the same name type and event
procedures. Control arrays uses fewer resources in comparison to adding multiple
control of same type at design time. They can be created at design time only. You
can create the control array using the any of the three methods given below.

1. You can create a control array with only one element using a control and
assigning that a numeric, non-negative value to its Index property.

2. You create two controls of the same class with an identical Name property.
VB display a dialog box warning that there is already a control having same
name and asks to create another control array. Click on the Yes button.

3. Select a control on the form and copy it to the clipboard, and paste a new
instance of the control having the same Name property as the original one.
Visual Basic shows the warning as in method second.

Control arrays are one of the most interesting features of the VB that adds
flexibility to your programs. All controls in a control array have the same set of
event procedures that result in reduced amount of code you have to write to
respond to auser’s actions. Consider an example, if you have a control array of
10 textboxes call txtField, indexed 0 to 9, and then you can use one GotFocus
event among all the 10 members instead of using 10 different GotFocus events.
VB will automatically pass an Index parameter to the event procedure to
differentiate which member of the control array is being acted upon. The code of
GotFocus event procedure for the txtField control array might look as given below:

Private Sub txtField GotFocus (Index As Integer)

Self-Instructional txtField (Index) .SelStart = 0
4 Material

txtField(Index) .Sellength = Len (txtField (Index) .Text)
End Sub
Or
Private Sub txtField GotFocus (Index As Integer)
With txtField (Index)
.SelStart =0
.Sellength = Len (.Text)
End With
End Sub
In Visual Basic 6, the importance of using control arrays as a means of
dynamically creating new controls at run time is reduced. It has introduced a new
and more powerful capability.
e Syntax for refering to a member of a control array is:
ControlName (Index) [.Property]
e For events where VB already passes a parameter (for example, the
textbox’s KeyPress event where VB passes the KeyAscii parameter),
VB will add “Index” as the first parameter, followed by the parameters

that are usually passed to the event. The syntax for procedure header of
the KeyPress event of the txtField control array will be:

Private Sub txtField KeyPress (Index As Integer, KeyAscii
As Integer)

Program 1.1: Create a form to enter total sales for five years in textboxes. All the
sales values of 5 years are added and displayed in the label under the button on
clicking Calculate button.

The labels and textboxes for reading sales values are created as Control
Arrays of labels and textboxes respectively.

Design of Data Entry Form

Calculate Button(btnCalculate) and Label (IblTotal) for displaying the total sales
of 5 years is in the design of the form.

E‘; controlArray - Microsoft Visual Basic 2008 Express Edition
File Edit View Project Build Debug Data Format Tools Window Help

| ==) Ri=2|9 0. 8-5|
Toolbox w» 1 X Formlub* Formi.vb [Design]*|
= All Windows Forms ~
| & Pointer . =
S -E-a“c-L-c-g_r-u.undWorker Rl lillﬂl
i BindingNavigator
27 BindingSource
Button
CheckBox
8% CheckedListBox
] ColorDialog u}
=% ComboBox Button(btnCalculate)
[l ContextMenusStrip [/
i DataGridView
;j DataSet Calculate Total
T DateTimePicker
Bl DirectoiyErtiy |—— Label(lbITotal)
fj, DirectorySearcher

% DomainUpDown

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 5

Lab: Visual Basic
Programming

NOTES

Self-Instructional
6 Material

Data Entry Form at Runtime

Control arrays for Labels and Textboxes are declared when the form is executed.
These control arrays elements are added and displayed on the form in the form_load
event. When a user fills the values in textboxes and clicks the Calculate Button
then a for loop is used to get values from textbox control array and add them
together in a variable total. After completing loop label Ibl Total’s text property is
set with variable total’s value.
Public Class Forml

Dim 1blValues (4) As Label ‘control array of labels

Dim txtValues (4) As TextBox ‘control array of textboxes

Dim intCount As Integer

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

For intCount = 0 To 4
‘ Delcare text box and label variable that are added as elements of control
arrays
Dim MyTextbox As New TextBox
Dim MyLabel As New Label
‘Set left and top values of labels to define display position in the form
MyLabel.Left = 10
MyLabel.Top = 10 + 25 * intCount
‘set the text of labels
MyLabel.Text = “Year “ + CStr(intCount + 1)
‘set width of the labels
MyLabel.Width = 50

‘add newly created label as an element at the current index defined by
intCount of the label control array

1blValues (intCount) = MyLabel

‘add the label control array element on the form using controls collection
Me.Controls.Add (1blValues (intCount))

‘Set left and top values of textboxes to define display position in the form
MyTextbox.Left = 100
MyTextbox.Top = 10 + 25 * intCount

‘add newly created textbox as an element at the current index defined by
intCount of the textbox control array

txtValues (intCount) = MyTextbox
‘add the textbox control array element on the form using controls collection

Me.Controls.Add (txtValues (intCount))
Next
End Sub

Private Sub btnCalculate Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCalculate.Click

Dim total as Double ¢ variable to store sum of sales while iterating through
control array of textboxes

For intCount = 0 To 4
‘Add values from textboxes to variable total using += assignment operator
total += Val (txtValues (intCount) .Text)
Next
‘change fore color of display label
1blTotal.ForeColor = Color.Red
‘display total in label at form bottom
1blTotal.Text = “Total 5 years sales is “ + CStr (total)

End Sub
End Class
QOutput:

ag' Sales Total — (] >
Year 1 450

Year 2 [s60

Year 3 780

Year 4 850

Year 5 2300

BLOCK 2

This block will cover the following topics:
1. Working with forms and dialogs.

2. Working with menus, data controls and common dialogs.
Application with Multiple Forms

You can open one form from another one in two ways. As a modal form, if you
open a second form, you can’t alter the emphasis of the second form until you
close it. That kind of shape is expressed by a message box. For applications that
mvolve an answer to the second form before behavior on other forms make sense,
this behaviour is convenient. Non-modally is another way in which you can open
one shape from the other.In this second style, without closing the second form
before returning to the first form, a user may switch back and forth between the

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 7

Lab: Visual Basic
Programming

NOTES

Self-Instructional
8 Material

forms. This kind of conduct is illustrated by the spreadsheet windows in a Microsoft
Excel file. Non-modal opening forms are ideal for applications where users need
the freedom to search two or more forms in any order.

Program 2.1 Write a program to demonstrate the implementation of MDI forms.
Step 1: Create new Windows forms application and name it as “Mdi_Form”. A
default Windows form will be displayed. Click on the Form Header and visit its
properties window. From properties Window change property “IsMdiContainer
to True”as shown below:

.“H—I-—n-lll--m"lluu':tn H i i k'
R G VW MOSCT BAD DG T ToRAT OO TV AROMTCTAL ANRE WROOW WLE

o-c @:-EGRd D Bodt s Dby - M I3 s

:E Femd ok Nowem] darvm] ok Dunage] Bavmrcd o [T T et Vaplarns :

- F @ wsasp o rE

[AS P
Rabpsan s frvre (] pragaets
e
£ ey
¥ [Fed

ey sty

fomiliast [aem Tt D [l Vo'
bt
WIDIPAFSINT "ytees: oo Fipresy B

—
e taskyll Frurs. . -]

L.

T

Bnara el

Wiy Taa
=

Hesabisa

e Lt Dl P Rty |

Step 2: Right click on Mdi_From in solution explorer and add two forms by
clicking over ADD option therein and Name them Form2 and Form3 respectively.
Customize these Form2(Child1 _form) and Form3(Child2 form) as shown below
to make them to perform as two separate functions.

R Subtraction Opersion
Enter Firat Viskse
Erter Second Vel Y T T L
Pt Erier Second Yalue
[a0D.][. Gex 25
[suB || O
-, |

Step 3: Customise each control pasted on the Form2 and Form3 as per the

functions specified on labeled as show above. After customizing these form2. vb
and Form3.vb, the code behind them will be as shown below:

Form2.vb
‘From2.vb

‘Program to demonestrate the use of MDI Form to perform
Addition operation

Public Class Childl form

Private Sub Labell Click(sender As Object, e As EventArgs)
Handles Labell.Click

End Sub

Private Sub Buttonl Click (sender As Object, e As EventArgs)
Handles Buttonl.Click

Dim sum As Integer

sum = Convert.ToInt32 (TextBoxl.Text) + Convert.
ToInt32 (TextBox2.Text)

TextBox3.Text = sum
End Sub

Private Sub Button2 Click (sender As Object, e As EventArgs)
Handles Button2.Click

TextBoxl.Text = “
TextBox2.Text = “ "
TextBox3.Text = "
End Sub
End Class

Form3.vb
‘From3.vb

‘Program to demonestrate the use of MDI Form to perfrom
Subtration Operation

Public Class Child form2

Private Sub Buttonl Click (sender As Object, e As EventArgs)
Handles Buttonl.Click

Dim subt As Integer subt = Convert.ToInt32 (TextBox2.Text)
- Convert. ToInt32 (TextBoxl.Text) TextBox3.Text = subt

End Sub

Private Sub Button2 Click (sender As Object, e As EventArgs)
Handles Button2.Click

TextBoxl.Text = “ %

TextBox2.Text = “ "
TextBox3.Text = “ "
End Sub

End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 9

Lab: Visual Basic
Programming

NOTES

Self-Instructional
10 Material

Application with Dialogs

Dialog boxes are used for user interaction and information retrieval. In simple
terms, a dialog box is a shape that is set to FixedDialog with its FormBorderStyle
enumeration property. You can make your own custom dialog boxes using Visual
Studio’s Windows Forms Designer.Add controls such as Textbox, Label, and
Button to customize dialog boxes as per your needs. The .NET Framework includes
predefined dialog boxes, such as File Open and message boxes that can be altered
for your own applications.

Dialog Box Creation

You have to start with a Form to create a dialog box, which can be obtained by
creating a Windows application.

Imports System.Drawing

Imports System.Windows.Forms

Module Exercise

Public Class Starter

Inherits Form

Dim components As System.ComponentModel.Container
Public Sub New ()
InitializeComponent ()

End Sub

Public Sub InitializeComponent ()

Text = “Domain Configuration”

Width = 320

Height = 150

Location = New Point (140, 100)
StartPosition = FormStartPosition.CenterScreen
End Sub

End Class

Function Main () As Integer

Dim frmStart As Starter = New Starter
Application.Run (frmStart)

Return 0

End Function

End Module

QOutput:

Domain Configuration =10} =]

Types of Dialog Boxes

There are three types of dialog boxes which are given below:

1. Modal: They are typically used to display messages and to set program
parameters. Modal dialogs come to the front of the computer, and when
the modal dialog box is open, you can not use the software. The modal
dialog box must be closed in order to continue using the software.

2. System modal: System modal dialog boxes, except that they supersede
the entire desktop area, are like modal boxes. Nothing else on the computer
can be tapped or picked while a device modal dialog box is open.

3. Modeless: Modeless dialog boxes are a different type of color, and are
more like windows than dialog boxes. First, in order to ensure that dialog
box messages are routed correctly, we need to change the message loop,
for example:
while (GetMessage (&msg, NULL, 0, 0))

{
if (!IsDialogMessage (hDlg, &msgqg))
{

TranslateMessage (&msqg) ;
DispatchMessage (&msg) ;
}

}

VB.NET Dialog Box

A dialog box is a temporary window for an application that recognizes a user’s
mouse or keyboard response to open a file, save a file, warning updates, color,
print, open a file dialog, etc. It is also beneficial to establish interaction and contact
between the user and the application. In addition, when the application has to

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 11

Lab: Visual Basic
Programming

NOTES

Self-Instructional
12 Material

communicate with users, the dialog box appears in a type, such as when an error
occurs, a warning message, a user’s acknowledgment or when the program requires
urgent action or if the decision is to be saved depending on the changes.

The All VB.NET dialog box inherits the CommonDialog class and overrides
the base class’s RunDialog() method to build the OpenFileDialog, PrintDialog,
Color, and Font dialog boxes. RunDialog() method is automatically called in
Windows type, when the dialog box calls its ShowDialog() function. Following
functions of the ShowDialog() method can be called during run time in the
Windows Form.

e Abort: It is used when a user clicks on the Abort button to return the
DialogResult.Abort value.

e Ignore: It is used when a user clicks on the Ignore button to return the
DialogResult.Ignore.

e None: Returns nothing, when the user clicks on the None button, and
the dialog box is continued running.

¢ OK: Itreturns a DialogResult.OK, when the user clicks the OK button.

e Cancel: It returns DialogResult.Cancel, when the user clicks the
Cancel button.

e Yes: Itreturns DialogResult.Yes.

e Retry: Itreturns a DialogResult.Retry,

e No: Itreturns DialogResult.No,

Commonly used dialog box controls in the VB.NET Windows form are as
follows.

1. Color Dialog Box: It is used to display a color dialog that allows the
user to choose a color from a predefined color or to specify a custom
color.

2. Font DialogBox: It allows the user to choose the font, font size, color,
and style to be added to the current text range.

3. OpenFile Dialog Box: It is used to build a prompt box that allows
users to pick a file that they want to open and allows several files to be
selected.

4. Save File Dialog Box: It prompts the user to choose a file saving
location and allows the user to decide the name of the data saving file.

5. Print Dialog Box: This is used to create a print dialog that allows the
user to print documents by selecting the printer and setting the page to
be printed through the Windows application.

A sample code for creating a dialog box is given below:
Public Class Dialog

Private Sub Dialog Load(sender As Object, e As EventArgs)
Handles MyBase.Load

Buttonl.Text = “Click Me” ‘Set the name of button

Me.Text = “Win Form Title Name” ' Set the title name for
the Windows Form

Buttonl.BackColor = Color.Green ' Background color of
the button

End Sub

Private Sub Buttonl Click (sender As Object, e As EventArgs)
Handles Buttonl.Click

Dim resultl As DialogResult = MessageBox.Show (“Is VB.NET
Dialog Dox show me message?”,

“Important Question”,
MessageBoxButtons.YesNo)

End Sub
End Class

Compile and Run

sl . Win Form Title Name P 0 %

Click Me

Now, click on the Click Me button of the Windows Form, it displays the
dialog box, as shown below.

Important Question

Is VB.MET Dialog Dox show me message?

Yes Ha

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 13

Lab: Visual Basic
Programming

NOTES

Self-Instructional

14 Material

Applications with Menus

In VB6, the MainMenu feature was not present; it was added to VB.NET. But,
as in previous versions of VB, you can use the methods and properties of the
Menu portion to add and change menu items in either design-time or run-time.

Working with Menus in Design-Time

Youneed to add a MainMenu attribute to your form to add menus to your VB.NET
application during design-time. You can build, add, and change menus and menu
bars with the MainMenu control and set their properties in the Properties window.
To add a MainMenu component, open the Forms Toolbox and add the MainMenu
component to your form.Once you have added the control to your form, you
quickly can add menus to your VB.NET windows forms.

In Windows type, a menu is used as a menu bar containing a list of related
commands and is executed via MenuStrip Control also known as the VB.NET
MenuStrip Control. The Menu control. Menu items are created with
ToolStripMenultem Objects. In addition, the ToolStripDropDownMenu and
ToolStripMenultem objects allow complete structure control, appearance,
functionalities to create menu items, submenus, and drop-down menus in a
VB.NET application.

Step 1: Drag the MenuStrip control from the toolbox and drop it on to the Form.

W Windowshpplicationl - Microsoft Vizual Studio (Administrator)
File Edit View Project Build Debug Data Format Teols Window Help
AdeEFEH - Ha | sB@E|IR=ES|9-6-8-E]p
Toolbox ~ % X “Formlvh [Design]"|
¥ All Windows Forms i -
1+ Common Controls

SR ;u:' Forml [[@

= Menus 8 Toolbars
i_k__ljginter

_Eif' ContextMenuStrip
= MenuStrip
| StatusStrip
36 ToolStrip

1_f ToolStripContaine
Data

| Components

| Printing

Dialogs

| Reporting

Visual Basic PowerPacks

1@ @ m m e

= General

There are no usable controls in
this group. Drag an item onto this

Step 2: We can set various properties of the Menu by clicking on the MenuStrip
control once the MenuStrip is added to the form.

b Fle Edit View Project Buid Debug Format Test Analyze Tools Extensions Window Help Ctrl+Q) P | WindowsApp!

B < I B-2 W 9 - - Debug - AnyCPU - b Start - 5 & Select Startup ftem ~ _ i _

Toolbox S Menusivb [Design]” + X [EETAYY List View.vb [Design] WindowsApp

Search Toolbox p-

A Lsbel = a5/ Menus =B)

A Linklabel File
b D S— Drop the .
MenuStrip IDrag the MenuStrip

i0jdxg Bhss

e AR @ from Toolhox and drop

(2 MaskedTextBox it on the Windows form
(& oo

B MessgeQueus

B9 MonthCslendar

e Notifylcon

B NumericUpDown

51 OpenFileDialog

I PageSetupDisiog

B Panel

PerfermanceCounter

& PictureBox
& PrintDialog

& PrintDocument
B PrintPreviewControl SR

Properties of the MenuStrip Control

Properties Description
CanOverflow It gets or sets a value indicate that the MenuStrip supports overflow
functionality.
GripStyle It gets or sets the visibility of the grip used to reposition the control.

MdiWindowListItem | It gets or sets the ToolStripMenultem that is used to display a list of
Multiple-document interface (MDI) child forms.

Stretch It gets or sets a value indicating whether the MenuStrip stretches
from end to end in its container.

ShowItemToolTips It gets or sets a value indicating whether ToolTips are shown for the
MenuStrip.

Events of the MenuStrip Control

Events Description
MenuActivate Happen when the user accesses the menu with the
keyboard or mouse.

MenuDeactivate | Happen when the MenuStrip is deactivated.

Windows Forms contain a rich set of classes for creating your own custom
menus with modern appearance, look and feel. The MenuStrip,
ToolStripMenultem, ContextMenusStrip controls are used to create menu bars
and context menus efficiently.

Controls Description
MenuStrip It provides a menu system for a form.
ContextMenuStrip | It represents a shortcut menu.
ToolStripMenultem | It represents a selectable option displayed on a MenuStrip or
ContextMenuStrip. The ToolStripMenultem control replaces and
adds functionality to the Menultem control of previous versions.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 15

Lab: Visual Basic
Programming

NOTES

Self-Instructional

16 Material

Methods of the MenuStrip Control

Methods Description
CreateAccessibilityInstance() | It is used to create a new accessibility instance for the
MenuStrip Control.
CreateDefaultltem() The CreateDefaultltem method is used to create a
ToolStripMenultem with the specified text, image, and event
handlers for the new MenuStrip.

ProcessCmdKey() The ProcessCmdKey method is used to process the command
key in the MenuStrip Control.

OnMenuActivate() It is used to initiate the MenuActivate event in the MenuStrip
control.

OnMenuDeactivate() It is used to start the MenuDeactivate event in the MenuStrip
control.

In the screenshot below, we have created the menu and sub-items of the
menu bar in the form.

Menus.vb™ (MU AT LY el WindowsApp1

o Menus =S e)
[T | Edit View Help

Mew

Open|

Now, we write the Shortcut keys for the File subitems, such as New—>Ctrl
+ N, Open - Ctrl + O, etc.

| Fie Edit View Project Build Debug Test Analyze Tools Exiensions Window Help Search(Cirie()) p
Q- B2 Wl 9~ - | Debug =~ AnyCPU ~ P Start » A |'mE Select Startup ltem ~ _
§ Toalhor % Menusvb Menusvb [Design] + > KNGEERENT]
‘é, Search Toolbex p-
B . A1l Windows Forms - o Menus [=E]=]
i . Roiics Chis |E I g s lare . o =
i E::i"’;::w“t"ke' [New 7] r NewToolStripMenultem System. -
B e G AIEAP
&7 BindingSource siie I
e SaveAs NewToolStriph b
E:::::IMBOX Print GenerateMerl True
- Exit Modifiers Friend
[ColorDislog e
B ComboBox Alignment Left
{51 ContextMenuStrip Margin 0,0,0,0
5 DataGridView MergeAction Append
¥ DataSet Mergelndex -1
DateTimePicker Overflow Never
T1 DirectoryEntry Padding 0,1,0,1 L
O DirectorySearcher o 148,22
[2 DomainUpDown _ I -
O e Bl MenuStrip el None v
EventLog Modifiers:
51 FileSystemWatcher [shift [Ak
£ FlowLayoutPanel
&1 FolderBrowserDialog S [
m 'WindowsAppl.exe' (CLR v4.8.30319: WindowsAppl.exe): Lo|
GroupBox ‘WindowsAppl.exe' (CLR v4.8.30319: WindowsAppl.exe): Losded "CI WINDORSYMICFGE

After that, we can see the subitems of the Files with their Shortcut keys,

X Poifter B R et B
F BackgroundWorker New N
@° BindingNavigator Gpers e
il gt Save Ctil+s e
G Button
SaveAs
CheckBox K TextAlign MiddleCenter
RO Print Curl-P TextDirection Horizontal
P C“:'% i Bxit TextimageRelz ImageBeforeTec
s 5 [Tpeee | ElBetinoy
B Comd AutoSize True
¥ ContextMenuStrip AutoToolTip False.
&% DataGridView CheckOnClick False
W DataSet DoubleClickEn False
B DateTimePicker Enabled True
E i & rrrT
O DirectorySearcher Visible True
[E DomainUpDown _ iR
@ ErrorProvider 1 MenuStrip1 \pplaionte
DropDown (none)
EI, boegley DropDowniter (Collection) =

The code for Menus is given below:
Menus.vb
Public Class Menus

Private Sub Menus Load(sender As Object, e As EventArgs)
Handles MyBase.Load

Me. Text = “ Menus.vb” ‘set the title of the bar
BackColor = Color.SkyBlue

End Sub
Output:
W Menus w3

File Edit View Help

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 17

Lab: Visual Basic
Programming

NOTES

Self-Instructional

18 Material

Click on the File menu that shows the multiple options related to files.

8 Menus - a X
[F-] Edit View Help
| New ClsN |

Open Ctrl+0

Save Ctrl+S

Savehs

Print Ctrl+P
Exit

Application using Data Controls

Data Controls are used to create interfaces for manipulating and editing data from
a data source. For example, TextBox or DropdownBox can be used to display
and/or edit data from a data source.

The Visual Basic 2012 toolbox provides the data controls as shown in
screenshot below:

4 Data
k. Pointer
[Chart

@ BindingMavigator
w! BindingSource
gt DataGridView

g¥ DataSet

The data control can be used to perform the following tasks:
. Itisused for connecting to a database.

. To open a specified database table.

. For creating a virtual table based on a database query.

. Passing database fields to other Visual Basic tools.
Adding/updating records.

Identify errors that may occur while accessing data.

Close the database connection.

Properties of Data Controls

Data Control Description
Properties

Align It determines where data control is displayed.

Caption Phrase displayed on the data control.

ConnectionString | It contains the information for establishing a connection to a database.

Recordset A set of records defined by a data control’s ConnectionString and
RecordSource properties. Run-time only.

LockType It specifies the type of locks placed on records during editing (default
setting makes databases read-only).

RecordSource It determines the table (or virtual table) the data control is attached to.

Creating the Database

Microsoft Access or SQL Server can be used to create your database.
Following are steps for creating an SQL server database:

1. Open SQL Server Management Studio.

2. Right click on the folder named Databases and select New.

J Mew Dutabase i P il = - %, fm S e
i S5ow = [yt
T e -
= Qo
T Rbyound Dtz ryrm
[a g B
[imzteca Hm
| it i Vet Fig T Fieprad il Tje WE LT RV EC |
| Fiowm PRALLST ¥ By 1 ME urrmitncied growth |
| L] L8) Pl fpwlicatis 1 By T 0T uF vt pimd !
{
|
[
| HANRES

e T
Harr' Hanmes T rem

By e (OGO [l
|
Piivgrm

| P ' P '

3. Giveitaname of Students and click OK. After that you will now see Students
in the list of databases.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 19

Lab: Visual Basic
Programming

NOTES

Self-Instructional
20 Material

4. Expand Students in the database list, and right click on Tables, then select

New Table.
= | Students
@ [Datzbase Diagrams
=R m
= B4 Mew Table...
= Vi Filter y
= Ol Sy
= @ Pr Start Fowershell
M 3 54
@ 3 St Reports 3
=& 5e Refresh
& [Security :

5. Enter the following fields in the table.

Column Mame Data Type Allow Mulls

StudenthMame nvarchar{50) [
StudentSurname nvarchar{50)]

p StudentMumber int V]
[

6. Click on the Save button and name your Table StudentInfo.

7. In SQL Management Studio, click on New Query and write the following:

INSERT INTO [Students].[dbo].[StudentInfo]
([StudentName]

, [StudentSurname]

, [StudentNumber])

VALUES

(‘Hannes’, ‘du Preez’, 1)

INSERT INTO [Students]. [dbo].[StudentInfo]
([StudentName]

, [StudentSurname]

, [StudentNumber])

VALUES

(‘YourName’, ‘YourSurname’, 2)
GO

8. Click on Execute.

Creating a Microsoft Access 2010 Database

Steps for creating an MS Access 2010 database are as follows:

1. Open Microsoft Access.

2. Select Blank Database.

Available Templates

N s} Home
(3] sz
_:; Open 9
[E] NCC CLA Training 5.
] gi Blank Blank
1] ApprenticeDB.mdb database | datak
(2] patabasel.accdb Office.com Template
IIﬂ Hannes.accdb
_ i_ 1
I
Recent Assets Conti

New
.

3. Ontheright side of the screen enter the File name, Students.accdb (in this
case) and click Create.

File Name
‘Students.accdb

Chlsers\HannesTheGreat\Documents),

N

Create

4. Inside the new Screen, edit the Columns and data to reflect.

StudentNumber ~ | StuydentMame - StudentSurname -
1 Hannes du Preez

2 YourMame Yoursurname

*

5. Save the table as StudentInfo.

Application using Common Dialogs

All Windows applications use standard dialog boxes for common operations.
These dialog boxes are implemented as standard controls in the Toolbox. To use
any of the common dialog controls in your interface, just place the appropriate
control from the Dialog section of the Toolbox on your form and activate it from
within your code by calling the ShowDialog method.

The Common Dialog control provides a standard set of dialog boxes for

operations such as opening, saving, and printing files, as well as selecting colors
and fonts and displaying help. Any six of the different dialog boxes can be displayed

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 21

Lab: Visual Basic
Programming

NOTES

Self-Instructional
22 Material

with just one Common Dialog control. A particular dialog box is displayed by
using one of the six “Show...” methods of the Common Dialog control: ShowOpen,
ShowSave, ShowPrinter, ShowColor, ShowFont, or ShowHelp.

CommaonDialog

FontDialog FileDialog PrimtDialog

Colorbialog Pagesetuplialog

OpenFileDialog Savekilelialog

Fig. 2.1 Common Dialog Controls

OpenFileDialog : The OpenFileDialog control prompts the user to open

a file and allows the user to select a file to open. The user can check if the file
exists and then open it. The OpenFileDialog control class inherits from the abstract
class FileDialog.

Ifthe ShowReadOnly property is set to True, then a read-only check box

appears in the dialog box. You can also set the ReadOnlyChecked property to
True, so that the read-only check box appears checked.

w Open L
|;_'J|-._;_{| |+ » Litwaries » Documents » - |4y Woe. sroh A D
| Organize = e Toldas = i E’ |
| ¢ Favorte: Documents library et Lot
| B Desitop neludes 4 lecstions g

B Downloads hiame & Dure modified Tene _|

. Pecent Maces
My Dacuments (6)

4 Libraries LU sers' Kakbsir
= Documents Arduing 1A/ 3013 448 P File fold
o' Music Outlook Files B 217 P
b Pictures Processing /X244 PM File Toider
B video: SGL Server Managarment Studic
Visual Studio 2010
4 Hemegroup Vizual Studio 2012] 51 AM File Foilele
" Computes Lt '
File pame m Fleflialagl) -
| Dpen Cancel

Consider an example of loading an image file in a picture box, using the open file
dialog box. Apply the following steps:

1. Dragand drop a PictureBox control, a Button control and OpenFileDialog
control on the form.

2. Set the Text property of the button control to ‘Load Image File’.

3. Double-click the Load Image File button and modify the code of the Click
event as given below:

Private Sub Buttonl Click (sender As Object, e As EventArgs)
Handles Buttonl.Click

If OpenFileDialogl.ShowDialog <> Windows.Forms.
DialogResult.Cancel Then

PictureBoxl.Image = Image.FromFile (OpenFileDialogl.
FileName)
End If
End Sub
QOutput:
s/ OpenFile Disiog = | [t

Load Image
File

h]

Click on the Load Image File button to load an image stored on your computer.

ﬂ_n:‘f Open File Dialog =

Load Image
File

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 23

24

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material

FontDialog: It displays a dialog box that enables users to set a font and its attribute

-

Fig. 2.2 Open and Font Common Dialog Boxes
It prompts the user to choose a font from among those installed on the local

computer and lets the user select the font, font size, and color. It returns the Font
and Color objects.

-
Font &J
Fort: Fort stvle: Size:
Regular 8 0K
| RSO SRR e il 3 = ook |
!Mlmm] Pro Obligue wo Bl T
|Mestral [[Botd H
Modern No. 20 | |Bold Oblique | |13
|Monctype Comtva *| - | |16 T
Effects Sample
[Strilceout
: FRaBbYyiz
[7] Urideriine)
Sc_gpt:
Westem -

-

By default, the Color ComboBox is not shown on the Font dialog box. You

should set the ShowColor property of the FontDialog control to be True.

Consider an example to change the font and color of the text from a rich

text control using the Font dialog box. Apply the following steps:

1. Dragand drop a RichTextBox control, a Button control and a FontDialog
control on the form.

2. Set the Text property of the button control to ‘Change Font’.

3. Set the ShowColor property of the FontDialog control to True.
4. Double-click the Change Color button and modify the code of the Click
event as given below:

Private Sub Buttonl Click (sender As Object, e As EventArgs)
Handles Buttonl.Click

If FontDialogl.ShowDialog <> Windows.Forms.
DialogResult.Cancel Then

RichTextBoxl.ForeColor = FontDialogl.Color
RichTextBoxl.Font = FontDialogl.Font

End If
End Sub
QOutput:

The output obtained when the application is compiled and run using Start button
available at the Microsoft Visual Studio tool bar will be:

1 Font Dialog i =

Change Font

L% A

Enter some text and Click on the Change Font button.

P — .1
sl tutoralspoint.com | =i ﬂ—hj

Hello Word

=

| Change Font |

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 25

Lab: Visual Basic
Programming

NOTES

Self-Instructional
26 Material

In the Font dialog box, choose a font and a color, and then press the OK
button. The font and color selected will be added as the font and foreground color
of the text in the Rich text frame.

¥ p N
sl tutorialspoint.com |i|£|&]

[2ello World

A

SaveFileDialog: It prompts the user to select a location for saving a file
and allows the user to specify the name of the file to save data. The SaveFileDialog
control class inherits from the abstract class FileDialog.

w Save As . T . a— ﬁ
@Uv * b Librares ¢ Documents & - | %y eavoh Docament; 2
Dlganl:g - Mew folder 2z w -ﬂ |
57 Favorites “. Documents library s
[Desktop Includes 4 lozations
& Deoamload: § Date mocdifisd el I
5. Recent Places |~
4 My Documents (6) L |
4 Libraries O Ugers’ Kabr
Documents Arduine 1372013 4:48 PM File fotdes |
o Music Cutlook Files
! PRctures l. Processing |
B videos SQL Server Management Studic 27272012 122 s finld
Visual Studio 2010 122 HIT P File foide =
#f, Homegroup - ™ w1}
File pame: -
Save as fype: | "'..
* Hide Folders | Save | : Fm;el |

Consider an example to save the text entered into a rich text box by the
user using the save file dialog box. Apply the following steps:

1. Dragand drop a Label control, a RichTextBox control, a Button control
and a SaveFileDialog control on the form.

2. Set the Text property of the label and the button control to ‘We
appreciate your comments’ and ‘Save Comments’, respectively.

3. Double-click the Save Comments button and modify the code as given
below:

Private Sub Buttonl Click (sender As Object, e As EventArgs)
Handles Buttonl.Click

SaveFileDialogl.Filter = “IXT Files (*.txt*) |*.txt”

If SaveFileDialogl.ShowDialog = Windows.Forms.
DialogResult.OK

Then

My.Computer.FileSystem.WriteAllText

(SaveFileDialogl.FileName, RichTextBoxl.Text, True)

End If

End Sub
When the application is compiled and run using Start button available at the
Microsoft Visual Studio tool bar, it will show the screenshot given below:

=

We appreciate your comments:

Save
Comment

= = —— — = =—— = —— 7]

ColorDialog: It allows users to choose a color or choose custom colors
from a set of predefined colors. The ColorDialog control class represents a common
dialog box that displays available colors along with controls that enable the user to
define custom colors. It lets the user select a color.

Color

Basic colors: =

| Sl Fel B OB

HMFEFFEENR

ENFEEEEN

EfFEEEEEN

EEEEEEEN

i N B B Bl m

Custom calars:

sEn e R

CiCCINEC A

Sat: O Green: 0

Define Custom Colors 22 | ColoriSolid)y p Blue: 0

| oKk || Cancel | [Add to Custom Colors

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material

27

Lab: Visual Basic
Programming

NOTES

Self-Instructional
28 Material

Consider an example to change the forecolor of a label control using the
color dialog box. Apply the following steps:

1. Dragand drop a label control, a button control and a ColorDialog control
on the form.

2. Set the Text property of the label and the button control to ‘Give me a
new Color’ and ‘Change Color’, respectively.

3. Change the font of the label as per your likings.
4. Double-click the Change Color button and modify the code of the Click
event as given below.

Private Sub Buttonl Click(sender As Object, e As EventArgs)
Handles Buttonl.Click

If ColorDialogl.ShowbDialog <> Windows.Forms.
DialogResult.Cancel Then

Labell.ForeColor = ColorDialogl.Color
End If
End Sub

When the application is compiled and run using Start button available at the
Microsoft Visual Studio tool bar, it will show the following output window.

.o Color Dialog i | B]

Grvs ms & mew color

Changa Color

e 4

Clicking on the Change Color button, the color dialog appears, select a
color and click the OK button. The selected color will be applied as the forecolor
of the text of the label.

PrintDialog: It displays a dialog box that enables users to select a printer
and set its attributes. There are various other controls related to printing of
documents. Let us have a brief look at these controls and their purpose.

1. PrintDocument control: It provides support for actual events and
operations of printing in Visual Basic and sets the properties for printing.

2. PrinterSettings control: It is used to configure how a document is
printed by specifying the printer.

3. PageSetUpDialog control: It allows the user to specify page-related
print settings including page orientation, paper size and margin size.

4. PrintPreviewControl control: It represents the raw preview part of
print previewing from a Windows Forms application, without any dialog
boxes or buttons.

5. PrintPreviewDialog control: It represents a dialog box form that
contains a PrintPreviewControl for printing from a Windows Forms
application.

[i Print s

_GE-'I'IEIE| |

Select Prmter

% Add Printer

=i Fax
i Microzoft XPS Document Writer

Status: Ready [Prirttofie | Preferences
Location:
I Find Printer... |

Page Range
@ Al Number of copies: 1 =
Selection Cument Pags
“1 Pages: 1] Collate

11 22| 33

Enter either a single page number or a single
page range. For example, 5-12

| Pt || Cancel |

Consider an example to show a Print dialog box in a form. Apply the
following steps:
1. AddaPrintDocument control, a PrintDialog control and a Button control
on the form. The PrintDocument and the PrintDialog controls are found
on the Print category of the controls toolbox.

2. Change the text of the button to ‘Print’.
3. Double-click the Print button and modify the code of the Click event as
shown below:

Private Sub Buttonl Click (sender As Object, e As EventArgs)
Handles Buttonl.Click

PrintDialogl.Document = PrintDocumentl

PrintDialogl.PrinterSettings = PrintDocumentl.
PrinterSettings

PrintDialogl.AllowSomePages = True

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 29

Lab: Visual Basic
Programming

NOTES

Self-Instructional
30 Material

If PrintDialogl.ShowDialog = DialogResult.OK Then

PrintDocumentl.PrinterSettings = PrintDialogl.
PrinterSettings

PrintDocumentl.Print ()
End If
End Sub

When the application is compiled and run using Start button available at the
Microsoft Visual Studio tool bar, the output produced will be:

[al | Print Dislog P

Prirt

BLOCK 3

This block will cover the following topics:
1. Dragand drop events
2. Database management
3. Creating ActiveX controls
4. Database Object (DAO) and properties
5. Active Data Objects (ADO) and OLEDB

Drag and Drop Events

It is essentially a pointing interface gesture in the drag and drop case, in which the
user selects a virtual object by “Grabbing” it and moving it to another position or
to another virtual object.

You have certainly used drag and drop techniques as a Windows user to
copy or transfer files from one folder to another, to remove a file by dragging it to
the recycling bin, and to perform actions in different programs of the application.
In Visual Basic, the drag-and-drop features allow you to integrate this functionality

into the programs you are creating. The action of holding a mouse button down
and moving a control is called dragging, and the action of releasing the button is
called dropping.

Basically, a control may act as a source of a drag-and-drop process or as a
destination. Visual Basic supports two drag-and-drop modes, automatic or manual.
You only need to set a property in automatic mode at design time or at run time
and let Visual Basic do it all. Conversely, in manual mode you have to respond to
anumber of events that occur while dragging is in progress, but in return you get
better control over the process. To incorporate drag and drop functionality in your
VB programs, you use a handful of properties, events, and methods.

Properties

The two properties involved are DragMode that specifies whether Automatic or
Manual dragging will be used, and Draglcon that specifies which icon is displayed
when the control is dragged.

Events

It involves two events i.e. DragDrop, which happens when a control is lowered
onto the target, and DragOver, which happens when a control is dragged over the
object.

Method

The Drag method starts or stops manual dragging.

Program 3.1: Create a program on drag and drop operation. For this, just create
a VB.net windows application. Then design a form with Drag Drop and control
&event procedure. To enable drag & drop for text, first you have to place two
textboxes and set Allowdrop property of a second textbox to true and after that
write the code given below:

Private MouseIsDown As Boolean = False ‘variable
declaration

Private Sub TextBoxl MouseDown (ByVal sender As Object,
ByVal e As _

System.Windows.Forms.MouseEventArgs) Handles
TextBoxl.MouseDown

‘Set a flag to show that the mouse is down.
MouselIsDown = True

End Sub

Private Sub TextBoxl MouseMove (ByVal sender As Object,
ByVal e As _

System.Windows.Forms.MouseEventArgs) Handles
TextBoxl.MouseMove

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 31

Lab: Visual Basic
Programming

NOTES

Self-Instructional
32 Material

If MouseIsDown Then

‘Initiate dragging.

TextBox1.DoDragDrop (TextBox1.Text, DragDropEffects.Copy)
End If

MouseIsDown = False

End Sub

Private Sub TextBox2 DragEnter (ByVal sender As Object,
ByVal e As _

System.Windows.Forms.DragEventArgs) Handles
TextBox2.DragEnter

‘Check the format of the data being dropped.

If (e.Data.GetDataPresent (DataFormats.Text)) Then
‘Display the copy cursor.

e.Effect = DragDropEffects.Copy

Else

‘Display the no-drop cursor.

e.Effect = DragDropEffects.None

End If

End Sub

Private Sub TextBox2 DragDrop (ByVal sender As Object,
ByVal e As

System.Windows.Forms.DragEventArgs) Handles
TextBox2.DragDrop

‘Paste the text.

TextBox2.Text = e.Data.GetData (DataFormats.Text)

End Sub

From the above code, it can be seen that the DoDragDrop method is called
in the MouseMove event and the MouseDown event is used to set a flag, which
shows that the mouse is down. In the MouseMove event, the MouselsDown flag
is set to False. You can handle the drag in the MouseDown event also. Dring this
every time a user clicks the control, and then no-drag cursor would be displayed.

The GetDataPresent method checks the format of the data being dragged
in case of DragEnter event. In our case it is text, so the Effect property is set
to Copy, which in turn displays the copy cursor. The GetData method is used to
retrieve the text from the DataObject. In case of DragDrop event it also assigns it
to the target TextBox.

The example code given below draggs a different type of data and provides
support for both cutting and copying. For these just add two picturebox controls

and write the code given below:

Private Sub Forml Load(ByVal sender As System.Object,
Byval e As

System.EventArgs) Handles MyBase.Load

‘Enable dropping.

PictureBox2.AllowDrop = True

End Sub

Private Sub PictureBoxl MouseDown (ByVal sender As Object,
ByVal e As _

System.Windows.Forms.MouseEventArgs) Handles
PictureBoxl.MouseDown

If Not PictureBoxl.Image Is Nothing Then
‘Set a flag to show that the mouse is down.
m_ MouselIsDown = True

End If

End Sub

Private Sub PictureBoxl MouseMove (ByVal sender As Object,
ByVal e As _

System.Windows.Forms.MouseEventArgs) Handles
PictureBoxl.MouseMove

If m MouseIsDown Then

‘Initiate dragging and allow either copy or move.

PictureBoxl.DoDragDrop (PictureBoxl.Image,
DragDropEffects.Copy Or _

DragDropEffects.Move)

End If

m MouseIsDown = False

End Sub

Private Sub PictureBox2 DragEnter (ByVal sender As Object,
Byval e As

System.Windows.Forms.DragEventArgs) Handles
PictureBox2.DragEnter

If e.Data.GetDataPresent (DataFormats.Bitmap) Then

‘Check for the CTRL key.

If e.KeyState = 9 Then

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material

33

Lab: Visual Basic
Programming

NOTES

Self-Instructional
34 Material

e.Effect = DragDropEffects.Copy
Else

e.Effect = DragDropEffects.Move
End If
Else

e.Effect
End if
End sub

DragDropEffects.None

Private Sub PictureBox2 DragDrop (ByVal sender As Object,
ByVal e As _

System.Windows.Forms.DragEventArgs) Handles
PictureBox2.DragDrop

‘Assign the image to the PictureBox.

PictureBox2.Image = e.Data.GetData (DataFormats.Bitmap)
‘If the CTRL key is not pressed, delete the source picture.
If Not e.KeyState = 8 Then

PictureBoxl.Image = Nothing

End If

End Sub

The AllowDrop property for the second PictureBox control is set in
the Form1 Load event. In both the DragEnter and DragDrop events, the code
checks to see if the CTRL key is pressed to determine whether to copy or move
the picture.

a-! Drag and Drop ‘i |£|
Dragging a Text

Target

Simple Drag Drop control|

DCiragging a Picture

=

Fig. 3.1 Control before being dragged to a target

o' Drag and Drop = H_EI_|
Dragging a Text

Simple Drag Drop control

Sifnple Drag Drop control

Dragging a Picture

Fig. 3.2 Control after being dragged to a target

Database Management

Database means a place where data can be stored in a structured manner. It is a
shared collection or batch of data that is logically related, along with their
descriptions designed to meet the information requirements of an organization.

Database Management System (DBMS) is a software system that allows
users to not only define and create a database but also maintain it and control its
access. A database management system can be called a collection of interrelated
data (usually called database) and a collection or set of programs that helps in
accessing, updating and managing that data (which form part of a database
management system).

The primary benefit of usinga DBMS is to impose a logical and structured
organization on data. ADBMS provides simple mechanisms for processing huge
volumes of data because it is optimized for operations of this type. The two basic
operations performed by the DBMS are as follows:

1. Management of data in the database
2. Management of users associated with the database

Management of the data means specifying how data will be stored, structured
and accessed in the database. This includes the following:

¢ Defining: Specifying data types and structures, and constraints for data
to be stored.

¢ Constructing: Storing data in a storage medium.

e Manipulating: Involves querying, updating and generating reports.

e Sharing: Allowing multiple users and programs to access data
simultaneously.

Further, the database management system must offer safety and security of
the information stored, in case unauthorized access is attempted or the system
crashes. If data is required to be shared among many users, the system must
ensure that possible anomalous results are avoided.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 35

Lab: Visual Basic
Programming

NOTES

Self-Instructional
36 Material

Management of database users means managing the users in such a way
that they are able to perform any desired operations on the database. A DBMS
also ensures that a user cannot perform any operation for which he is not authorized.

In short, a DBMS is a collection of programs performing all necessary
actions associated with a database. There are many DBMSs available in the market,
such as MySQL, Sybase, Oracle, MongoDB, Informix, PostgreSQL, SQL Server
etc.

How to Create Active X Control

ActiveX Controls were previously known as OLE controls. To render web pages
more interactive, an ActiveX control can be put on web pages. Much like you put
aJavaapplet on a page on the internet. To bring advanced features to the user
experience, app developers have used ActiveX controls on their web pages.

Program 3.2: To create an ActiveX control that will show a simple user interface
and accept input from a web page. Following are the steps for creating an ActiveX
control.

1. Create an assembly (class library project) containing an item of type User
Control.

2. Expose an interface for the control.
3. Embed the user control into a web page.

4. Transfer data from a web form to the control and display the data on the
control.

First, we will create a simple ActiveX control to get an overall idea about
how to create ActiveX controls.

Step 1: Create an assembly
Create anew project of type Class Library. Name the class library ActiveXDotNET.

Hew Project gj

Project Types: Templates:
(L] visual Basic Projects f‘”;
%
4 Visual C# Prajects =
— »
‘:--I Visual C++ Projects) windows Class Library Windows
i:_-l Setup and Deployment Projects Application Contral Library
+-{_] Cther Projects
[visual Studio Salutions [. J@%
CSharpMo... ASP.MET Web ASP.MET web
Application Service
A project For creating classes to use in other applications
Mame: l AckivexDothet
Locakion: J Fiiprojects ﬂ Browse...
™ add to Solution % Close Solution

Project will be created at Fiiprojectst ActivexDathet,

FMare [0]'4 | Cancel | Help |

Delete the Class1.cs file from your project once the project is developed,
as it won’t be required. Next, by right-clicking the project in your Solution Explorer,
add User Control to the project, select Add, then User Control. Name your control
as “myControl”.

“tart Page Forml.vb [Design]* | Form1.vb*

On the user control, add some Ul elements, and a text box control named
txtUserText. The txtUserText control will display the user data that is typed into
the web form. This will demonstrate how to pass data to your User Control.

When you are done adding your user interface to the control we now have
to add a key element to the control, an Interface. The interface will allow COM/
COM-+ objects to know what properties they can use. In this case, we are going
to expose one public property named UserText. That property will allow us to set
the value of'the text box control.

Step 2: Expose the interface for the control
First, create a private String to hold the data passed from the web form to the
control:

private Dim mStr UserText as String

Place this String just inside the Class myControl.

Next, we will create a public property. The web page will use this property

to pass text back to your control. This property will allow reading and writing of
the value mStr_UserText.

Public Property UserText () As [String]
Get

Return mStr UserText

End Get

Set (ByVal Value As [String])

mStr UserText = value

‘Update the text box control value also.
txtUserText.Text = value

End Set

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 37

Lab: Visual Basic
Programming

NOTES

Self-Instructional
38 Material

End Property

In this example, you will note the extra code in the set section of the public property.
We will set the private String value equal to the value passed to the property when
avalue is passed from the web form to the control. We are simply going to modify
the value of the Text Box control directly. Typically you would not do this. Instead,
you would raise an event and then validate the data being passed by examining the
private variable mStr_UserText. Then you would set the value of the Text Box
Control. However, it would add significant code to this example and for simplicity
sake we are omitting that security precaution.

Now, you have a public property that NET assemblies can use, you need
to make that property available to the COM world. This can be done by creating
an interface and making the myControl class inherit the interface. It allows COM
objects to see what properties are made available. Now, the code will be:

Namespace ActiveX.NET

{

Public Interface AxMyControl

Property UserText () As String

End Property

End Interface ‘AxMyControl

Public Class myControl

Inherits System.Windows.Forms.UserControl, AxMyControl
Private mStr UserText As [String]

Public Property UserText () As String
Get

Return mStr UserText

End Get

Set (ByVal Value As String)

mStr UserText = value

‘Update the text box control value also.
txtUserText.Text = value

End Set

End Property

End Class ‘myControl

Notice that, we have an interface defined. The interface tells COM/COM+
that there is a public property available for use that is of type String and is readable
(get) and writeable (set). All we do now is have the Class myControl inherit the
interface and viola! We have a .NET assembly that acts like an ActiveX Control.

Step 3: Embed the user control in a web page
The last thing we do now is use the control in an example web page.

<html>

<body color=white>

<hr>

<OBJECT 1id="myControll"™ name="myControll"
classid="ActiveX.NET.dll#ActiveXDotNET.myControl”width=288
height=72>

</OBJECT>

<form name="frm” id="frm”>

<input type="text” name="txt” value="enter text
here”><input type=button value="Click me”onClick="doScript();”>

</form>

<hr>

</body>

<script language="javascript”>
function doScript ()

{

myControll.UserText = frm.txt.value;

}
</script>
</html>

You will notice in the HTML code above, that you call your NET assembly
very similar to an ActiveX control; however there is no GUID, and no .OCX file.
Your CLASSID is now the path to your DLL and the Namespace.Classname
identifier. Refer to the code above to understand the syntax of the CLASSID
object tag property. Place the HTML file and your DLL in the same directory on
your web server and navigate to the HTML document. (Do not load the HTML
document by double clicking on it, navigate to it in your browser by using the Fully
Qualified URL.) *NOTE: You might need to add your web server to your Trusted
Sites list in your Internet Explorer browser.

Step 4: Transfer data from the web form to the user control

When you load the HTML page, your control should load into the page and you
will see a web form with a text box and a button. In this example, if you type some
text into the text box and click the button, it will use JavaScript to send the text
from the web page form, to the User Control that you just built. Your User Control
will then display the text in the Text Box control that I on the form.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 39

Lab: Visual Basic
Programming

NOTES

Self-Instructional
40 Material

Program 3.3 Another program of ActiveX control.
Step 1: Create an assembly

First, you create a new project of type Class Library. Name the class library
ActiveXDotNET.

New Project @

Project Types: Templates:

(] wisual Basic Projects J— i g A
£ Visual C# Projects = # @—EI
(1 visual C++ Projects Windows Class Libran i
- : a Windows
(] Setup and Deployment Prajects Application Control Library

+ (] Other Prajects it ; j
(2 visual Studio Solutions g = —.’#
= &y &

CSharpMo... ASP.NET Web ASP.NET Web
Application Service

A project For creating classes ko use in other applications

Narme: | activexDotiet
Location: I Fi\projects LE Browse...
" Add to Solution * Close Solution

Project will be created at F:\projectsiActiveXDotNet.

Fhore oK | cancel | Help ‘

Once the project is created, delete the Class1.cs file from your project as it
will not be necessary. Next, add a User Control to the project by right clicking on
the project in your solution explorer, choose Add, then User Control. Name your
user control myControl.

S jote PN MW | B 2T B X | bH =1 | Th T
T

T T P s L 9

On the user control, add some Ul elements, and a text box control named
txtUserText. The txtUserText control will display the user data that is typed into
the web form. This will demonstrate how to pass data to your User Control.

When you are done adding your user interface to the control we now have
to add a key element to the control, an Interface. The interface will allow COM/
COM+ objects to know what properties they can use. In this case, we are going
to expose one public property named UserText. That property will allow us to set
the value of the text box control.

Step 2: Expose the Interface for the control

First, create a private String to hold the data passed from the web form to the
control:

private String mStr UserText;

Place this String just inside the Class myControl.

Next, we will create a public property. The web page will use this property
to pass text back to your control. This property will allow reading and writing of
the value mStr UserText.

public String UserText {

get {

return mStr UserText;

}

set {

mStr UserText = value;

//Update the text box control value also.
txtUserText.Text = value;

}

}

In this example, you will note the extra code in the set section of the public
property. When a value is passed from the web form to the control we will set the
private String value equal to the value passed to the property. In addition, we are
simply going to modify the value of the Text Box control directly. Typically you
would NOT do this. Instead, you would raise an event and then validate the data
being passed by examining the private variable mStr_UserText. Then you would
set the value of the Text Box Control. However, that would add significant code to
this example and for simplicity sake we are omitting that security precaution.

Now that you have a public property that NET assemblies can use, you
need to make that property available to the COM world. We do this by creating
an Interface and making the myControl class inherit the interface. This will allow
COM objects to see what properties we have made available.

Your code will now look like this:

namespace ActiveXDotNET {

public interface AxMyControl ({
String UserText {

set;

get;

}

}

public class myControl: System.Windows.Forms.UserControl,
AxMyControl {

private String mStr UserText;
public String UserText {

get {

return mStr UserText;

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 41

Lab: Visual Basic
Programming

NOTES

Self-Instructional
42 Material

}

set {

mStr UserText = value;

//Update the text box control value also.
txtUserText.Text = value;

}

}

Notice that we now have an interface defined, the interface tells COM/
COM+ that there is a public property available for use that is of type String and is
readable (get) and writeable (set). All we do now is have the Class myControl
inherit the interface and viola! We have a NET assembly that acts like an ActiveX
Control.

Step 3: Embed the user control in a web page

The last thing we do now is use the control in an example web page.
<html>
<body color=white>
<hr>

<OBJECT id="myControll"™ name="myControll"
classid="ActiveX.NET.dll#ActiveX.NET.myControl” width=288
height=72>

</OBJECT>

<form name="frm” id="frm”>

<input type="text” name="txt” value="enter text
here”><input type=button value="Click me”
onClick="doScript() ;">

</form>

<hr>

</body>

<script language="javascript”>
function doScript ()

{

myControll.UserText = frm.txt.value;
}

</script>

</html>

You will notice in the HTML code above, that you call your NET assembly
very similar to an ActiveX control; however there is no GUID, and no .OCX file.
Your CLASSID is now the path to your DLL and the Namespace.Classname
identifier. Refer to the code above to understand the syntax of the CLASSID
object tag property. Place the HTML file and your DLL in the same directory on
your web server and navigate to the HTML document. (Do not load the HTML
document by double clicking on it, navigate to it in your browser by using the Fully
Qualified URL.) *NOTE: You might need to add your web server to your Trusted
Sites list in your Internet Explorer browser.

Step 4: Transfer data from the web form to the user control

When you load the HTML page, your control should load into the page and you
will see a web form with a text box and a button. In this example, if you type some
text into the text box and click the button, it will use JavaScript to send the text
from the web page form, to the User Control that you just built. Your User Control
will then display the text in the Text Box control that I on the form.

Database Object (DAQO) and Properties

DAO pattern or Data Access Object pattern is used to separate low level data
accessing API or operations from high level business services. The participants in
Data Access Object Pattern are as follows.

1. DAO Interface: It defines the standard operations to be performed on a
model object(s).

2. DAO Concrete Class: It is responsible to get data from a data source.

3. Model or Value Object: It is simple POJO containing get/set methods to
store data retrieved using DAO class.

When it comes to implementing a data access solution in your VB
applications, you currently have three choices: Data Access Objects (DAO),
Remote Data Objects (RDO), and ActiveX Data Objects (ADO).

DAO was created before RDO and ADO, is a set of objects that enables
client applications to programmatically access data. DAO not only allows you to
access data but also helps in controling and managing local and remote databases
in different formats. DAO can be used create and modify the database structure;
create tables, queries, relationships, and indexes; retrieve, add, update, and remove
data; implement security; work with different file formats; and link tables to other
tables.

Implementation

Program 3.4: We are going to create a Student object acting as a Model or Value
Object. StudentDao is Data Access Object Interface.StudentDaolmpl is concrete
class implementing Data Access Object Interface. DaoPatternDemo, our demo
class, will use StudentDao to demonstrate the use of Data Access Object pattern.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 43

Lab: Visual Basic
Programming

NOTES

Self-Instructional
44 Material

<<interfaces>

DaoPatternDemo

Student - StudentDao
-name: String € uses
-roliNo :int »
+Student() +getAllStudents() : List
+getName(): String +updateStudentl() : void
+setName(): void +deleteStudent(): void
+getRollNo(): int +addStudent(): void
+setRollNo() : String r Y
Implements

StudentDaolmpl

-students: List

+StudentDaolmpl{)
+getallStudents() :List
+updateStudentl() :void
+deleteStudent(): void

+addStudent(): void

Step 1: Create Value Object.

public class Student {

private String name;

private int rollNo;

Student (String name, int rollNo) {
this.name = name;

this.rollNo = rollNo;

}

public String getName () {

return name;

}

public void setName (String name) {
this.name = name;

}

public int getRollNo () {

return rollNo;

}

public void setRollNo (int rollNo) {
this.rollNo = rollNo;

}

+main() : void

Step 2: Create Data Access Object Interface.
import java.util.List;
public interface StudentDao
{
public List<Student> getAllStudents();
public Student getStudent (int rollNo);
public void updateStudent (Student student) ;
public void deleteStudent (Student student);
}

Step 3: Create concrete class implementing above interface.
public class DaoPatternDemo
{
public static void main (String[] args)

{
StudentDao studentDao = new StudentDaoImpl () ;

//print all students
for (Student student : studentDao.getAllStudents())

{

System.out.println (“Student: [RollNo : Y +
student.getRollNo () + %, Name : “ + student.getName () + “ 17);

}

//update student
Student student =studentDao.getAllStudents () .get (0);
student.setName ("Michael”) ;

studentDao.updateStudent (student) ;

//get the student
studentDao.getStudent (0) ;

System.out.println(“Student: [RollNo : “ +
student.getRollNo () + %, Name : “ + student.getName() + “ 17);

}
Step 4: Use the StudentDao to demonstrate Data Access Object pattern usage.
public class DaoPatternDemo {

public static void main(String[] args) {

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 45

Lab: Visual Basic
Programming

NOTES

Self-Instructional
46 Material

StudentDao studentDao = new StudentDaoImpl () ;
//print all students

for (Student student : studentDao.getAllStudents()) {
System.out.println (“Student: [RollNo : “ +
student.getRollNo () + %, Name : “ + student.getName () + “ 17);

}

//update student

Student student =studentDao.getAllStudents () .get (0);
student.setName (“Michael”) ;

studentDao.updateStudent (student) ;

//get the student

studentDao.getStudent (0) ;

System.out.println(“Student: [RollNo : “ +
student.getRollNo () + %, Name : “ + student.getName () + “ 17);
}
}
Step 5: Verify the output.

Student: [RollNo : 0, Name : Robert]
Student: [RollNo : 1, Name : John]
Student: Roll No 0, updated in the database
Student: [RolINo : 0, Name : Michael |
DAO objects
Let us have a look at the DAO objects to understand DAO better.

Table 3.1 Names and descriptions of common DAO objects

Oh%ect Description
ngine The top-level object in the DAO object hierarchy

Workspace | An active DAO session

Connection | Network connection to an ODBC database
Database Open database

Errar Data access error information storage
Field Afield in a 7TableDef, QueryDef, Recordset,
index, or Relation object

QueryDef Saved query definition in a database
Recordset Set of records defined by a table or query
TableDef Saved table definition in a database

User User account in the current workgroup
Index Table index

Parameter | Query parameter

Property Property of an object

The DBEngine is the highest-level object in the DAO object model. It
contains all other objects and collections. The Database object is the member of
the Databases collection of the default Workspace object, which is a member of
the Workspaces collection of the DBEngine object.

Program 3.5: Let’s create a simple VB project to access the data stored in
Microsoft’s sample Northwind database to demonstrate how you might put DAO
to work.

1. Open VB and start a new project.

2. Goto Project References and select Microsoft DAO 3.6 Object Library
(depending on the version of VB you are using), as shown in Figure given
below.

References - Project1

] Microsoft Ackives Daka Objects Recordset 2.0 Library
[Microsoft Ackives Plugin

[Micrasaft &dd-In Designer

[Microsoft A0 Ext, 2.1 For DDL and Security
[Micrasoft &gent Contral 2.0

[] Microsoft Agent Server 2.0

[Microsoft Agent Server Extensions 2.0

[Microsoft Connection Designer Instance 1.0
[Microsoft Connection Designer w&.0

[Microsoft DA 2,5 Object Library

[Microsoft D0 2,5/3.51 Compatibilicy Library
[Microsaf Cu biect Librar

Add two combo boxes (cboLastNameJet and cboLastNameODBCDirect)
and two command buttons (cmdGetDataJet and cmdGetDataODBCDirect) to
the form as shown below.

Add the following code in to the cmdGetDataJet Click() event.
Private Sub cmdGetDataJet Click()

Dim wrkJet As DAO.Workspace

Dim dbJet As DAO.Database

Dim rsJet As DAO.Recordset

Dim strLocation As String

Lab: Visual Basic

Programming
NOTES
Self-Instructional

Material 47

Lab: Visual Basic
Programming

NOTES

Self-Instructional
48 Material

‘location of the Northwind.mdb database to be used for
Microsoft Jet connection

strLocation = “D:\Program Files\Microsoft
Office\Office\Samples\”

‘Open Microsoft Jet workspace
Set wrkJet = CreateWorkspace (", “admin”, “”, dbUsedet)
‘Open Microsoft Jet database

Set dbJet = wrkJet.OpenDatabase(strLocation &
“Northwind.mdb”)

‘Open Microsoft Jet read-only recordset

Set rsJet = dbJet.OpenRecordset ("SELECT LastName FROM
Employees”, dbOpenDynaset, dbReadOnly)

With cbolLastNamedJet

If rsJet.EOF And rsJet.BOF Then

‘no data - disable combo box
.Enabled = False

Else

‘clear the combo box

.Clear

‘move the recordset to the first row
rsJet.MoveFirst

Do Until rsJet.EOF

AddItem Trim(rsJet (“LastName”))
‘move the recordset to the next row
rsJet .MoveNext

Loop

‘select the first item in the combo box
.ListIndex = 0

‘close recordset

rsJet.Close

End If

End With

‘close database

dbJet.Close

‘close workspace

wrkJet.Close

‘release objects

Set rsJet = Nothing

Set dbJet = Nothing
Set wrkJet = Nothing
End Sub

Add the following code to the Private SubcmdGetDataODBCDirect
_ Click() event.

Private Sub cmdGetDataODBCDirect Click()

Dim wrkJet As DAO.Workspace, wrkODBC As DAO.Workspace
Dim conODBCDirect As DAO.Connection

Dim rsODBCDirect As DAO.Recordset

Dim strConn As String

‘connection string for

strConn = Y“ODBC;DATABASE=employee records;
UID=admin; PWD=sqgl; DSN=employee”

‘Open ODBCDirect workspace

Set wrkODBC = CreateWorkspace (“”, “admin”, “”, dbUseODBC)

‘Open ODBCDirect connection

Set conODBCDirect = wrkODBC.OpenConnection(“”, , ,
strConn)

‘Open ODBCDirect dynamic recordset

Set rsODBCDirect = conODBCDirect.OpenRecordset (V"SELECT
LastName FROM Employees”, dbOpenDynamic)

With cboLastNameODBCDirect

If rsODBCDirect.EOF And rsODBCDirect.BOF Then
‘no data - disable combo box
.Enabled = False

Else

‘clear the combo box

.Clear

‘move the recordset to the first row
rsODBCDirect.MoveFirst

Do Until rsODBCDirect.EOQOF

.AddItem Trim (rsODBCDirect (“LastName”))
‘move the recordset to the next row
rsODBCDirect .MoveNext

Loop

‘select the first item in the combo box

.ListIndex = 0

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 49

Lab: Visual Basic
Programming

NOTES

Self-Instructional
50 Material

‘close recordset
rsODBCDirect.Close

End If

End With

‘close workspace
wrkODBC.Close

‘release objects

Set rsODBCDirect = Nothing
Set wrkODBC = Nothing

Set conODBCDirect = Nothing
End Sub

. Modify strLocation to reflect the location of the Northwind database on

your computer or use another .mdb database and modify Set dbJet =
wrkJet.OpenDatabase(strLocation & “Northwind.mdb”) to reflect the name
of the database.

. Modify strConn to reflect the DSN name, password, and UID of a remote

database.

. Modify the query in Set rsODBCDirect =conODBCDirect.OpenRecordset

(“SELECT LastName FROM Employees”, dbOpenDynamic) to reflect
the query you’d like to run.

6. Press [Ctrl][F5] to run the project.
7. Click the Get Data Jet button and the Get Data ODBC Direct button to

obtain data using Microsoft Jet and ODBCDirect, respectively.

. You will observe a screen as shown below:

. DAD M=] B3

[Davelio =] | 5mit [|

[el Daimdet | Get Data ODBC Direct |

Set DAO properties for DAO objects

Refer to the object in the DAO hierarchy to set a property that is defined by the
Access database engine. The easiest and fastest way of doing that is to create
object variables that represent the different objects require work with, and refer
to the object variables in subsequent steps in your code. Consider the following
example code to create a new TableDef object and sets its Name property.

Dim dbs As DAO.Database
Dim tdf As DAO.TableDef

Set dbs = CurrentDb

Set tdf = dbs.CreateTableDef

tdf.Name = “Contacts”

The following table provides some guidelines for determining the setting of
the Type property.

If the property setting is | The Type property setting should be
A string dbText

True / False dbBoolean

An integer dbInteger

The following table lists some Microsoft Access-defined properties that
apply to DAO objects.

DAO object Microsoft Access-defined properties
Database AppTitle, Applcon, StartupShowDBWindow,
StartupShowStatusBar, AllowShortcutMenus, AllowFullMenus,
AllowBuiltInToolbars, AllowToolbarChanges,
AllowBreakIntoCode, AllowSpecialKeys, Replicable,
ReplicationConflictFunction
SummaryInfo Container | Title, Subject, Author, Manager, Company, Category, Keywords,
Comments, Hyperlink Base (See the Summary tab of the
DatabaseName Properties dialog box, available by selecting
Database Properties on the File menu.)
UserDefined Container | (See the Summary tab of the DatabaseName Properties dialog box,
available by selecting Database Properties on the File menu.)
TableDef DatasheetBackColor, DatasheetCellsEffect, DatasheetFontHeight,
DatasheetFontltalic, DatasheetFontName,
DatasheetFontUnderline, DatasheetFontWeight,
DatasheetForeColor, DatasheetGridlinesBehavior,
DatasheetGridlinesColor, Description, FrozenColumns,
RowHeight, ShowGrid
QueryDef DatasheetBackColor, DatasheetCellsEffect, DatasheetFontHeight,
DatasheetFontltalic, DatasheetFontName,
DatasheetFontUnderline, DatasheetFontWeight,
DatasheetForeColor, DatasheetGridlinesBehavior,
DatasheetGridlinesColor, Description, FailOnError,
FrozenColumns, LogMessages, MaxRecords, RecordLocks,
RowHeight, ShowGrid, UseTransaction
Field Caption, ColumnHidden, ColumnOrder, ColumnWidth,
DecimalPlaces, Description, Format, InputMask

Program 3.6: To create a new Database object and opens an existing Database
object in the default Workspace objects. Then it enumerates the Database collection
and the Properties collection of each Database object.

Sub DatabaseObjectX ()

Dim wrkAcc As Workspace

Dim dbsNorthwind As Database
Dim dbsNew As Database

Dim dbsLoop As Database

Dim prpLoop As Property

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 51

Lab: Visual Basic
Programming

NOTES

Self-Instructional
52 Material

Set wrkAcc = CreateWorkspace (“AccessWorkspace”, “admin”,
w7, dbUsedJet)
‘' Make sure there isn’t already a file with the name of
‘ the new database.

If Dir (“NewDB.mdb”) <> % Then Kill “NewDB.mdb”

‘ Create a new database with the specified
‘'collating order.

Set dbsNew = wrkAcc.CreateDatabase (“NewDB.mdb"”,
dbLangGeneral)

Set dbsNorthwind = wrkAcc.OpenDatabase (“Northwind.mdb”)
‘ Enumerate the Databases collection.

For Each dbsLoop In wrkAcc.Databases

With dbsLoop

Debug.Print “Properties of “ & .Name

' Enumerate the Properties collection of each
' Database object.

For Each prpLoop In .Properties

If prpLoop <> “” Then Debug.Print ™ ™ & _
prploop.Name & “ = " & prpLoop

Next prpLoop

End With

Next dbsLoop

dbsNew.Close

dbsNorthwind.Close

wrkAcc.Close

End Sub

This example uses CreateDatabase to create a new, encrypted

Database object.

Sub CreateDatabaseX ()

Dim wrkDefault As Workspace

Dim dbsNew As DATABASE

Dim prpLoop As Property

' Get default Workspace.

Set wrkDefault = DBEngine.Workspaces (0)

‘' Make sure there isn’t already a file with the name of
the new database.

If Dir (“NewDB.mdb”) <> “” Then Kill “NewDB.mdb”

‘ Create a new encrypted database with the specified
‘'collating order.

Set dbsNew = wrkDefault.CreateDatabase (“"NewDB.mdb"”,
dbLangGeneral, dbEncrypt)

With dbsNew

Debug.Print “Properties of “ & .Name

‘ Enumerate the Properties collection of the new

‘ Database object.

For Each prpLoop In .Properties

If prpLoop <> “” Then Debug.Print ™ ™ & _
prpLoop.Name & “ = " & prpLoop

Next prpLoop

End With

dbsNew.Close

End Sub

Why Use DAO?

Visual Basic programmers highly recommend ADO as their preferred object model
for accessing databases. Although ADO is an excellent model with its own unique
benefits, in the context of Access databases, it doesn’t have the benefit of native
database connectivity, which is where DAO has the distinct advantage.

Applications written in other programming languages, such as Visual Basic,
Delphi, and the like, must explicitly connect to the data source they intend to
manipulate, and they must do so every time they need to manipulate the data or
underlying schema. That’s because, unlike Access, these applications do not have
an inherent connection to the data source. When used in Access, DAO enables
you to manipulate data and schema through an implicit connection that Access
maintains to whichever Access database engine, ODBC, or ISAM data source it
happens to be connected to.

Active Data Objects ADO and OLEDB

Database Access

Applications access the database to retrieve and display the data stored and also
to insert, update and delete data in the database. Microsoft ActiveX Data
Objects.NET (ADO.NET) is a model that is used to access and update data from
NET applications.

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 53

Lab: Visual Basic
Programming

54

NOTES

Self-Instructional
Material

ADO.NET Object Model

It is nothing but the structured process flow through various components. Data
provider is used to retrieve the data residing in the database. The object model
can be pictorially described as given below:

DataProvider Dataset
Connection Datzfdzpter DataRelationCallaction
. Seject pE—
Command g DataTableloliection
Wi ipset DiatzTzhle
command Dzta rows
" Delete Datacolumns
command Data
" Update constraints
command
F
k h
Dztz Reader i Diata Store

An application accesses data either through a dataset or a data reader.

1. Datasets store data in a disconnected cache and the application retrieves
data from it.

2. Data readers provide data to the application in a read-only and forward-
only mode.

Connecting to a Database

There are two two types of Connection classes in the NET Framework.
1. SqlConnection: It is designed for connecting to Microsoft SQL Server.

2. OleDbConnection: It is designed for connecting to a wide range of
databases, like Microsoft Access and Oracle.

Program 3.7: To illustrate the connection with the database.

The Customers table is stored in Microsoft SQL Server in a database named as
testDB.

Apply the following steps to connect with the database:
1. Select TOOLS ’! Connect to Database

2. Select the server name and database name in the Add Connection dialog
box.

TOOLS TEST WINDOW HELP
ﬂ-ﬂ Attach to Process...

Ctrl+ Alt+P

| 'h? Connect to Database...

. &' Code Snippets Manager..,

Choose Toolbox Items...

Library Package Manager

[-E Extensions and Updates...

Create GUID
Error Lookup
External Tools...

Import and Export Settings...

Customize...

o) Ciptions...

Ctrl+K, Ctri+B

—r

Add Connection

BRSO

Enter information to connect to the selected data source or click "Change” to

choose a different data source and/or provider,
Data source:
Microsoft SQL Server (SqiClient)

Server name:

KABIR-DESKTOP
Log on to the server

1@ Use Windows Authentication
(74 Use SQL Server Authentication

Save my password

Connect to a database

1@ Select or enter a database name!

Change...
v | Befresh

testDB

(1 Attach a database file:

Browse.,

Advanced...

Test Connection [

ok || Concel |

Lab: Visual Basic

Programming
NOTES
Self-Instructional
Material 55

Lab: Visual Basic
Programming

NOTES

Self-Instructional
56 Material

3. Click on the Test Connection button to check for the connection succeeded.

7 —
Microsoft Visual Studio Express 2012 for Windows Des..

@ Test connection succeeded.

|
| |
i =
4. Add aDataGridView on the form
[rom IEHE}
DataGridView Tasks
Choose Data Source: [I =

Edit Columns...
Add Column...

[#] Enable Adding
|#] Enable Editing

[¥] Enable Deleting

] Enable Column Reardering

Deck in Patent Containes

5. Click on the Choose Data Source combo box.

6. Click on the Add Project Data Source link. This will open the Data Source

Configuration Wizard.

e ——
@ Mone|

*§ Add Project Data Source...

Click the 'Add Project Data Source... link to
connect to data.

7. Select Database as the data source type Lab: Visual Basic
Programming

| i;; Choose a Data Source Type

NOTES

Whete will the appBcation get data from?

- ©

Database | Service et

Lets you connect to a databare lnd&mmeﬁhmohj:mlurmmﬂiclﬁm

I % | fuccmed] |

i}

8. Choose DataSet as the database model.

| i; Choose a Database Model

What type of database model do you want to wse?

Dataset | Entity Data
et

The datsbase model you choose determines the types of deta objects your spplication code uses. A dataset file wall
be added o your progect.

L! | <pmiowm || Net> | coo | Cancel |

Self-Instructional
Material 57

Lab: Visual Basic
Programming

NOTES

Self-Instructional
58 Material

9. Choose the connection already set up.

| i;) Choose Your Data Connection

‘Which data connection should your application use to connect to the databae?
| abis:desktop testDB.doo v [NewGonnecton... |

B Connection gtrng that you il save in the spphication {expand to see detais)
Dota Source=KABIR-DESKTOPR Initial Catalog=testDB;Integrated Security=True

L' ettt Cotospen] [i (it

10. Save the connection string,

| i;) Save the Connection String to the Application Configuration File

Stednng connection stings in your apphoaticn configuration file eases maintenance and deployment. To seve the
connection string in the spplication configuration file, enter a name in the box snd then diick Next.

Do you want 1o save the connection siring to the application confiquration lile?
[¥] Yes, save the connectian as:

I,E.'tﬂﬂl:unrled‘rnr:ihing

L, sE)] [| (Gl

11. Choose the database object that is
then click the Finish button.

Customers table in our example and

rumsmmcmw Wizard _ [
| i;) Choose Your Databaze Objects
Which databiase objects do you want in your dataset?
a [fg¥ Tables
1 [B CUSTOMERS
F1E5 Views
|7 R Stoted Procedunes
Tl Functions
|
|
testDBData5et
l | <presows | [CEoer][conce |

12. Select the Preview Data link to see the data in the Results grid as shown

below.

i —)

Select am ghioct 15 previes: Patarnutens

testDEDptaSen. CLISTOMERS Fill Getata 1 [= Frms

| B |

T:.:pe I'M"'f"
He parsensters aiw defined on the selected shjsce

Besuts
o RaME hot ABDatss
mal (3 (e

Abmedabad
i | Kndan P frelhi
| rr— |z | ot
i | Erartali [z [r——
5 [Hascib F:) Bhopal
[[Komal 22 [MF

o U0
1808

_ [6so000
— (ES00.00
| aso0.00

e

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 59

fflb-' Visual Basic It will produce the following output when you run the application using Start
rosTammng button available at the Microsoft Visual Studio tool bar.

= ADO . o S
NOTES
D SRME e =
» |
2 Khilan 25 |
3 kaushic lzn |B
4 Chatta EEE B
|5 Hardikc iz |
'ﬁ | Komal |22 =
e b
OLE DB Connection Manager
OLE DB (Object Linking and Embedding, Database) is an APl designed by
Microsoft. It allows users to access a variety of data sources in a uniform manner.
OLE DB connection managers are the most popular between all SSIS connection
managers.
The following window appears, when you click on Add OLE DB connection
in the context menu.
¥ Configure OLE DB Connection Manager O X
To create a connecticn manager based on previcusly defined connection information, select a data connection,
and then click OK, To create a new connection manager, click New.
Data connections: Data connection properties:
Property Value
MNew...
Cancel
Self-Instructional

60 Material

All previously defined connections are listed with their properties in this
window. You have to click on New button to add a new connection. The following

screenshot shows the main OLE DB connection configuration form.

a Connection Manager
e ol | Native OLE DB\SOL Server Native Client 11.0 =
———
_—.i Server name:
,
0 [|| Refresh
Connection

- Leg on to the server
)
[

—
li o
) g,’ Authentication: Windows Authentication 5

Al

Save my password
Connect to a database

Select or enter a database name:

Attach a database file:

Test Connection Cancel Help

*

When, we click on the Provider drop-down list, all available data sources

providers will be displayed as shown below:

|
I Provider: ‘ Mative OLE DB\SQL Server Native Client 11.0

all

5| | = sl Native OLEDB
a ﬁ Microsoft Jet 4.0 OLE DB Provider
[k

o,
—il i Microsoft Office 12.0 Access Database Engine OLE DB Provider
Zalllioty ﬁ Microsoft OLE DB Driver for SOL Server

"
N
=

= i Microsoft OLE DB Provider for Analysis Services 11.0
.H. ﬁ ﬁ Microsoft OLE DB Provider for Analysis Services 13.0
1 A’N’ ﬁ Microsoft OLE DB Provider for Analysis Services 14.0

i Microsoft OLE DB Provider for Gracle

ﬁ Microsoft OLE DB Provider for Search

ﬁ Microsoft OLE DB Provider for SQL Server

i Microsoft OLE DB Simple Provider

ﬁ M5DataShape

ﬁ OLE DB Provider for Microsoft Directory Services
i OLE DE Provider for SOL Server Integration Services

= SOL Server Native Client 11,0

OK | Cancel

Browee.,

Test Connection Cancel Help

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 61

Lab: Visual Basic
Programming

NOTES

Self-Instructional
62 Material

Following are the main OLE DB connection properties:

1. Provider: It is used to connect to the data source.

2. Server name: The Server that you want to connect with.

3. Authentication type: It includes security parameters used to establish the
connection.

4. Database name: The database name that we want to connect with.

Generally, OLE DB connection manager is used in all tasks and components
used to connect to an external database such as:

Execute SQL Task
Execute T-SQL Task
OLE DB Source

OLE DB Destination
OLE DB command
Look up Transformation

ODBC connection manager

ODBC (Open Database Connectivity) is a standard API used to access
database.It provides access only to relational databases which are used by OLE
DB to access SQL-based data sources.

ODBC SSIS connection managers are also popular which are used when
data sources are defined as DSN (Database Source Name) in the operating system.

Right-click inside the connection manager tab panel to add an ODBC
connection manager. Click on New Connection button as shown below:

¥ Configure ODBC Connection Manager O *

To create a connecticn manager based on previcusly defined connecticn information, select a data connecticn,
and then click OK. To create a new connection manager, click New.

Data connections: Data connection properties:

Property Value

Cancel

This form contains all ODBC connections added earlier. Click on New
button to add a new one. The following screenshot shows the ODBC connection
manager configuration form.

8 Connection Manager x
———
RN Data source specification
o,
- __./
Connection (®) Use user or system data source name:

== = Refresh
Jra (M
E_ ._.v/ () Use connection string:

Al

Login information

User name: | |

Password: | |

Test Connection oK Cancel Help

When, we click on the Provider drop-down list, all available data sources
providers will be displayed as shown below.

Connection should be closed and release the resources once the use of
database is over. The Close() method is used to close the Database Connection.
Itrolls back any pending transactions and releases the connection from the database
connected by the ODBC Data Provider. The code for ADO.NET ODBC
connection will be:

Imports System.Data.Odbc

Public Class Forml

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Dim connetionString As String
Dim cnn As OdbcConnection

connetionString = “Driver={Microsoft Access Driver
(*.mdb) } ;DBO=yourdatabasename.mdb;”

cnn = New OdbcConnection (connetionString)

Try

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 63

Lab: Visual Basic
Programming

NOTES

Self-Instructional
64 Material

cnn.Open ()

MsgBox (“Connection Open ! %)
cnn.Close ()

Catch ex As Exception

MsgBox (“Can not open connection ! V)
End Try

End Sub

End Class

BLOCK 4

This block will cover the following topics:
1. Connect with the database
2. Using SQL server and DataReaders

3. Retrieving, inserting, updating and deleting the records in the database
Connecting Databases Using ADO.NET in VB.NET

Connecting and communicating with a database is a necessary part of any type of
application. In other words, you can say an application requires accessing the
database. ADO.NET (ActiveX Database Objects.NET) is a model provided by
the NET framework that helps in retrieving, inserting, updating, or deleting data
from a database.

VB .NET uses ADO .NET (Active X Data Object) for data access and
manipulation protocol that also helps us to work with data on the Internet.

ADO.NET Data Architecture
Connection

It 1s used for establishing a connection between database and application.
SqlConnection class is used for the MS-SQL database. OleDBConnectionclass
is used for a database like an oracle and MS-Access.

Command

It is used to execute a command (Query). SqlCommand class is used for the
MS-SQL database. OleDBCommand class is used for a database like an oracle
and MS-Access.

DataSet
It provides a copy of the original database tables.
DataAdapter

It is used to retrieve data from the database and update DataSet.
SqlDataAdapter class is used for the MS-SQL database. OleDBDataAdapter
class is used for a database like an oracle and MS-Access.

Data Access with Server Explorer

VB allows us to work with db in two ways i.e. visually and code. Server Explorer
enables us to work with connections across different data sources visually. The
window that is displayed is the Server Explorer that helps us to create and examine
data connections. Server Explorer can be viewed by selecting View’!Server
Explorer from the main menu or by pressing Ctrl+Alt+S on the keyboard as shown
below.

Server Explorer * 0 X

2]] | T W %

[4) Data Connections
“E Servers
g4l SharePoint Connections

We will work with SQL Server, the default provider for NET. We’ll be
displaying data from Customers table in sample Northwind database in SQL Server.
It requires establishing a connection to this database. You need to right-click on
the Data Connections icon in Server Explorer and select Add Connection item
that opens the Data Link Properties dialog. It allows us to enter the name of the
server with which we want to work along with login name and password as shown
below.

add Connection w B

Enter information to connect to the selected data source or click
= hange” to choose a different data source and/ar provider,

Drata sources
Microsoft SOQL Server Database File (SqlClient) | Change... |

Database file name (Rew oF existing):

Marthwind.mdf | Browse... |
Log on to the server
Lie Windows Adthentication
@ Lse SQL Server Authentication
User name: sa
Password: ssssssesse"

| Save my password
' |

l Test Connection | l ':l_K _-_-] [Cancel |

Advanced.. |

Now select Northwind database from the list. After that click on the Test
Connection tab, If the connection is successful, a message “Test Connection
Succeeded” is displayed. Click OK and close the Data Link Properties or add
connection when connection to the database is set. It displays the Tables, Views
and Stored Procedures in that Northwind sample database when you expand the

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 65

Lab: Visual Basic
Programming

NOTES

Self-Instructional
66 Material

connection node that is (“+” sign). Expanding the Tables node will display all the
tables available in the database.

Server Explorer EalleX
EIRCRSS &
4 [JJ Data Connections
a |k imsitd9-pc.master.dbo
- [Database Diagrams
» [d Tables
- 4 Views
- [Stored Procedures
- [Functions
> [Synonyms
> [Types
. [Assemblies

- -

We will work with Customers table to display its data in our example. Now,
drag Customers table onto the form from the Server Explorer. It creates
SQLConnection] and SQLDataAdapterl objects that are the data connection
and data adapter objects used to work with data. They are displayed on the
component tray. After that, generate the dataset which holds data from the data
adapter. To do that select Data’! Generate DataSet from the main menu or rightclick
SQLDataAdapter] object and select generate DataSet menu. It will displays the
generate Dataset dialogbox.

Select the radio button with New option to create a new dataset once the
dialogbox is displayed. Make sure Customers table is checked and click OK. It
adds a dataset, DataSet to the component tray. After that, drag a DataGrid from
toolbox to display Customers table. Set the data grid’s DataSource property to
DataSet and it’s DataMember property to Customers. Next, we need to fill the
dataset with data from the data adapter. The code for that is given below:

Private Sub Forml Load(ByVal sender As System.Object,

ByVal e As System.EventArgs)

Handles MyBase.Load

DataSet.Clear ()

SglDataAdapterl.Fill (DataSet)

‘filling the dataset with the dataadapter’s fill method

End Sub
The output of the above code is given below:

Customers table is displayed in the data grid once the application is executed.
That’s one of the simplest ways of displaying data using the Server Explorer window.

" e Forml s P =
Customer_nams Customer_id Customer_address | =
Rajesh 101 Delhi
Suresh 102 Agra
Friya 103 Pure
Amit 104 Fardabad
- Jiya 105 Patra

Microsoft Access and Oracle Database

You need to select Microsoft OLE DB Provider for Oracle from the Provider tab
in the Datalink dialog when working with Oracle. The process is same when
working with Oracle or MS Access but has some minor changes. It requires
appropriate Username and password.

Change Data Source —_— ¥ =
Data source: e
Microsoft Access Database File Descoption
Microsoft ODBC Data Source Use this selection to connect to Oracle
Microsoft SQL Server 7.3, 8i, 91 or 10g using the native
Microsoft SQL Server Compact 3.5 MSDAORA provider through the .NET

Microsoft SQL Server Database File Framewaork Data Provider for OLE DE.

<others

Data provider:
MET Framewaork Data Provider for OLEL +

Ahavays use this selection QK I[Cancel]

Using DataReaders, SQL Server

Here, we will work with ADO .NET objects in code to create connections and
read data by using the data reader. The namespace that requires to be imported
when working with SQL Connections is System.Data.SqlClient. Here, we will
check that how to connect by using our own connection objects. We will also
check how to use the command object.

1. Working with SQL Server
The classes used while working with SQL server are discussed below:

(a) The SqlConnection Class: This class shows the connection to SQL Server
data source. We will use OleDB connection object when working with
databases instead of SQL Server. Sqlconnections is 70% faster than OleDb
connections.

(b) The SqlCommand Class: This class represents a SQL statement or stored
procedure for use in a database with SQL Server.

(c) The SqlDataAdapter Class: This class represents a bridge between SQL
Server database and dataset. It includes the Select, Insert, Update and
Delete commands for loading and updating the data.

(d) The SqlDataReader Class: This class creates a data reader to be used
with SQL Server.

2. DataReaders

A DataReader is a lightweight object which provides forward-only, read-only
data in a very efficient and fast way. Data access with DataReader is read-only, if
we cannot make any changes (update) to data and forward-only, which means we
cannot go back to the previous record which was accessed. A DataReader requires

the use of an active connection for the entire time. We can instantiate a DataReader
by making a call to a Command object’s ExecuteReader command. When the

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 67

Lab: Visual Basic
Programming

NOTES

Self-Instructional
68 Material

DataReader is first returned, it is positioned before the first record of the result
set. To make the first record available, we need to call the Read method. If a
record is available, then Read method moves the DataReader to next record and
returns True. If a record is not available the Read method returns False.

Program 4.1: To retrieve data using Select command (to display data from
Discounts table in Pubs sample database).

Imports System.Data.SglClient

Public Class Forml Inherits System.Windows.Forms.Form

Dim myConnection As SglConnection

Dim myCommand As SglCommand

Dim dr As New SglDataReader ()

‘declaring the objects

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As

System.EventArgs)

Handles MyBase.Load

myConnection = New

SglConnection (“server=localhost;uid=sa;pwd=; database=pubs”)

‘establishing connection. you need to provide password
for sgl server

Try

myConnection.Open ()

‘opening the connection

myCommand = New SglCommand(“Select * from discounts”,
myConnection)

‘executing the command and assigning it to connection
dr = myCommand.ExecuteReader ()

While dr.Read()

‘reading from the datareader

MessageBox.Show (“discounttype” & dr (0) .ToString())
MessageBox.Show (“stor id” & dr (1) .ToString())
MessageBox.Show (“lowgty” & dr (2) .ToString())
MessageBox.Show (“highgty” & dr (3) .ToString())
MessageBox.Show (“discount” & dr (4) .ToString())
‘displaying the data from the table

End While

dr.Close()

myConnection.Close()

Catch e As Exception

End Try

End Sub

End Class

The above code displays records from discounts table in MessageBoxes.

Retrieving records with a Console Application
Imports System.Data.SglClient

Imports System.Console

Module Modulel

Dim myConnection As SglConnection

Dim myCommand As SglCommand

Dim dr As SglDataReader

Sub Main ()

Try

myConnection = New

SglConnection (“server=localhost;uid=sa;pwd=; database=pubs”)
‘yvou need to provide password for sgl server
myConnection.Open ()

myCommand = New SglCommand (“Select * from discounts”,
myConnection)

dr = myCommand.ExecuteReader

Do

While dr.Read()

WriteLine (dr(0))

WriteLine (dr (1))

WriteLine (dr(2))

WriteLine (dr(3))

WriteLine (dr(4))

‘'writing to console

End While

Loop While dr.NextResult ()

Catch

End Try

dr.Close()

myConnection.Close ()

End Sub

End Module

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 69

Lab: Visual Basic
Programming

NOTES

Self-Instructional
70 Material

Inserting Records

Example 4.2: To insert a Record into the Jobs table in Pubs sample database.
Imports System.Data.SglClient
Public Class Form2 Inherits System.Windows.Forms.Form
Dim myConnection As SglConnection
Dim myCommand As SglCommand
Dim ra as Integer
‘integer holds the number of records inserted

Private Sub Form2 Load(ByVal sender As System.Object,
Byval e

As System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

myConnection = New SqglConnection (“server=localhost;
uid=sa;pwd=;database=pubs”)

‘vou need to provide password for sgl server
myConnection.Open ()

myCommand = New SglCommand (“Insert into Jobs values 12,’IT
Manager’,100,300,

myConnection)

ra=myCommand.ExecuteNonQuery ()

MessageBox.Show (“New Row Inserted” & ra)
myConnection.Close ()

End Sub

End Class

Deleting a Record

Example 4.3: For deleting a record, we will use Authors table in Pubs sample
database to work with this code. Drag a button onto the form and place the
following code.

Imports System.Data.SglClient

Public Class Form3 Inherits System.Windows.Forms.Form
Dim myConnection As SglConnection

Dim myCommand As SglCommand

Dim ra as Integer

Private Sub Form3 Load(ByVal sender As System.Object,
Byval e

As System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object, Lab: Visual Basic
Byval e - Programming

As System.EventArgs) Handles Buttonl.Click

myConnection = New

SglConnection (“server=localhost;uid=sa;pwd=; database=pubs”) NOTES

‘yvou need to provide password for sgl server

myConnection.Open ()

myCommand = New SglCommand (“Delete from Authors where

city=’'0Oakland’”,

myConnection)

‘since no value is returned we use ExecuteNonQuery

ra=myCommand.ExecuteNonQuery ()

MessageBox.Show (“Records affected” & ra)

myConnection.Close ()

End Sub

End Class
Updating Records
Example 4.4: For updating a record, we will update a row in Authors table. Drag
a button onto the form and write the following code.

Imports System.Data.SglClient

Public Class Form4 Inherits System.Windows.Forms.Form

Dim myConnection As SglConnection

Dim myCommand As SglCommand

Dim ra as Integer

Private Sub Form4 Load(ByVal sender As System.Object,
ByvVal e

As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub Buttonl Click (ByVal sender As System.Object,
Byval e

As System.EventArgs) Handles Buttonl.Click

myConnection = New

SglConnection (“server=localhost;uid=sa;pwd=; database=pubs”)

‘yvou need to provide password for sgl server

myConnection.Open ()

myCommand = New SglCommand (“Update Authors Set
city="0Oakland’

where city=_

‘San Jose’ “,myConnection) Self-Instructional

Material 71

Lab: Visual Basic
Programming

NOTES

Self-Instructional
72 Material

ra=myCommand.ExecuteNonQuery ()
MessageBox.Show (“Records affected” & ra)
myConnection.Close()

End Sub

End Class

Using OleDb Provider

The classes of the OleDb provider with which we work are as follows:

1. The OleDbConnection Class: The OleDbConnection class allows a
connection to OleDb data source. OleDbconnections are used to connect
to most databases.

2. The OleDbCommand Class: The OleDbCommand class shows a SQL
statement or stored procedure which is to be executed in a database by an
OLEDB provider.

3. The OleDbDataAdapter Class: The OleDbDataAdapter class represents
as an intermediate between OleDb data source and datasets. We use the
Select, Insert, Delete and Update commands for loading and updating the
data.

4. The OleDbDataReader Class: The OleDbDataReader class creates a
datareader for use with an OleDb data provider. The data is read as forward-
only stream which means that data is read sequentially, one row after another
not allowing you to choose a row you want or going backwards. It is used
to read a row of data from the database.

Program 4.5: To retrieve the records. In the code below, we are working with
Emp table in Oracle.

Imports System.Data.OleDB

Public Class Forml Inherits System.Windows.Forms.Form

Dim myConnection As OleDbConnection

Dim myCommand As OleDbCommand

Dim dr As New OleDbDataReader ()

‘declaration

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As

System.EventArgs)

Handles MyBase.Load

myConnection = New OleDbConnection

(“Provider=MSDAORA.1;UserID=scott;password=tiger;
database=ora”)

*MSDORA is the provider when working with Oracle
Try

myConnection.Open () Lagigxxzﬁg
‘opening the connection

myCommand = New OleDbCommand (“Select * from emp”,

myConnection) NOTES
‘executing the command and assigning it to connection
dr = myCommand.ExecuteReader ()

While dr.Read()

‘reading from the datareader

MessageBox.Show (V“EmpNo” & dr (0))
MessageBox.Show (VYEName” & dr (1))
MessageBox.Show (“Job” & dr(2))

MessageBox.Show (“Mgr” & dr (3))

MessageBox.Show (V“HireDate” & dr(4))

‘displaying data from the table

End While

dr.Close()

myConnection.Close ()

Catch e As Exception

End Try

End Sub

End Class

The above code displays first 5 columns from the Emp table in Oracle.
Inserting Records

Program 4.6: Drag a Button from the toolbox onto the Form. When this Button
is clicked the values specified in code will be inserted into the Emp table.

Imports System.Data.0OleDb

Public Class Form2 Inherits System.Windows.Forms.Form
Dim myConnection As OleDbConnection

Dim myCommand As OleDbCommand

Dim ra as Integer

‘integer holds the number of records inserted

Private Sub Form2 Load(ByVal sender As System.Object,
ByVal e As_

System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click (ByVal sender As System.Object,
Byval e As

Self-Instructional
Material 73

Lab: Visual Basic
Programming

NOTES

Self-Instructional
74 Material

System.EventArgs) Handles Buttonl.Click

myConnection = New

OleDbConnection (“"”"Provider=MSDAORA.1;User

ID=scott;password=tiger;database=ora”
)
Try
myConnection.Open ()

myCommand = New OleDbCommand (“Insert into emp values
12,’Ben’,’Salesman’, 300

12-10-2001,3000,500,10 “, myConnection)

‘emp table has 8 columns. You can work only with the
columns you want

ra=myCommand.ExecuteNonQuery ()
MessageBox.Show ("Records Inserted” & ra)
myConnection.Close()

Catch

End Try

End Sub

End Class

Updating Records

Program 4.7: Drag a Button on a new form and write the following code.
Imports System.Data.OleDb
Public Class Form4 Inherits System.Windows.Forms.Form
Dim myConnection As OleDbConnection
Dim myCommand As OleDbCommand
Dim ra as Integer

Private Sub Form4 Load(ByVal sender As System.Object,
ByVal e As_

System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
Byval e

As System.EventArgs) Handles Buttonl.Click
Try

myConnection = New OleDbConnection(“”Provider=
MSDAORA.1;User

ID=scott;password=tiger;database=ora”)

myConnection.Open ()

myCommand = New OleDbCommand (“Update emp Set DeptNo=65 Lab: Visual Basic
where DeptNo=793410", myConnection) Frogramming
ra=myCommand.ExecuteNonQuery ()

MessageBox.Show (Y"Records Updated” & ra) NOTES
myConnection.Close ()
Catch

End Try

End Sub

End Class
Deleting Records

Program 4.8: Drag a Button on a new form and write the following code.
Imports System.Data.OleDb
Public Class Form3 Inherits System.Windows.Forms.Form
Dim myConnection As OleDbConnection
Dim myCommand As OleDbCommand
Dim ra as Integer

Private Sub Form3 Load(ByVal sender As System.Object,
ByvVal e As_

System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e

As System.EventArgs) Handles Buttonl.Click
Try

myConnection = New OleDbConnection (“”Provider=MSDAORA.
1;User

ID=scott;password=tiger;database=ora”)
myConnection.Open ()

myCommand = New OleDbCommand (“Delete from emp where
DeptNo=790220",

myConnection)
ra=myCommand.ExecuteNonQuery ()
MessageBox.Show ("Records Deleted” & ra)
myConnection.Close ()

Catch

End Try

End Sub

End Class

Self-Instructional
Material 75

Lab: Visual Basic
Programming

NOTES

Self-Instructional
76 Material

Data Access using MSAccess

Program 4.9: In this program, create a database named Emp in Microsoft Access
in the C drive of your computer. In the Emp database, create a table, Table1 with
EmpNo, EName and Department as columns, insert some values in the table and
close it. Drag three TextBoxes and a Button. The following code will assume that
TextBox!1 is for EmpNo, TextBox2 is for EName and TextBox3 is for Department.
Our intention is to retrieve data from Tablel in the Emp Database and display the
values in these TextBoxes without binding, when the Button is clicked.

Imports System.Data.OleDb

Public Class Forml Inherits System.Windows.Forms.Form
Dim cn As OleDbConnection

Dim cmd As OleDbCommand

Dim dr As OleDbDataReader

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e as _

System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As_

System.EventArgs) Handles Buttonl.Click
Try

cn = New OleDbConnection (“Provider=Microsoft.
Jet.OLEDB.4.0;

Data Source=C:\emp.mdb;”)

‘provider to be used when working with access database
cn.Open ()

cmd = New OleDbCommand (“select * from tablel”, cn)

dr = cmd.ExecuteReader

While dr.Read()

TextBoxl.Text = dr (0)

TextBox2.Text = dr (1)

TextBox3.Text dr (2)

‘' loading data into TextBoxes by column index
End While

Catch

End Try

dr.Close()

cn.Close()

End Sub

End Class

When you run thg code apd click the Button, records from Table1 of the Lal; r’g;zz; ljn“l_slfg
Emp database will be displayed in the TextBoxes.
Program 4.10: Write a code for retrieving records with a Console Application.
Imports System.Data.0OleDb NOTES
Imports System.Console
Module Modulel
Dim cn As OleDbConnection
Dim cmd As OleDbCommand
Dim dr As OleDbDataReader

Sub Main ()
Try
cn = New OleDbConnection (“Provider=Microsoft.

Jet.OLEDB.4.0;Data
Source=C:\emp.mdb;
Persist Security Info=False”)
cn.Open ()
cmd = New OleDbCommand (“select * from tablel”, cn)
dr = cmd.ExecuteReader
While dr.Read()
WriteLine (dr(0))
WriteLine (dr (1))
WriteLine (dr(2))
‘writing to console
End While
Catch
End Try
dr.Close()
cn.Close ()
End Sub
End Module

Code for Inserting a Record

Imports System.Data.0OleDb

Public Class Form2 Inherits System.Windows.Forms.Form
Dim cn As OleDbConnection

Dim cmd As OleDbCommand

Dim dr As OleDbDataReader

Dim icount As Integer

Dim str As String Self-Instructional

Material 77

Lab: Visual Basic
Programming

NOTES

Self-Instructional
78 Material

Private Sub Form2 Load(ByVal sender As System.Object,
ByVal e As_

System.EventArgs) Handles MyBase.Load
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As

System.EventArgs) Handles Button2.Click
Try

cn = New OleDbConnection (“Provider=Microsoft.
Jet .OLEDB.4.0;Data

Source=C:\emp.mdb; ")

cn.Open ()

str = “insert into tablel values (™ & CInt (TextBoxl.Text)
& \\,III &

TextBox2.Text & “','” &

TextBox3.Text & “'Y)”

‘string stores the command and CInt is used to convert
number to string

cmd = New OleDbCommand (str, cn)
icount = cmd.ExecuteNonQuery
MessageBox.Show (icount)

‘displays number of records inserted
Catch

End Try

cn.Close()

End Sub

End Class

BLOCK 5
SIMPLE APPLICATION DEVELOPMENT

This block will cover the development of following simple applications:
1. Library information system

Students marksheet processing

. Telephone directory maintenance

. Gas booking and delivering

. Electricity bill processing

. Bank Transaction

7. Payroll processing
8. Personal information system
9. Question database and conducting Quiz
10. Personal diary
1. Library Information System
Add Books:

Public Class AddBooks
Public NameFrm, NameTo As String

Private Sub Button9 Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button9.Click

Me.Close ()
End Sub

Private Sub AddBooks Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load

Call generateyear()

Call disablethem()

Call readbData ()

Call GroupID Combo ()

End Sub

Sub GroupID Combo ()

Try

If objcon.State = ConnectionState.Closed Then

objcon.Open ()

com = New OleDb.0OleDbCommand (“Select GroupID from GroupD”,

objcon)

dr = com.ExecuteReader

While dr.Read
ComboBox1l.Items.Add (dr.Item(0))
End While

dr.Close ()

objcon.Close ()

Catch ex As Exception

End Try
End Sub
Sub generateyear ()

Dim YearNow As Integer

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 79

Lab: Visual Basic
Programming

NOTES

Self-Instructional
80 Material

YearNow = Int (My.Computer.Clock.LocalTime.Year.ToString)
Dim a, b, ¢ As Integer

a = YearNow - 5

b = YearNow

For ¢ = a To b

ComboBox2.Items.Add (c)

Next

End Sub

Private Sub ComboBoxl LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles ComboBoxl.LostFocus

ComboBox1.Text = ComboBoxl.Text.ToUpper ()
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

ComboBox3.Text = “Available”
Call enablethem()
End Sub

Private Sub TextBox2 LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox2.LostFocus

NameFrm = TextBoxZ2.Text
Call Sentence ()
TextBox2.Text = NameTo
End Sub

Sub disablethem/()
‘TextBoxl.Enabled = False

TextBox2.Enabled False

TextBox3.Enabled False

ComboBox1.Enabled = False

TextBox4 .Enabled False

TextBox5.Enabled = False
TextBox6.Enabled = False
ComboBox2 .Enabled = False
ComboBox3.Enabled = False

End Sub
Sub enablethem ()

TextBoxl.Enabled True

TextBox2.Enabled True

TextBox3.Enabled = True

ComboBox1.Enabled = True
TextBox4.Enabled = True

TextBox5.Enabled = True
TextBox6.Enabled

True
ComboBox2.Enabled = True
ComboBox3.Enabled = True
TextBox1l.Clear ()
TextBox2.Clear ()
TextBox3.Clear ()

TextBox4 .Clear ()
TextBox5.Clear ()
TextBox6.Clear ()
ComboBox1l.Text = “”
ComboBox2.Text =
ComboBox3.Text =

End Sub

Sub Sentence ()

Dim a, b As Integer

a = NameFrm.Length

NameTo = %"

For b =0 To a -1

If b = 0 Then

If Char.IsLower (NameFrm(0)) Then
NameTo = Char.ToUpper (NameFrm (0))
Else

NameTo = NameFrm (0)

End If

Else

If NameFrm(b - 1) = Y ™ Then
NameTo = NameTo + Char.ToUpper (NameFrm (b))
Else

NameTo = NameTo + NameFrm (b)
End If

End If

Next

End Sub

Private Sub TextBox3 LostFocus (ByVal sender As Object,

ByVal e As System.EventArgs) Handles TextBox3.LostFocus

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 81

Lab: Visual Basic
Programming

NOTES

Self-Instructional
82 Material

NameFrm = TextBox3.Text
Call Sentence ()
TextBox3.Text = NameTo
End Sub

Private Sub TextBox3 TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox3.TextChanged

End Sub

Private Sub TextBox4 LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox4.LostFocus

NameFrm = TextBox4.Text
Call Sentence ()
TextBox4.Text = NameTo
End Sub

Private Sub TextBox4 TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox4 .TextChanged

End Sub

Private Sub TextBox5 LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles TextBox5.LostFocus

NameFrm = TextBoxb5.Text
Call Sentence ()
TextBox5.Text = NameTo
End Sub

Private Sub TextBox5 TextChanged (ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox5.TextChanged

End Sub

Private Sub Button2 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

If TextBoxl.Text = “” Then

MsgBox (“Please enter the Book ID!”, 0, V)

Else

Try

If objcon.State = ConnectionState.Closed Then objcon.Open ()

com = New OleDb.0OleDbCommand (YINSERT INTO Books VALUES (‘%
& TextBoxl.Text & “',’” & ComboBoxl.Text & “',’” & TextBox2.Text
& WV, & TextBox3.Text & “'‘,’” & TextBox4.Text & “',’'” &
ComboBox2.Text & “',’” & TextBox5.Text & “',’” & TextBox6.Text
& WY, "” & ComboBox3.Text & “')”, objcon)

com.ExecuteNonQuery ()

Call readData ()

MsgBox (“Saved successfully”, 0, “SUCCESS”)
objcon.Close ()

Catch ex As Exception

MsgBox (ex.Message, 0, “7)

End Try

End If

End Sub

Sub readData ()

ListViewl.Clear ()

ListViewl.Columns.Add (“"BOOK IDp”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"GROUP ip”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“BOOK NAME"”, 310,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"PUBLISHER"”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (YAUTHOR", 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"EDITION", 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"PRICE", 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"STATUS", 90,
HorizontalAlignment.Center)

ListViewl.View = View.Details
Try

If (objcon.State = ConnectionState.Closed) Then
objcon.Open ()

com = New OleDb.OleDbCommand (“"SELECT * FROM Books “,
objcon)

dr = com.ExecuteReader
While dr.Read()

Call adddatatolistview(ListViewl, dr(0), dr(l), dr(2),
dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))

End While
dr.Close()
objcon.Close ()

Catch

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 83

Lab: Visual Basic
Programming

NOTES

Self-Instructional
84 Material

‘MsgBox (“Please Refresh”, MsgBoxStyle.Information, “”)
End Try
End Sub

Public Sub adddatatolistview (ByVal lvw As ListView, ByVal
BookID As String, ByVal GroupID As String, ByVal BookName As
String, ByVal Publisher As String, ByVal Author As String,
ByVal PubYear As String, ByVal edi As String, ByVal pric As
String, ByVal st As String)

Dim lv As New ListViewItem
lvw.Items.Add (1v)

1lv.Text = BookID
lv.SubItems.Add (GrouplID)
lv.SubItems.Add (BookName)
lv.SubItems.Add (Publisher)
lv.SubItems.Add (Author)
lv.SubItems.Add (PubYear)
lv.SubItems.Add (edi)
lv.SubItems.Add (pric)
lv.SubItems.Add (st)

End Sub

Private Sub Button8 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

If MessageBox.Show (“Do you really want to delete?”,
“ARE YOU SURE"”, MessageBoxButtons.YesNo) =
Windows.Forms.DialogResult.Yes Then

com = New OleDb.OleDbCommand ("DELETE FROM Books WHERE
BookID="" & TextBoxl.Text & “'%, objcon)

com.ExecuteNonQuery ()

objcon.Close ()

MsgBox (“Deleted successfully”, 0, “SUCCESS”)
End If

Catch ex As Exception

End Try
End Sub
Sub fill list()

com = New OleDb.0OleDbCommand (“Select * from Books”,
objcon)

Dim dr As OleDb.OleDbDataReader

dr = com.ExecuteReader

dr.Read ()

While (dr.NextResult)

End While

End Sub

Private Sub GroupBoxl Enter (ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles GroupBoxl.Enter

End Sub
Private Sub TextBoxl TextChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
TextBoxl.TextChanged

Then

Dim i As Integer
ListViewl.SelectedItems.Clear ()
TextBoxl.Focus ()

Try

If Me.TextBoxl.Text = “” Then
TextBox2.Text = V7

Else

For i = 0 To ListViewl.Items.Count - 1

If TextBoxl.Text = ListViewl.Items (i) .SubItems (0) .Text

ComboBox1.Text = ListViewl.Items (i) .SubItems (1) .Text
TextBox2.Text = ListViewl.Items (i) .SubItems (2).Text

TextBox3.Text = ListViewl.Items (1) .SubItems (3) .Text
TextBox4.Text = ListViewl.Items (i) .SubItems (4) .Text
ComboBox2.Text = ListViewl.Items (i) .SubItems (5).Text
TextBox5.Text = ListViewl.Items (1) .SubItems (6) .Text
TextBox6.Text = ListViewl.Items (i) .SubItems (7).Text
ComboBox3.Text = ListViewl.Items (i) .SubItems (8).Text
ListViewl.Items (i) .Selected = True

Exit For

End If

Next

End If

Catch

End Try
End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 85

Lab: Visual Basic
Programming

NOTES

Self-Instructional
86 Material

Private Sub ListViewl SelectedIndexChanged(ByVal sender

As System.Object, ByVal e As System.EventArgs) Handles
ListViewl.SelectedIndexChanged

Byval

Dim i As Integer

For 1 = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (1) .Selected = True Then
TextBoxl.Text = ListViewl.Items (1) .SubItems (0).Text
TextBox7.Clear ()

Exit For

End If

Next

ListViewl.Focus ()

ListViewl.FullRowSelect = True

End Sub

Private Sub Button6 Click(ByVal sender As System.Object,
e As System.EventArgs) Handles Button6.Click

Try

Dim i As Integer

For 1 = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (1) .Selected = True Then
TextBoxl.Text = ListViewl.Items (i + 1) .SubItems (0).Text
Exit For

End If

Next

ListViewl.Focus ()

ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub
Private Sub ComboBoxl SelectedIndexChanged(ByVal sender

As System.Object, ByVal e As System.EventArgs) Handles
ComboBox1.SelectedIndexChanged

Call GroupNameCom ()
End Sub

Sub GroupNameCom ()
Try

If objcon.State = ConnectionState.Closed Then LﬂmeﬂB@w
objcon.Open () Programming

com = New OleDb.OleDbCommand (“Select * from GroupD”,
objcon)
dr = com.ExecuteReader NOTES
While dr.Read
If dr.Item(0) = ComboBoxl.Text Then
TextBox7.Text = dr.Item(1l)

End If

End While

dr.Close ()
objcon.Close ()

Catch ex As Exception
End Try

End Sub

Private Sub ComboBoxl TextUpdate (ByVal sender As Object,
ByVal e As System.EventArgs) Handles ComboBoxl.TextUpdate

Call GroupNameCom ()
End Sub

Private Sub Button5 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

Try

Dim i As Integer

For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (1) .Selected = True Then
TextBoxl.Text = ListViewl.Items (i - 1) .SubItems (0) .Text
Exit For

End If

Next

ListViewl.Focus ()

ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub
End Class

Self-Instructional
Material 87

Lab: Visual Basic
Programming

NOTES

Self-Instructional
88 Material

ADD BOOKS

BOOKS DETAIL
BOOK ID EDITION
GROUP ID - PRICE
BOOK NAME STATUS
PUBLISHER GROUP
AUTHOR

PUBLISHING YEAR -

Book Details:
Public Class BookDetail

Dim sel As Integer

Private Sub ComboBoxl SelectedIndexChanged (ByVal sender

As System.Object, ByVal e As System.EventArgs)
ComboBoxl.SelectedIndexChanged

Labell.Text = ComboBoxl.Text
Labell.Visible = True

If Labell.Text = “STATUS” Then
ComboBox2.Enabled

True
ComboBox2.Visible = True

TextBoxl.Visible = False

Else
ComboBox2.Enabled = False
ComboBox2.Visible = False

TextBox1l.Visible = True

End If

Call forselect ()

End Sub

Sub forselect ()

If ComboBoxl.Text = “BOOK ID” Then

sel =1

ElseIf ComboBoxl.Text = “BOOK NAME” Then
sel = 2

ElseIf ComboBoxl.Text = “AUTHOR” Then
sel = 3

- -

Handles

ElselIf ComboBoxl.Text = “STATUS” Then

sel = 8
End If
End Sub

Private Sub BookDetail Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

ComboBox2.Visible = False

TextBoxl.Visible = False

Labell.Visible = False

Call readData ()
End Sub

Sub readData ()
ListViewl.Clear ()

ListViewl.Columns
HorizontalAlignment.Center)

ListViewl.Columns.

HorizontalAlignment.Center)

ListViewl.Columns
HorizontalAlignment.Center)

ListViewl.Columns.

HorizontalAlignment.Center)

ListViewl.Columns
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"PUBLISHING YEAR",

HorizontalAlignment.Center)

ListViewl.Columns
HorizontalAlignment.Center)

ListViewl.Columns
HorizontalAlignment.Center)

ListViewl.Columns
HorizontalAlignment.Center)

ListViewl.View = View
sel = 5

‘Call whenclick()

End Sub

Sub whenclick ()

Try

While dr.Read()

.Add (“"BOOK ID”,
Add (“GROUP ID"”,
.Add (Y"BOOK NAME",

Add (“PUBLISHER”,

.Add (“AUTHOR",

.Add (“EDITION",

.Add (“"PRICE",

.Add (“STATUS"”,

.Details

90,

90,

310,

90,

90,

130,

90,

90,

90,

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 89

Lab: Visual Basic
Programming

NOTES

Self-Instructional
90 Material

Call adddatatolistview (ListViewl, dr (0), dr(l), dr(2),
dr (3), dr(4), dr(5), dr(6), dr(7), dr(8))

End While

dr.Close ()

objcon.Close ()

Catch

‘MsgBox (“Please Refresh”, MsgBoxStyle.Information, “")
End Try

End Sub

Public Sub adddatatolistview (ByVal lvw As ListView, ByVal
BookID As String, ByVal GroupID As String, ByVal BookName As
String, ByVal publisher As String, ByVal author As String,
ByVal pubyear As String, ByVal edi As String, ByVal pric As
String, ByVal status As String)

Dim lv As New ListViewItem
lvw.Items.Add (1v)

1lv.Text = BookID
lv.SubItems.Add (GroupID)
1lv.SubItems.Add (BookName)
lv.SubItems.Add (publisher)
lv.SubItems.Add (author)
lv.SubItems.Add (pubyear)
1lv.SubItems.Add (edi)
lv.SubItems.Add (pric)
lv.SubItems.Add (status)
End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

Select Case (sel)
Case 1

com = New OleDb.OleDbCommand (“select * from Books where
BookID="" & TextBoxl.Text & “'%, objcon)

dr = com.ExecuteReader
Case 2

com = New OleDb.OleDbCommand (“select * from Books where
BookName='" & TextBoxl.Text & “'“, objcon)

dr = com.ExecuteReader

Case 3

com = New OleDb.OleDbCommand (“select * from Books where

Author="" & TextBoxl.Text & “'%V, objcon)

dr = com.ExecuteReader
Case 5

com = New OleDb.OleDbCommand(“select * from Books”,

objcon)

dr = com.ExecuteReader
Case 8

com = New OleDb.OleDbCommand (“select * from Books where

Status="" & ComboBox2.Text & “'V, objcon)

dr = com.ExecuteReader

End Select

Call readData ()

Call whenclick()

objcon.Close ()

End Sub

Private Sub ListViewl SelectedIndexChanged(ByVal sender

As System.Object, ByVal e As System.EventArgs) Handles
ListViewl.SelectedIndexChanged

ByVal

ByVal

End Sub

Private Sub Button6 Click(ByVal sender As System.Object,
e As System.EventArgs) Handles Button6.Click

Try

Dim i As Integer

For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (1) .Selected = True Then
TextBoxl.Text = ListViewl.Items (i + 1) .SubItems (0) .Text
Exit For

End If

Next

ListViewl.Focus ()

ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub

Private Sub Button5 Click(ByVal sender As System.Object,
e As System.EventArgs) Handles Button5.Click

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 91

Lab: Visual Basic Try

Programming
Dim i As Integer

For 1 = 0 To ListViewl.Items.Count - 1

NOTES If ListViewl.Items (1) .Selected = True Then
TextBoxl.Text = ListViewl.Items (i - 1) .SubItems (0).Text
Exit For
End If
Next

ListViewl.Focus ()
ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub
End Class
BOOK REFORT =

SEARCH

SEARCH BY -| BOOKID [-] | SEARCH

MOVES

Issue Book:

Public Class IssueBook

Private Sub Button9 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

Me.Close ()
End Sub

Private Sub PictureBoxl Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub

Self-Instructional
92 Material

Private Sub IssueBook Load(ByVal sender As System.Object, Lab: Visual Basic
ByVal e As System.EventArgs) Handles MyBase.Load Programming

Call Retrive C()
Call BookID Combo ()
Call readbData ()
End Sub

NOTES

Sub Retrive C()
Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“Select CID from Customer”,
objcon)

dr = com.ExecuteReader

While dr.Read

ComboBox5.Items.Add (dr.Item(0))

End While

dr.Close ()

objcon.Close ()

Catch ex As Exception

End Try

End Sub

Sub BookID Combo ()
Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“Select BookID from Books
WHERE status=’Available’”, objcon)

dr = com.ExecuteReader

While dr.Read
ComboBox1l.Items.Add (dr.Item(0))
End While

dr.Close ()

objcon.Close ()

Catch ex As Exception

End Try
End Sub
Sub readData ()

Self-Instructional
Material 93

Lab: Visual Basic
Programming

NOTES

Self-Instructional
94 Material

ListViewl.Clear ()

ListViewl.Columns.Add (“"BOOK ID”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"GROUP ID”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"BOOK NAME ", 310,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"PUBLISHER"”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (Y"AUTHOR"”, 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“PUBLISHING YEAR”, 130,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“EDITION", 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“PRICE", 90,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"STATUS”, 90,
HorizontalAlignment.Center)

ListViewl.GridLines = True
ListViewl.View = View.Details

Try

If (objcon.State = ConnectionState.Closed) Then
objcon.Open ()

com = New OleDb.OleDbCommand ("SELECT * FROM Books WHERE
status='Available’”, objcon)

dr = com.ExecuteReader
While dr.Read()

Call adddatatolistview (ListViewl, dr (0), dr (1), dr(2),
dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))

End While

dr.Close()

objcon.Close ()

Catch

‘MsgBox (“Please Refresh”, MsgBoxStyle.Information, “")
End Try

End Sub

Public Sub adddatatolistview (ByVal lvw As ListView, ByVal
BookID As String, ByVal GroupID As String, ByVal BookName As
String, ByVal Publisher As String, ByVal Author As String,

ByVal PubYear As String, ByVal edi As String, ByVal pric As
String, ByVal st As String)

Dim lv As New ListViewItem
lvw.Items.Add (1v)

lv.Text = BookID
lv.SubItems.Add (GrouplD)
1lv.SubItems.Add (BookName)
lv.SubItems.Add (Publisher)
lv.SubItems.Add (Author)
lv.SubItems.Add (PubYear)
1lv.SubItems.Add (edi)
lv.SubItems.Add (pric)
lv.SubItems.Add (st)

End Sub

Sub Retrive ()
objcon.Open ()

com = New OleDb.OleDbCommand (“SELECT * FROM Books”,
objcon)

com.ExecuteNonQuery ()

dr = com.ExecuteReader
dr.Read()

While (dr.NextResult)
ComboBox1.Items.Add (dr (1))
End While

objcon.Close ()

End Sub

Private Sub Button2 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“UPDATE Books SET
status=’'Rented’ WHERE BookID='" & ComboBoxl.Text & “'%, objcon)

com.ExecuteNonQuery ()
objcon.Close ()
Call readData ()

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 95

Lab: Visual Basic
Programming

NOTES

Self-Instructional
96 Material

com = New OleDb.OleDbCommand (WINSERT INTO Issue VALUES (‘%

& ComboBoxl.Text & “',’” & ComboBox2.Text & “'‘,'” &
TextBox2.Text & “',’” & ComboBox5.Text & “',’” & TextBoxl.Text
& “','” & DateTimePickerl.Text & “',’” & DateTimePicker2.Text
& “')”, objcon)

com.ExecuteNonQuery ()

MsgBox (“Book has been Issued!”, 0, “”)
Call readData()

objcon.Close ()

Catch ex As Exception

MsgBox (ex.Message, 0, ™)

End Try

End Sub

Private Sub ComboBoxl SelectedIndexChanged (ByVal sender

As System.Object, ByVal e As System.EventArgs) Handles
ComboBoxl.SelectedIndexChanged

Then

Dim i As Integer

ListViewl.SelectedItems.Clear ()

TextBoxl.Focus ()

Try

If Me.ComboBoxl.Text = “” Then

TextBox2.Text = V"

Else

For i = 0 To ListViewl.Items.Count - 1

If ComboBox1l.Text = ListViewl.Items (i) .SubItems (0) .Text

ComboBox2.Text = ListViewl.Items (i) .SubItems (1) .Text
TextBox2.Text = ListViewl.Items (1) .SubItems (2).Text
TextBox3.Text = ListViewl.Items (i) .SubItems (3) .Text
TextBox4.Text = ListViewl.Items (i) .SubItems (4) .Text
ComboBox3.Text = ListViewl.Items (i) .SubItems(5).Text
TextBox5.Text = ListViewl.Items (i) .SubItems (6) .Text
TextBox6.Text = ListViewl.Items (1) .SubItems (7).Text
ComboBox4.Text = ListViewl.Items (i) .SubItems (8) .Text

ListViewl.Items (i) .Selected = True
Exit For
End If

Next
End If
Catch

End Try
End Sub

Private Sub Button8 Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button8.Click
Try
If ComboBoxl.Text = “” Then
MsgBox (“Please mention the BookID”, 0, “”)
Else

If objcon.State = ConnectionState.Closed Then

com = New OleDb.OleDbCommand (“delete from Issue where

BookID='" & ComboBoxl.Text & “'%, objcon)

If MsgBox(“Do vyou really want to delete?”,
MsgBoxStyle.YesNo, “Are you sure?”) =

Windows.Forms.DialogResult.Yes Then
com.ExecuteNonQuery ()
End If
objcon.Close ()
End If
End If

Catch ex As Exception

End Try
End Sub

Private Sub ListViewl SelectedIndexChanged(ByVal sender

As System.Object, ByVal e As System.EventArgs)
ListViewl.SelectedIndexChanged

Dim i As Integer
For 1 = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True Then

Handles

ComboBox1l.Text = ListViewl.Items (i) .SubItems (0) .Text

Exit For
End If
Next

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 97

Lab: Visual Basic
Programming

NOTES

Self-Instructional
98 Material

ListViewl.Focus ()
ListViewl.FullRowSelect = True
End Sub

Private Sub ComboBox5 SelectedIndexChanged (ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ComboBox5.SelectedIndexChanged

Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“Select CID,CName from
Customer”, objcon)

dr = com.ExecuteReader
While dr.Read
If dr.Item(0) = ComboBox5.Text Then

TextBoxl.Text
End If

dr.Item(1)

End While
dr.Close()
objcon.Close ()

Catch ex As Exception

End Try
End Sub

Private Sub Button6 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttoné6.Click

Try

Dim i As Integer

For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (1) .Selected = True Then
TextBoxl.Text = ListViewl.Items (i + 1) .SubItems (0).Text
Exit For

End If

Next

ListViewl.Focus ()

ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub

Private Sub Button5 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

Try

Dim i As Integer

For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True Then
TextBoxl.Text = ListViewl.Items (i - 1) .SubItems (0) .Text

Exit For
End If
Next

ListViewl.Focus ()

ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub
End Class

155UE BOOK
BOOKS DETAIL

BOOK I
GROUP ID

BOOK NAME
PUBLISHER
ALUTHOR

PUBLISHING YEAR

ISSUE DETAIL
ISSUE TO

NAME

Return Book:
Public Class ReturnBook

Private Sub Button9 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

Me.Close ()
End Sub

EDITION
PRICE

STATUS

ISSUING DATE

DUE DATE

11/26/2020

1172672020

Lab: Visual Basic
Programming

NOTES

E=n N ===

Self-Instructional
Material 99

Lab: Visual Basic
Programming

NOTES

Self-Instructional
100 Material

Private Sub Button2 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

If ComboBoxl.Text = “” Then

AN !/)

MsgBox (“"Please mention the Book ID”, O,

Else

Try

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“UPDATE Books SET

status='Available’ WHERE BookID=’" & ComboBoxl.Text & “'%,
objcon)

com.ExecuteNonQuery ()

objcon.Close ()

Call readbData ()

If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.OleDbCommand (“INSERT INTO Returns
VALUES ('V & ComboBoxl.Text & “',’” & ComboBox2.Text & “',’” &
TextBox2.Text & “',’” & ComboBox5.Text & “',’” & TextBoxl.Text
& “',’” & TextBox3.Text & “',’” & TextBox7.Text & “',’” &
DateTimePicker2.Text & “',’” & TextBox6.Text & “')”, objcon)

com.ExecuteNonQuery ()

MsgBox (“Book has been returned!”, 0, “7)
objcon.Close ()
Catch ex As Exception
MsgBox (ex.Message, 0, “)
End Try
End If

End Sub

Private Sub Button8 Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button8.Click
If ComboBoxl.Text = “” Then
A\Y II)

MsgBox (“Please mention a Book ID”, O,

Else

Try
If objcon.State = ConnectionState.Closed Then
objcon.Open ()

com = New OleDb.0OleDbCommand ("DELETE FROM Returns WHERE
BookID='" & ComboBoxl.Text & “'%, objcon)

com.ExecuteNonQuery ()

MsgBox (“Deleted Success!”, 0, V)
Call ClearThem()

objcon.Close ()

Catch ex As Exception

End Try

End If

End Sub

Sub ClearThem/()
ComboBox1.TabIndex = “”
ComboBox2.Text =

TextBox2.Text = V7

W74

TextBox3.Text
TextBox6.Text = V7
ComboBox5.Text = V7
TextBoxl.Text = V7
TextBox7.Text = V7
DateTimePicker2.Refresh ()
End Sub

Private Sub ReturnBook Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load
Call BookID Combo ()
Call readData ()

End Sub
Sub BookID Combo ()
Try

If objcon.State = ConnectionState.Closed Then

objcon.Open ()

com = New OleDb.OleDbCommand (“Select BookID from Books

WHERE status=’Rented’”, objcon)
dr = com.ExecuteReader
While dr.Read
ComboBoxl.Items.Add (dr.Item(0))
End While
dr.Close ()

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 101

Lab: Visual Basic
Programming

NOTES

Self-Instructional
102 Material

objcon.Close ()

Catch ex As Exception

End Try

End Sub

Sub readData ()
ListViewl.Clear ()

ListViewl.Columns.Add (“"BOOK Ip”,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"GROUP Inp”,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"BOOK NAME”,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"PUBLISHER",
HorizontalAlignment.Center)

ListViewl.Columns.Add (YAUTHOR",
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"PUBLISHING YEAR”,
HorizontalAlignment.Center)

ListViewl.Columns.Add (“EDITION",
HorizontalAlignment.Center)

ListViewl.Columns.Add (“PRICE",
HorizontalAlignment.Center)

ListViewl.Columns.Add (“"STATUS”,
HorizontalAlignment.Center)

ListViewl.View = View.Details

Try

If (objcon.State = ConnectionState.Closed)
objcon.Open ()

90,

90,

310,

90,

90,

130,

90,

90,

90,

Then

com = New OleDb.OleDbCommand (“"SELECT * FROM Books WHERE

status='Rented’”, objcon)
dr = com.ExecuteReader

While dr.Read()

Call adddatatolistview (ListViewl, dr (0), dr(l), dr(2),

dr(3), dr(4), dr(5), dr(6), dr(7), dr(8))
End While
dr.Close()
objcon.Close ()

Catch

‘MsgBox (“Please Refresh”, MsgBoxStyle.Information, “”)
End Try
End Sub

Public Sub adddatatolistview (ByVal lvw As ListView, ByVal
BookID As String, ByVal GroupID As String, ByVal BookName As
String, ByVal Publisher As String, ByVal Author As String,
ByVal PubYear As String, ByVal edi As String, ByVal pric As
String, ByVal st As String)

Dim 1lv As New ListViewItem
lvw.Items.Add (1v)

lv.Text = BookID
1lv.SubItems.Add (GroupID)
1lv.SubItems.Add (BookName)
lv.SubItems.Add (Publisher)
lv.SubItems.Add (Author)
lv.SubItems.Add (PubYear)
lv.SubItems.Add (edi)
lv.SubItems.Add (pric)
lv.SubItems.Add (st)

End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Me.Refresh ()
End Sub

Private Sub ListViewl SelectedIndexChanged(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
ListViewl.SelectedIndexChanged

Dim i As Integer

For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True Then
ComboBox1l.Text = ListViewl.Items (i) .SubItems (0) .Text
Exit For

End If

Next

ListViewl.Focus ()

ListViewl.FullRowSelect = True

End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 103

Lab: Visual Basic
Programming

NOTES

Self-Instructional
104 Material

Private Sub ComboBoxl SelectedIndexChanged(ByVal sender

As System.Object, ByVal e As System.EventArgs) Handles
ComboBox1.SelectedIndexChanged

Then

Dim i As Integer

ListViewl.SelectedItems.Clear ()

TextBoxl.Focus ()

Try

If Me.ComboBox1l.Text = “” Then

TextBox2.Text = V"

Else

For i = 0 To ListViewl.Items.Count - 1

If ComboBoxl.Text = ListViewl.Items (i) .SubItems (0).Text

ComboBox2.Text = ListViewl.Items (i) .SubItems (1) .Text
TextBox2.Text = ListViewl.Items (1) .SubItems (2).Text
ListViewl.Items (1) .Selected = True

Exit For

End If

Next

End If

Catch

End Try

Call IssueDetail ()

End Sub

Sub IssueDetail ()

Try

If objcon.State = ConnectionState.Closed Then

objcon.Open ()

com = New OleDb.OleDbCommand (“Select IssueDate, IssueName,

IssueTo, DueDate from Issue WHERE BookID=’" & ComboBoxl.Text

AT IANY
& ’

objcon)
dr = com.ExecuteReader
While dr.Read
ComboBox5.Text = dr.Item(2)

TextBoxl.Text dr.Item (1)
TextBox3.Text = dr.Item(0)
TextBox7.Text = dr.Item(3)

End While

ByVal

ByVal

dr.Close ()
objcon.Close ()

Catch ex As Exception

End Try
End Sub

Private Sub Button6 Click(ByVal sender As System.Object,
e As System.EventArgs) Handles Button6.Click

Try

Dim i As Integer

For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (1) .Selected = True Then
TextBoxl.Text = ListViewl.Items (i + 1) .SubItems (0) .Text
Exit For

End If

Next

ListViewl.Focus ()

ListViewl.FullRowSelect = True

Catch ex As Exception

End Try
End Sub

Private Sub Button5 Click(ByVal sender As System.Object,
e As System.EventArgs) Handles Button5.Click

Try

Dim i As Integer

For i = 0 To ListViewl.Items.Count - 1

If ListViewl.Items (i) .Selected = True Then
TextBoxl.Text = ListViewl.Items (i + 1) .SubItems(0) .Text
Exit For

End If

Next

ListViewl.Focus ()

ListViewl.FullRowSelect = True

Catch ex As Exception

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 105

Lab: Visual Basic
Programming

NOTES

Self-Instructional
106 Material

End Try
End Sub
End Class

["RETURN BOOK e]
BOOKS DETAIL

BOOK 1D - DESCRIPTION
GROUF I -
BOOK MAMIE

ISSUE DATE

ISSUE DETAIL
ISSUE TO - DUE DATE
NAME RETURN DATE 11262020 [

2. Student Marksheet Processing

Public conDB As New OleDb.OleDbConnection
Public Sub connectDB ()
If conDB.State = ConnectionState.Closed Then

conDB.ConnectionString =

“Provider=Microsoft.ACE.OLEDB.12.0; Data Source=" &
Application.StartupPath & “\stuDB.accdb”

conDB.Open ()

End If

End Sub

Function getNewID (tblName As String, fldName As String)

As String

Dim strval, sqgl As String

Dim cmd As OleDb.OleDbCommand

connectDB ()

sgl = “select max (" & fldName & “) from “ & tblName
cmd = New OleDb.OleDbCommand (sgl, conDB)
strVal = Convert.ToString (cmd.ExecuteScalar())
If strval = % Then

strval = “1”

Else

strvVal = Convert.ToString (CInt (strval) + 1)
End If

Return strval

End Function

s Student Details & Marks _ - | =

Save |
Search
Update |
Dolote |
Print |
Button Click:
Dim strSQL As String
Dim gndr As String
Dim i As Integer
If rdbFemale.Checked = True Then
gndr = “Female”
Else
gndr = “Male”
End If
strSQL = Y“insert 1into studentmaster values (Y &

txtStulID.Text & V,’” & cboClass.Text & “',’” & txtStuName.Text
& 2NV, 77 & txtFName.Text & NV, '” & txtMName.Text & “',’” & gndr
& “VY,'"” & txtPhone.Text & “',’” & txtEmail.Text & “V')”

cmd = New OleDb.OleDbCommand (strSQL, conDB)
cmd.ExecuteNonQuery ()
For 1 = 0 To dgvMarks.RowCount - 2

strSQL = “insert into studentmarks values (Y & txtStulD.Text
& “,'” & dgvMarks.Item (0, i) .Value & “',” & dgvMarks.Item (1,
i) .Value & “)”

cmd = New OleDb.OleDbCommand (strSQL, conDB)
cmd . ExecuteNonQuery ()
Next
Search Button:
Dim sid, cnt As Integer
Dim drl As OleDb.OleDbDataReader
Dim cmdl As New OleDb.OleDbCommand
sid = CInt (InputBox (“Enter the StudentID to search”))
cmdl = New OleDbPress Ctrl+V to copy the following code

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 107

Lab: Visual Basic
Programming

NOTES

Self-Instructional
108 Material

Dim sid, cnt As Integer

where

Dim drl As OleDb.OleDbDataReader
Dim cmdl As New OleDb.OleDbCommand
sid = CInt (InputBox (“Enter the StudentID to search”))

cmdl = New OleDb.OleDbCommand (“select * from studentmaster
stuid=" & sid, conDB)

drl = cmdl.ExecuteReader ()

If drl.Read() Then
txtStulD.Text = drl.Item(0)
cboClass.Text = drl.Item (1)
txtStuName.Text = drl.Item(2)
txtFName.Text = drl.Item(3)
txtMName.Text = drl.Item(4)

If drl.Item(5) = “Female” Then
rdbFemale.Checked = True

Else

rdbMale.Checked = True

End If

txtPhone.Text = drl.Item(6)
txtEmail.Text = drl.Item(7)

drl.Close ()
cmdl = New OleDb.OleDbCommand (“select subject, marks

from studentmarks where stuid=" & sid, conDB)

drl = cmdl.ExecuteReader ()
dgvMarks.Rows.Clear ()

cnt =0

While drl.Read()
dgvMarks.Rows.Add ()

dgvMarks.Item (0, cnt) .Value Convert.ToString

(drl.Item(0))

dgvMarks.Item(l, cnt).Value = Convert.ToString

(drl.Item(1))

cnt = cnt + 1

End While

Else

MsgBox (“No student with this ID”)
End If

.0leDbCommand (“select * from studentmaster where stuid="

& sid, conDB)
drl = cmdl.ExecuteReader ()
If drl.Read() Then
txtStulD.Text = drl.Item(0)
cboClass.Text = drl.Item (1)
txtStuName.Text = drl.Item(2)
txtFName.Text = drl.Item(3)
txtMName.Text = drl.Item(4)
If drl.Item(5) = “Female” Then
rdbFemale.Checked = True

Else

rdbMale.Checked = True

End If

txtPhone.Text = drl.Item(6)

txtEmail.Text
drl.Close()

drl.Item(7)

cmdl = New OleDb.OleDbCommand(“select subject, marks
from studentmarks where stuid=" & sid, conDB)

drl = cmdl.ExecuteReader ()

dgvMarks.Rows.Clear ()

cnt =0

While drl.Read()

dgvMarks.Rows.Add ()

dgvMarks.Item (0, cnt).Value = Convert.ToString

(drl.Item(0))

dgvMarks.Item(1l, cnt).Value
(drl.Item (1))

cnt = cnt + 1

End While

Else

MsgBox (“"No student with this ID”)
End If

StudentResult *

Enterthe Student|D to search

Cancel

Convert.ToString

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 109

Lab: Visual Basic
Programming

NOTES

Self-Instructional
110 Material

Button Update:
Dim strSQL As String
Dim gndr As String
Dim i As Integer
If rdbFemale.Checked = True Then
gndr = “Female”
Else
gndr = “Male”
End If

strSQL = “update studentmaster set stuClass=’'" &
cboClass.Text & “', StuName=’" & txtStuName.Text & %Y,
StuFname="" _

& txtFName.Text & “',StuMName=’" & txtMName.Text &
"V, StuGender='"" & gndr & “',StuPhone='" & txtPhone.Text

& "', StuEmail='" & txtEmail.Text & “' where StulD=" &
CInt (txtStulID.Text)

cmd = New OleDb.OleDbCommand (strSQL, conDB)
cmd . ExecuteNonQuery ()

‘' delete all records from marks table to add the new
marks and subjects

strSQL = “delete * from studentmarks where StulD=" &
CInt (txtStulD.Text)

cmd = New OleDb.OleDbCommand (strSQL, conDB)

cmd . ExecuteNonQuery ()

‘" Insert the new subjects and marks for the student
For 1 = 0 To dgvMarks.RowCount - 2

strSQL = “insert into studentmarks values (“ & txtStulD.Text
& “,’” & dgvMarks.Item(0, i) .Value & “',” & dgvMarks.Item(1,
i) .Value & “)”

cmd = New OleDb.OleDbCommand (strSQL, conDB)
cmd . ExecuteNonQuery ()
Next
Button Delete:
Dim strSQL As String
‘ delete the record of student from master table

strSQL = “delete * from studentmaster where StulD=" &
CInt (txtStulD.Text)

cmd = New OleDb.OleDbCommand (strSQL, conDB)
cmd . ExecuteNonQuery ()

‘'delete all records from marks table

strSQL = “delete * from studentmarks where StulD=" &
CInt (txtStulD.Text)

cmd = New OleDb.OleDbCommand (strSQL, conDB)
cmd . ExecuteNonQuery ()
Print Button:

Dim frm As New Form2 ‘' creates an object of form containing
the reportviewer

frm.Show ()’ displays the report
Report Viewer:

Private Sub Form2 Load (sender As Object, e As EventArgs)
Handles MyBase.Load

Dim dtl, dt2 As New DataTable

Dim sid As Integer

connectDB ()

sid = CInt (frmStuDetails.Controls (“txtStulD”) .Text)

Dim cmdl As New OleDb.OleDbCommand (“SELECT * from
StudentMarks where stuid=" & sid, conDB)

cmdl .CommandTimeout = 4096
Dim tal As New OleDb.OleDbDataAdapter (cmdl)
tal.Fill (dtl)

Dim cmd2 As New OleDb.OleDbCommand (“SELECT * from
StudentMaster where stuid=" & sid, conDB)

cmd2 . CommandTimeout = 4096

Dim ta2 As New OleDb.OleDbDataAdapter (cmd2)
taz.Fill (dt2)

With Me.ReportViewerl.LocalReport
.DataSources.Clear ()

.DataSources.Add (New Microsoft.Reporting.WinForms.
ReportDataSource (“DataSetl”, dtl))

.DataSources.Add (New Microsoft.Reporting.WinForms.
ReportDataSource (“DataSet2”, dt2))

End With
Me .ReportViewerl.RefreshReport ()

End Sub
Final Score Card

Class [StuClass] Student ID ([StulD]
Student Name [StuName] Father/Mother [StuFName] [StuMMName]
Phone No [StuPhone] Email ID [StuEmail]

Subject Name Marhks Scored

[Subject] [Marks]

«Expr

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 111

Lab: Visual Basic
Programming

NOTES

Self-Instructional
112 Material

3. Telephone Directory Maintenance
Imports System.IO
Imports System.IO.Directory
Imports System.IO.DirectoryInfo
Imports System.IO.Path
Imports System.Environment
Imports System.IO.FileStream
Imports System.IO.File
Imports System.IO.FileInfo
Imports System.Data.SglClient
Imports System.Data
Imports System.Data.OleDb

Public Class frmPonBuk

Dim strPath As String

Dim dsContact As New DataSet

Dim dsContactNam As New DataSet

Dim daContact As New OleDbDataAdapter
Dim daContactNam As New OleDbDataAdapter
Dim sglCommand As New OleDbCommand
Dim strAction As String

Dim strSQL As String

Dim dt As New DataTable

Dim dtContact As New DataTable

Dim dtSearch As New DataTable

Dim daSearch As New OleDbDataAdapter
Dim dsSearch As New DataSet

Dim drDSRow As DataRow

Dim drNewRow As DataRow

Dim cnPhoneBook As New OleDbConnection

Private Sub frmPonBuk KeyDown (ByVal sender As Object,
ByVal e As System.Windows.Forms.KeyEventArgs) Handles
Me .KeyDown

‘code for short cut key, note this will work if you

‘set the form’s keypreview property to true

Select Case e.KeyCode

Case Keys.F8

If Me.cmdAdd.Enabled = True Then
Me.cmdAdd Click(sender, e)

End If

Case Keys.F9

If Me.cmdEdit.Enabled = True Then
Me.cmdEdit Click(sender, e)

End If

Case Keys.F10

If Me.cmdDelete.Enabled = True Then
Me.cmdDelete Click(sender, e)

End If

Case Keys.F1l1

If Me.cmdUpdate.Enabled = True Then
Me.cmdUpdate Click (sender, e)

End If

Case Keys.F12

If Me.cmdCancel.Enabled = True Then
Me.cmdCancel Click(sender, e)

End If

Case Keys.Enter

SendKeys.Send (“{TAB}”)

End Select
End Sub

Private Sub frmPonBuk Load (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

‘Dim strPath As String

‘vou can use this method in order to get vyour
database (Access) path

‘strPath = System.Environment.CurrentDirectory &
“\Data\PhoneBook.accdb”

‘cnPhoneBook.ConnectionString = “ Provider=Microsoft.
ACE.OLEDB.12.0;Data Source=" & specialName & “;Persist Security
Info=False;”

cnPhoneBook.ConnectionString = “ Provider=Microsoft.ACE.
OLEDB.12.0;Data Source=../Data/PhoneBook.accdb;Persist Security
Info=False;"”

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 113

Lab: Visual Basic
Programming

NOTES

Self-Instructional

114 Material

strSQL = “ SELECT [LastNamel]+’, ‘+[FirstName]+’
‘+[MiddleName] AS Name, TblContact.* FROM TblContact ORDER BY
[LastName]+’, ‘“+[FirstName]+’ ‘+[MiddleName];”

daContact.SelectCommand = New OleDbCommand (strSQL,
cnPhoneBook)

daContact.Fill (dsContact, “TblContact”)
Me.dtContact = dsContact.Tables (“"TblContact”)

‘binding controls to dataset

Me.txtLstNam.DataBindings.Add (“Text”, dsContact,
“TblContact.LastName”)
Me.txtFstNam.DataBindings.Add (“Text”, dsContact,
“ThlContact.FirstName”)
Me.txtMidNam.DataBindings.Add (“"Text”, dsContact,
“ThlContact.MiddleName”)
Me.txtHomAdr.DataBindings.Add (“"Text”, dsContact,
“TblContact.HomeAdr”)
Me.txtBusAdr.DataBindings.Add (“"Text”, dsContact,

“TblContact.BusAdr”)

Me.txtTelNo.DataBindings.Add (“Text”, dsContact,
“TblContact.TelNo”)

Me.txtMobNo.DataBindings.Add (“Text”, dsContact,
“TblContact.MobNo”)

Me.txtEml.DataBindings.Add (“Text”, dsContact,
“TblContact.EMail”)

‘setting datagrid properties
Me.dtgContact.DataSource = dsContact
Me.dtgContact.DataMember = “TblContact”
Me.dtgContact.Columns (0) . HeaderText = “Name”
Me.dtgContact.Columns (1) .Visible = False
Me.dtgContact.Columns (2) .Visible = False
Me.dtgContact.Columns (3) .Visible = False

Me.dtgContact.Columns (4) .Visible = False
Me.dtgContact.Columns (5) .HeaderText = “Home Address”
Me.dtgContact.Columns (6) .HeaderText = “Bus. Address”
Me.dtgContact.Columns (7) .HeaderText = “Telephone”
Me.dtgContact.Columns (8) . HeaderText = “Mobile”
Me.dtgContact.Columns (9) .HeaderText = “E-Mail”

‘Used SQL statement for Combo box to display the name of
contact person

strSQL = “ SELECT TblContact.ContactID, [LastName]+',
‘+[FirstName]+’ ‘+[MiddleName] AS Name FROM TblContact ORDER
BY [LastName]+’, ‘“+[FirstName]+’ ‘+[MiddleName];”

daContactNam.SelectCommand = New OleDbCommand (strSQL,
cnPhoneBook)

daContactNam.Fill (dsContactNam, “TblContact”)
‘datatable for combo box

Me.dt = dsContactNam.Tables (“TblContact”)
Me.cmbSearch.DataSource = dt
Me.cmbSearch.DisplayMember = “Name”
Me.cmbSearch.ValueMember = “ContactID”

Me.cmbSearch.SelectedIndex = -1

Me.txtRecPos.Text = “Contact Record % &
Me.BindingContext (dsContact, “TblContact”) .Position + 1 & %
of : " & dsContact.Tables (“TblContact”) .Rows.Count

‘'call procedure to lock the text field
lockField()

‘' call procedure to disabled update
UpdtOff ()

End Sub

Private Sub cmdFstRec Click (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdFstRec.Click

Me.BindingContext (dsContact, “TblContact”) .Position = 0

Me.txtRecPos.Text = “Contact Record W &
Me.BindingContext (dsContact, “TblContact”) .Position + 1 & “
of : " & dsContact.Tables (“TblContact”) .Rows.Count

End Sub

Private Sub cmdPrv_ Click (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdPrv.Click

Me.BindingContext (dsContact, “TblContact”) .Position =
Me.BindingContext (dsContact, “TblContact”) .Position -1

Me.txtRecPos.Text = "“Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1 & “
of : % & dsContact.Tables (“TblContact”) .Rows.Count

End Sub

Private Sub cmdNext Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdNext.Click

Me.BindingContext (dsContact, “TblContact”) .Position =
Me.BindingContext (dsContact, “TblContact”) .Position + 1

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 115

Lab: Visual Basic
Programming

NOTES

Self-Instructional
116 Material

&

Me.txtRecPos.Text = Y“YContact
Me.BindingContext (dsContact, “TblContact”) .Position + 1 & ™
of : ¥ & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub

Private Sub cmdLst Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles cmdLst.Click

Me.BindingContext (dsContact, “TblContact”) .Position
Me.BindingContext (dsContact, “TblContact”) .Count - 1

Me.txtRecPos.Text = Y“YContact
Me.BindingContext (dsContact, “TblContact”) .Position + 1 &
of : ¥ & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub

Private Sub UnlockField()

Me.txtFstNam.ReadOnly = False
Me.txtLstNam.ReadOnly = False
Me.txtMidNam.ReadOnly = False
Me.txtHomAdr.ReadOnly = False
Me.txtBusAdr.ReadOnly = False
Me.txtTelNo.ReadOnly = False
Me.txtMobNo.ReadOnly = False
Me.txtEml.ReadOnly = False
End Sub

Private Sub lockField()

Me.txtFstNam.ReadOnly = True
Me.txtLstNam.ReadOnly = True
Me.txtMidNam.ReadOnly = True
Me.txtHomAdr.ReadOnly = True
Me.txtBusAdr.ReadOnly = True
Me.txtTelNo.ReadOnly = True
Me.txtMobNo.ReadOnly = True
Me.txtEml.ReadOnly = True
End Sub

Private Sub UpdtOff ()

ANY

Me.cmdAdd.Enabled = True Lab: Visual Basic
) Programming
Me.cmdEdit.Enabled = True

Me.cmdDelete.Enabled = True

False NOTES

False

Me.cmdUpdate.Enabled

Me.cmdCancel .Enabled

Me.cmdAdd.BackColor = Color.Tan
Me.cmdEdit.BackColor = Color.Tan
Me.cmdDelete.BackColor = Color.Tan

Me.cmdUpdate.BackColor = Color.Black

Me.cmdCancel .BackColor = Color.Black
End Sub
Private Sub UpdtOn ()

Me.cmdAdd.Enabled = False
Me.cmdEdit.Enabled = False
Me.cmdDelete.Enabled = False
Me.cmdUpdate.Enabled = True

Me.cmdCancel .Enabled = True

Me.cmdAdd.BackColor = Color.Black
Me.cmdEdit.BackColor = Color.Black
Me.cmdDelete.BackColor = Color.Black
Me.cmdUpdate.BackColor = Color.Tan

Me.cmdCancel .BackColor = Color.Tan

End Sub

Private Sub cmdAdd Click (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdAdd.Click

strAction = “ADD”

UpdtOn ()

UnlockField ()

Me.BindingContext (dsContact, “TblContact”) .AddNew ()
Me.txtLstNam.Focus ()

End Sub

Self-Instructional
Material 117

Lab: Visual Basic
Programming

NOTES

Self-Instructional
118 Material

Private Sub cmdEdit Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdEdit.Click

strAction = “EDIT”
UpdtOn ()
UnlockField()

End Sub

Private Sub cmdDelete Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdDelete.Click

Dim delCommand As New OleDbCommand
Dim intPos As Integer
Dim intContactID As Integer
Dim strUsrRsp As String
intPos = Me.BindingContext (dsContact,
“TblContact”) .Position
intContactID = dtContact.Rows (intPos) .Item (1)

strUsrRsp = MsgBox (“Do you want to delete this record”,
MsgBoxStyle.YesNo + MsgBoxStyle.Question +
MsgBoxStyle.ApplicationModal, “Phone Book”)

If strUsrRsp = MsgBoxResult.Yes Then
Try
cnPhoneBook.Open ()

strSQL = “Delete from TbhblContact where (ContactID = ™ &
intContactID & “)”

sglCommand = New OleDbCommand (strSQL, cnPhoneBook)
sglCommand.ExecuteNonQuery ()

cnPhoneBook.Close ()

dsContact.Clear ()

daContact.Fill (dsContact, “TblContact”)

MsgBox (“Record has been deleted”, MsgBoxStyle.OkOnly +
MsgBoxStyle.Information + MsgBoxStyle.ApplicationModal, “Phone
Book”)

Catch ex As Exception

MsgBox (Err.Description)

End Try

Else

End If

dsContactNam.Clear ()

daContactNam.Fill (dsContactNam, “TblContact”)
cmbSearch.SelectedIndex = -1

End Sub

Private Sub cmdUpdate Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdUpdate.Click

Dim SubPos As Integer
Dim intPos As Integer

Dim intContactID As Integer

Try
Select Case strAction
Case “ADD”

Me.BindingContext (dsContact, “TblContact”).
EndCurrentEdit ()

cnPhoneBook.Open ()

strSQL = “INSERT INTO TblContact (LastName, FirstName,
MiddleName, HomeAdr, BusAdr, TelNo, MobNo, EMail) “

strSQL = strSQL & Y VALUES ('V & Me.txtLstNam.Text &
WA, 7 g Me.txtFstNam.Text & “VY,’” & Me.txtMidNam.Text & “V,’”

rr

& Me.txtHomAdr.Text & “',’” & Me.txtBusAdr.Text & “', &

Me.txtTelNo.Text & “'‘,’'” & Me.txtMobNo.Text & “',’” &
Me.txtEml.Text & “V');”
sgqlCommand = New OleDbCommand (strSQL, cnPhoneBook)

sglCommand.ExecuteNonQuery ()

cnPhoneBook.Close ()
dsContact.Clear ()
daContact.Fill (dsContact, “TblContact”)

Case “EDIT”

intPos = Me.BindingContext (dsContact, “TblContact”).
Position

intContactID = dtContact.Rows (intPos) .Item (1)

Me.BindingContext (dsContact, “TblContact”) .
EndCurrentEdit ()

cnPhoneBook.Open ()

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 119

Lab: Visual Basic
Programming

NOTES

Self-Instructional
120 Material

strSQL = Y“UPDATE TblContact SET LastName = ‘“ &
Me.txtLstNam.Text & “', FirstName = 'V & Me.txtFstNam.Text &
W', MiddleName = ‘% & Me.txtMidNam.Text & “', HomeAdr = ‘% &

Me.txtHomAdr.Text & ™', ™

strSQL = strSQL & ™ BusAdr = 'V & Me.txtBusAdr.Text & “Y,
TelNo = 'V & Me.txtTelNo.Text & V', MobNo = 'V & Me.txtMobNo.Text
& NV, EMail = W § Me.txtEml.Text & “' WHERE
(((ThlContact.ContactID)=" & intContactID & “));”

sglCommand = New OleDbCommand (strSQL, cnPhoneBook)

sglCommand.ExecuteNonQuery ()
cnPhoneBook.Close ()

SubPos = Me.BindingContext (dsContact,
“TblContact”) .Position

dsContact.Clear ()
daContact.Fill (dsContact, “TblContact”)

Me.BindingContext (dsContact, “TblContact”) .Position =
SubPos

End Select

UpdtOff ()

lockField()

Catch ex As Exception

MsgBox (strSQL)

End Try

dsContactNam.Clear ()

daContactNam.Fill (dsContactNam, “TblContact”)

Me.txtRecPos.Text = “Contact Record W &
Me.BindingContext (dsContact, “TblContact”) .Position + 1 & ™
of : ¥ & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub

Private Sub cmdCancel Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdCancel.Click

Me.BindingContext (dsContact, “TblContact”) .
CancelCurrentEdit ()

UpdtOff ()
lockField()

Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1 & ™
of : ¥ & dsContact.Tables (“"TblContact”) .Rows.Count

End Sub

Private Sub cmdSearch Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles cmdSearch.Click

Dim ContactIDSrh As Integer

Dim ColNum As Integer

Dim RowNum As Integer

Dim RecCount As Integer

ColNum = 0

RowNum = 0

‘Check Combo box if it has a value

If Me.cmbSearch.SelectedValue <> 0 Then

RecCount = Me.BindingContext (dsContact,
“TblContact”) .Count

ContactIDSrh = Me.cmbSearch.Selectedvalue
‘move at first record

Me.BindingContext (dsContact, “TblContact”) .Position =

‘loop until we find the desired Contact Person

Do While ContactIDSrh <> dtContact.Rows (RowNum) .Item (1)
If RowNum <> RecCount Then

‘move record position

Me.BindingContext (dsContact, “TblContact”) .Position =
RowNum + 1

RowNum = RowNum + 1

Else

‘exit loop if record found

Exit Do

End If

Loop

Else

MsgBox (“Please Select the Student name to be searched”)
End If

End Sub

Private Sub txtLstNam LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtLstNam.LostFocus

‘this will trigger if the txtLstNam has lost the focus
and during adding new or editting existing record

If strAction = “ADD” Or strAction = “EDIT” Then

‘transform the string into proper case

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 121

Lab: Visual Basic
Programming

NOTES

Self-Instructional
122 Material

Me.txtLstNam.Text = StrConv (Me.txtLstNam.Text,
VbStrConv.ProperCase)

End If
End Sub

Private Sub txtFstNam LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtFstNam.LostFocus

If strAction = “ADD” Or strAction = “EDIT” Then

Me.txtFstNam.Text = StrConv (Me.txtFstNam.Text,
VbStrConv.ProperCase)

End If
End Sub

Private Sub txtMidNam LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtMidNam.LostFocus

If strAction = “ADD” Or strAction = “EDIT” Then

Me.txtMidNam.Text = StrConv (Me.txtMidNam.Text,
VbStrConv.ProperCase)

End If
End Sub

Private Sub txtHomAdr LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtHomAdr.LostFocus

If strAction = “ADD” Or strAction = “EDIT” Then

Me.txtHomAdr.Text = StrConv (Me.txtHomAdr.Text,
VbStrConv.ProperCase)

End If
End Sub

Private Sub txtBusAdr LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtBusAdr.LostFocus

If strAction = “ADD” Or strAction = “EDIT” Then

Me.txtBusAdr.Text = StrConv (Me.txtBusAdr.Text,
VbStrConv.ProperCase)

End If
End Sub

Private Sub txtTelNo LostFocus (ByVal sender As Object,
ByVal e As System.EventArgs) Handles txtTelNo.LostFocus

If strAction = “ADD” Or strAction = “EDIT” Then

If Len(Me.txtTelNo.Text) = 7 Then

Me.txtTelNo.Text = Mid (Me.txtTelNo.Text, 1, 3) & “-" &
Mid (Me.txtTelNo.Text, 4, 2) & “-" & Mid(Me.txtTelNo.Text, 6,
2)

End If

End If

End Sub

Private Sub dtgContact CellClick (ByVal sender As Object,
ByVal e As System.Windows.Forms.DataGridvViewCellEventArgs)
Handles dtgContact.CellClick

Me.txtRecPos.Text = “Contact Record “ &
Me.BindingContext (dsContact, “TblContact”) .Position + 1 & “
of : % & dsContact.Tables (“TblContact”) .Rows.Count

End Sub
End Class

Forml.vb [Design]
]

o Phene Book

e | T ——"

4. Gas Booking and Delivering

Main:
Private Sub Commandl Click() Handles Commandl.Click
‘#Const Compile Commandl Click = True
#If Compile Commandl Click Or CompileAll Forml Then
Form2.Load ()
Form2.Show ()
Close()
#End If " Compile Commandl Click

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 123

Lab: Visual Basic
Programming

NOTES

Self-Instructional
124 Material

End Sub
Private Sub Command2 Click (ByVal sender As Object, ByVal

e As System.EventArgs) Handles Command2.Click

‘#Const Compile Command2 Click = True

#If Compile Command2 Click Or CompileAll Forml Then
Forml5.Load()

Forml5.Show ()

Close()

#End If ' Compile Command2 Click

End Sub

Private Sub Command3 Click(ByVal sender As Object, ByVal

e As System.EventArgs) Handles Command3.Click

‘#Const Compile Command3 Click = True

#If Compile Command3 Click Or CompileAll Forml Then
‘b = InputBox (“Enter Record No”, “Find to Modify”)
Form6.Load ()

Form6 . Show ()

Close()

#End If ' Compile Command3 Click

End Sub

Private Sub Command4 Click() Handles Command4.Click
‘#Const Compile Command4 Click = True

#If Compile Command4 Click Or CompileAll Forml Then
Forml6.Load ()

Forml6.Show ()

Close()

#End If ' Compile Command4 Click

End Sub

Private Sub Command5 Click(ByVal sender As Object, ByVal

e As System.EventArgs) Handles Command5.Click

‘#Const Compile Command5 Click = True

#If Compile Command5 Click Or CompileAll Forml Then
Form5.Load ()

Formb5.Show ()

Close()

#End If ' Compile Command5 Click Lab: Visual Basic
- - Programming
End Sub

Private Sub Command6 Click (ByVal sender As Object, ByVal NOTES
e As System.EventArgs) Handles Command6.Click

‘#Const Compile Command6 Click = True

#If Compile Command6 Click Or CompileAll Forml Then
Form7.Load ()

Form7.Show ()

Close()

#End If ' Compile Command6 Click

End Sub

Private Sub Command?7 Click() Handles Command7.Click
‘#Const Compile Command7 Click = True

#If Compile Command7 Click Or CompileAll Forml Then
Application.Exit ()

#End If " Compile Command7 Click

End Sub

Private Sub Command8 Click() Handles Command8.Click
‘#Const Compile Command8 Click = True

#If Compile Command8 Click Or CompileAll Forml Then
Form8.Load ()

Form8.Show ()

Close()

#End If ' Compile Command8 Click

End Sub

Private Sub Command9 Click (ByVal sender As Object, ByVal
e As System.EventArgs) Handles Command9.Click

‘#Const Compile CommandS Click = True

#If Compile Command9 Click Or CompileAll Forml Then
Forml4.Load ()

Forml4.Show ()

Close()

#End If ' Compile Command9 Click

End Sub

Self-Instructional
Material 125

Lab: Visual Basic
Programming

NOTES

Self-Instructional
126 Material

Private Sub Forml Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

‘#Const Compile Form Load = True

#If Compile Form Load Or CompileAll Forml Then
Timerl.Interval = 50

#End If " Compile Form Load

End Sub

Private Sub Timerl Tick(ByVal sender As Object, ByVal e
As System.EventArgs) Handles Timerl.Tick

‘#Const Compile Timerl Timer = True

#If Compile Timerl Timer Or CompileAll Forml Then
11.Top -= 60

If 11.Top<=100 Then

11.Top = 13000

End If

L2.Top -= 60

If L2.Top<=100 Then
L2.Top = 13000

End If

L3.Top -= 60

If L3.Top<=100 Then
L3.Top = 13000

End If

L4.Top -= 60

If L4.Top<=100 Then
L4.Top = 13000

End If

L5.Top -= 60

If L5.Top<=100 Then
L5.Top = 13000

End If

L6.Top -= 60

If L6.Top<=60 Then
L6.Top = 13000

End If

17.Top -= 60

If 17.Top<=60 Then
17.Top = 13000
End If

18.Top -= 60

If 18.Top<=60 Then
18.Top = 13000
End If

19.Top -= 60

If 19.Top<=60 Then
19.Top = 13000
End If

#End If " Compile Timerl Timer

End Sub

Private Sub Timer2 Tick (ByVal sender As Object, ByVal e

As System.EventArgs) Handles Timer2.Tick

‘#Const Compile Timer2 Timer = True

#If Compile Timer2 Timer Or CompileAll Forml Then

Label4.ForeColor
(OBColor (Rnd () *15))

Label5.ForeColor
(OBColor (Rnd () *15))

ColorTranslator.FromOle

ColorTranslator.FromOle

#End If " Compile Timer2 Timer

End Sub

End Class

e

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 127

Lab: Visual Basic
Programming

NOTES

Self-Instructional
128 Material

o s Ay g e S s s

Password |

File Menu:

= Gas Aponcy Managoement_

Charge Passweord
Lokt
Exk

Booking Menu:

- aas Apency Managerment . ___”.E]El
% et e T

Add Menu:
e Gas Aponcy Managorment ... r.- r.rc".l|m|
Fike bl Bookiregs Wiews
L=

o Uipeclat e

5. Electricity Bill Management

Main form:
Private Sub Cmdexit Click()
End
End Sub

Then

Private Sub Cmdl Click()

txtuser.Text = UCase (txtuser)

txtpass.Text = UCase (txtpass) ‘& LCase (txtpass)

If txtuser.Text = “ELECTRICITY” And txtpass = “KULKARNI”

Main.Show

Me.Hide

Else

MsgBox (“Please try again”)
txtuser.SetFocus

End If

End Sub

Private Sub Cmd2 Click()
End
End Sub

Customer Form:

Private Sub Cmdadd Click()
Adodcl.Refresh
Adodcl.Recordset.AddNew
End Sub

Private Sub cmdclear Click()
Adodcl.Refresh

cmbgn.Text = %

txtnm.Text = V7
txtad.Text = V"
cmbec.Text = 7
cmbct.Text = ™7
Txtpn.Text = %7
cmbpro.Text = %
Txtdob.Text =~
End Sub

Private Sub cmdsv_Click()

If cmbgn.Text = % Or txtnm.Text = “ Or cmbec.Text = %"

Or cmbpro.Text = V" Or Txtdob.Text = “” Then

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 129

Lab: Visual Basic MsgBox “Please Fill Requireds Fields Then Save Your Record”
Programming
Else

Adodcl.Recordset.Fields (0) = cmbgn.Text
NOTES Adodcl.Recordset.Fields (1) = txtnm.Text
Adodcl.Recordset.Fields (2) = txtad.Text
Adodcl .Recordset.Fields (3) = cmbec.Text
Adodcl .Recordset.Fields (4) = cmbct.Text
Adodcl.Recordset.Fields (5) = Txtpn.Text
Adodcl.Recordset.Fields (6) = cmbpro.Text
Adodcl.Recordset.Fields (7) = Textl.Text ‘1bldt.Caption
Adodcl.Recordset.Fields (8) = Txtdob.Text
Adodcl.Recordset.Save
Adodcl.Refresh

MsgBox “Record Save Successfully”

cmbgn.Text =
txtnm.Text =V

txtad.Text W

W74

cmbec.Text

cmbct.Text W

W74

Txtpn.Text
cmbpro.Text = %7
Txtdob.Text = ™"
End If
End Sub

Private Sub Command5 Click()
Unload Me
End Sub

Private Sub Form Load()
‘Adodcl.Refresh
cmbgn.Text =
txtnm.Text = V7

txtad.Text =

cmbec.Text W

cmbct.Text W

Self-Instructional
130 Material

& (“=") & (DateTime.Year))

Branch OfMce

Bill:

Txtdob.Text = V7
Txtpn.Text = %7
cmbpro.Text = %7

Textl.Text = Date

‘FormatDateTime ((DateTime.Day) & (“-") & (DateTime.Month)

‘de N same N sy

‘1bldt.Caption = FormatDateTime (DateTime.Date, vbLongDate)
‘vbGeneralDate

‘DateTime.Date

End Sub

Personal Entry

woncs [einome

Name

Address

City

Pin

Profession

Private Sub Cmbnm2 LostFocus ()

‘On Error Resume Next

‘Adodcl.Refresh

‘While Not Adodcl.Recordset.EQF = True
‘If Adodcl.Recordset!Name = Cmbnm2.Text Then
‘txtadd.Text = Adodcl.Recordset!Add ‘ress
‘Txtex.Text = Adodcl.Recordset!Exchange
‘Txtpin.Text = Adodcl.Recordset!pincode
‘Else

Y

VVExit Do

‘End If

‘Loop

Adodcl.Refresh

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 131

Lab: Visual Basic
Programming

NOTES

Self-Instructional
132 Material

Adodc2.Refresh

Do While Adodcl.Recordset.EOQOF = False

If Adodcl.Recordset!Name = Cmbnm2.Text Then
Txtadd.Text = Adodcl.Recordset!Add
Txtex.Text = Adodcl.Recordset!Exchange
Txtpin.Text = Adodcl.Recordset!pincode
Textl.Text = Adodcl.Recordset!plan

Exit Do

End If

‘End If

Adodcl .Recordset .MoveNext
‘Adodc?2.Recordset.MoveNext

Loop

‘Do While Adodc2.Recordset.EOF = False

‘If Adodc2.Recordset!planname = Textl.Text Then
‘Txtmcc.Text = Adodc2.Recordset!MonthlyCharges
‘txtfc.Text = Adodc2.Recordset!free calls

‘Exit Do

‘End If

‘Adodc?2.Recordset.MoveNext

‘Loop

‘Adodc?2.Recordset.MoveNext

Txtn2.Text = Cmbnm2.Text
Txtn3.Text = Txtadd.Text
Txtnd.Text = txtcust.Text
Txtnb.Text = Txttel.Text
Txtn6.Text = Txtex.Text
Txtn7.Text = Txtpin.Text
Txtdb.Text = Txtfmc.Text
Txtdbl.Text = txtfc.Text
‘Wend

End Sub

Private Sub Cmdadd Click()
Adodc3.Refresh
Adodc3.Recordset .MoveNext
Adodc3.Recordset .AddNew
Cmdadd.Visible = False
cmdsv.Visible = True

End Sub

Private Sub cmdcalc Click()

‘Txtgmc.Text = Val (Txtcmr.Text)
‘Txtncc.Text = Val (Txtgmc.Text) - Val (txtfc.Text)

‘If Txtncc.Text <= 0 Then
‘Txtncc.Text = “0”
‘Txtmcc.Text = Txtncc.Text
‘Else

‘Txtmcc.Text = Txtncc.Text
‘End If

End Sub

Private Sub cmdsv_Click()

‘Txtn2.Text = Cmbnm2.Text
‘Txtn3.Text = txtadd.Text
‘Txtn4d.Text = txtcust.Text
‘Txtnb.Text = txttel.Text
‘Txtn6.Text = Txtex.Text

‘Txtn7.Text = txtpin.Text

‘Txtdb.Text = Txtfmc.Text

‘Txtdbl.Text = txtfc.Text

Adodc3.Recordset.Fields (0)
Adodc3.Recordset.Fields (1)
Adodc3.Recordset.Fields (2)
Adodc3.Recordset.Fields (3)
Adodc3.Recordset.Fields (4)
Adodc3.Recordset.Fields (5)
Adodc3.Recordset.Fields (6)
Adodc3.Recordset.Fields (7)
Adodc3.Recordset.Fields (8)
Adodc3.Recordset.Fields (9)

Txtn2
Txtn4
Txtnb
Txtnb6
Txtn’
Txtn3

Txtomr.Text
Txtcmr.Text
Txtgmc.Text
txtfc.

- Val (Txtomr.Text)

.Text
.Text
.Text
.Text
.Text
.Text

Text

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 133

Lab: Visual Basic
Programming

NOTES

Self-Instructional
134 Material

Adodc3.Recordset.Fields (10) = Txtncc.Text
Adodc3.Recordset.Fields (11)

Txtfmc.Text
Adodc3.Recordset.Fields (12) = Txtmcc.Text

‘Adodc3.Recordset.Fields (13) = Txtdb.Text
Adodc3.Recordset.Fields (14) Txttx.Text

‘Adodc3.Recordset.Fields (15) = Txtdbl.Text
Adodc3.Recordset.Fields (18)

Txtapb.Text
Adodc3.Recordset.Fields (19) = Txtsfdp.Text
Adodc3.Recordset.Fields (20) = Txtapdd.Text
‘Adodcl.Recordset. Save
‘Adodc?2.Recordset.Save
Adodc3.Recordset.Save

MsgBox “BILL SAVE Successfully”
Adodc3.Refresh

While Adodc3.Recordset.EQOF = False
Combol.AddItem (Adodc3.Recordset!Name)
Adodc3.Recordset .MoveNext

Wend

Wal (Txtgme.Text) = Val (Txtcmr.Text) - Val (Txtomr.Text)
‘End
End Sub

Private Sub cmdx Click()
Unload Me
End Sub

Private Sub Combol LostFocus ()
‘Text2.Text = Combol.Text
‘Adodc3.Refresh

‘On Error Resume Next

‘If DataEnvironmentl.conl.State = 1 Then
DataEnvironmentl.conl.Open

‘DataEnvironmentl.conl.Close
‘DataEnvironmentl.conl.Open
‘DataEnvironmentl.Bill details (Text2.Text)
‘' DataReport3.Show

‘BillReport.Show

End Sub

Private Sub Commandl Click()
Text2.Text = Combol.Text
Adodc3.Refresh

On Error Resume Next

If DataEnvironmentl.conl.State =

DataEnvironmentl.conl.Open

DataEnvironmentl.conl.Close
DataEnvironmentl.conl.Open
DataEnvironmentl.Bill details (Text2.Text)
‘DataReport3. Show

BillReport. Show

End Sub

Private Sub Form Load()

While Adodcl.Recordset.EQOF = False
Cmbnm2 .AddItem (Adodcl.Recordset!Name)
Adodcl.Recordset .MoveNext

Wend

txtfc.Text = V7

Txtfmc.Text = V7

‘Label5.Caption = DateTime.Month (Date)

DateTime.Year (Date)

Adodc3.Refresh

While Adodc3.Recordset.EOQOF = False
Combol.AddItem (Adodc3.Recordset!Name)
Adodc3.Recordset .MoveNext

Wend

cmdsv.Visible = False

&

Then

\\///

&

“Wal (Txtgmc.Text) = Val (Txtcmr.Text) - Val (Txtomr.Text)

End Sub

Private Sub Framel DragDrop (Source As Control, X As Single,

Single)
‘BillReport.Show
End Sub

Private Sub Label5 Click()
End Sub

Private Sub Txtgmc GotFocus ()

Txtgmc.Text = Val (Txtcmr.Text) - Val (Txtomr.Text)

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 135

Lab: Visual Basic
Programming

NOTES

Self-Instructional
136 Material

Txtncc.Text = Val (Txtgmc.Text) - Val (txtfc.Text)
If Txtncc.Text <= 0 Then
Txtncc.Text = “0”

Txtncc.Text

Txtmcc.Text

Else

Txtmcc.Text Txtncc.Text

End If

Txttx.Text = (Val (Txtfmc.Text) + Val (Txtmcc.Text)) * 0.1023
Txttx.Text = Round (Txttx.Text)

Txtapb.Text = Val(Txttx.Text) + Val(Txtfmc.Text) +
Val (Txtmcc.Text)

If Val (Txtapb.Text) > 0 Then

Txtsfdp.Text = “10”

Txtapdd.Text = Val (Txtapb.Text) + Val (Txtsfdp.Text)
Else

MsgBox “Wrong Bill Amount”

End If

End Sub

Private Sub Txtomr GotFocus ()

Do While Adodc2.Recordset.EOF = False

If Adodc2.Recordset!planname = Textl.Text Then
‘Txtmcc.Text = Adodc2.Recordset!MonthlyCharges
txtfc.Text = Adodc2.Recordset!free calls

Exit Do

End If

Adodc?2.Recordset .MoveNext

Loop

End Sub

o Mamhily charges

DutSianding Suschergs

Crodil Discownd

6. Bank Transaction System
Bank Details:
Public Class bankd

Private Sub Label2 Click(sender As Object, e As EventArgs)
End Sub

Private Sub PictureBoxl Click(sender As Object, e As
EventArgs)

End Sub

Private Sub cls Click(sender As Object, e As EventArgs)
Handles cls.Click

Me.Close ()
End Sub

Private Sub Buttonl Click(sender As Object, e As
EventArgs) Handles Buttonl.Click

home.managername.Text = TextBoxl.Text
home.brnamee.Text = TextBox2.Text
home.Label6.Text = TextBox3.Text
MsgBox (“Bank Details Updated”)

End Sub

Private Sub RectangleShapel Click(sender As Object, e
As EventArgs) Handles RectangleShapel.Click

End Sub

Private Sub PictureBoxl Click 1(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub
End Class

Manager Name :
Branch Name : .
Branch Code :

Update Bank

Manager Name Fre s

Branch Name Dk

Employel

o, [y T—

Branch Code ol

Update Bank Details

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 137

Lab: Visual Basic
Programming

NOTES

Self-Instructional
138 Material

Deposit:
Public Class Deposit

Private Sub cls Click(sender As Object, e As EventArgs)
Handles cls.Click

Me.Hide ()
End Sub

Private Sub Deposit Load(sender As Object, e As EventArgs)
Handles MyBase.Load

‘TODO: This 1line of code 1loads data into the
‘BankaccountsDataSet.baccounts’ table. You can move, or remove
it, as needed.

Me.BaccountsTableAdapter.Fill (Me.BankaccountsDataSet .baccounts)
dat.Text = Date.Now.ToString (“MM/dd/yyyy”)
Timerl.Start ()

End Sub

Private Sub Label3 Click(sender As Object, e As EventArgs)
Handles Label3.Click

End Sub

Private Sub dat Click(sender As Object, e As EventArgs)
Handles dat.Click

End Sub

Private Sub Buttonl Click(sender As Object, e As
EventArgs) Handles Buttonl.Click

Me.Close()
End Sub

Private Sub Timerl Tick(sender As Object, e As EventArgs)
Handles Timerl.Tick

clock.Text = TimeOfDay
End Sub

Private Sub Button2 Click(sender As Object, e As
EventArgs) Handles Button2.Click

Dim con As New OleDb.OleDbConnection

con.ConnectionString = “PROVIDER = Microsoft. Ace. OLEDB.
12.0; Data Source =F:\Sem.4\extra vs code\bankmanagementsystem\
bankmanagementsystem\project\ BankManageMentSystem\
BankManageMentSystem\bankaccounts.accdb”

Dim SglString As String = “update [baccounts] set [Balance]
= Balance+@TextBox2.Text where [Acc Id] = @TextBoxl.Text”

Using conn As New OleDb.OleDbConnection(con.
ConnectionString)

Using cmd As New OleDb.OleDbCommand (SglString, con)
cmd.CommandType = CommandType.Text

cmd. Parameters.AddWithValue (“column”, TextBox2.Text)
cmd. Parameters.AddWithValue (“column”, TextBoxl.Text)
con.Open ()

MsgBox (“Amount Deposited Successfully”)

cmd . ExecuteNonQuery ()

Me.DataGridViewl .Refresh ()

TextBox2.Text =

TextBoxl.Text = %7

End Using

End Using

End Sub

Private Sub HomeToolStripMenultem Click(sender As Object,
e As EventArgs) Handles HomeToolStripMenultem.Click

home . Show ()

End Sub

Private Sub AccountsToolStripMenultem Click(sender As
Object, e As EventArgs) Handles AccountsToolStripMenultem.Click

End Sub

Private Sub AddAccountToolStripMenultem Click (sender As
Object, e As EventArgs) Handles AddAccountToolStripMenultem.
Click

addaccount.Show ()

End Sub

Private Sub UpdateAccountToolStripMenultem Click (sender
As Object, e As EventArgs) Handles UpdateAccountToolStrip
MenuItem.Click

updateaccount. Show ()

End Sub

Private Sub DeleteAccountToolStripMenultem Click (sender
As Object, e As EventArgs) Handles DeleteAccount
ToolStripMenultem.Click

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 139

Lab: Visual Basic
Programming

NOTES

Self-Instructional
140 Material

deleteaccount.Show ()

End Sub

Private Sub DepositToolStripMenultem Click(sender As
Object, e As EventArgs) Handles DepositToolStripMenultem.Click

Me. Show ()
End Sub

Private Sub WithdrawToolStripMenultem Click(sender As
Object, e As EventArgs) Handles WithdrawToolStripMenulItem.Click

Withdraw.Show ()
End Sub

Private Sub RegisterProductToolStripMenultem Click (sender
As Object, e As EventArgs) Handles RegisterProduct
ToolStripMenultem.Click

Register.Show ()
End Sub

Private Sub CreditsToolStripMenultem Click(sender As
Object, e As EventArgs) Handles CreditsToolStripMenultem.Click

about.Show ()
End Sub

Private Sub HelpToolStripMenultem Click (sender As Object,
e As EventArgs) Handles HelpToolStripMenultem.Click

Help.Show ()
End Sub

Private Sub AboutToolStripMenultem Click(sender As
Object, e As EventArgs) Handles AboutToolStripMenultem.Click

End Sub
End Class

Deposit Amount Acoounts

Enter Account Number

Entar Amount to deposit

Withdraw:
Public Class Withdraw

Private Sub AddAccountToolStripMenultem Click (sender As

Object, e As EventArgs) Handles AddAccountToolS
tripMenultem.Click

End Sub

Private Sub cls Click(sender As Object, e As EventArgs)
Handles cls.Click

Me.Hide ()
End Sub

Private Sub Withdraw Load(sender As Object, e As
EventArgs) Handles MyBase.Load

‘TODO: This 1line of code loads data into the
‘BankaccountsDataSet.baccounts’ table. You can move, or remove
it, as needed.

Me.BaccountsTableAdapter.Fill (Me.BankaccountsDataSet .baccounts)
dat.Text = Date.Now.ToString (“MM/dd/yyyy”)
Timerl.Start ()

End Sub

Private Sub dat Click(sender As Object, e As EventArgs)
Handles dat.Click

End Sub

Private Sub Timerl Tick(sender As Object, e As EventArgs)
Handles Timerl.Tick

clock.Text = TimeOfDay
End Sub

Private Sub Button2 Click(sender As Object, e As
EventArgs) Handles Button2.Click

Dim con As New OleDb.OleDbConnection

con.ConnectionString = “PROVIDER = Microsoft.Ace.OLEDB.
12.0; Data Source =F:\Sem.4\extra vs code\bankmanagementsystem\
bankmanagementsystem\project\BankManageMentSystem
\BankManageMentSystem\ bankaccounts.accdb”

Dim SglString As String = “update [baccounts] set [Balance]
= Balance-@TextBox2.Text where [Acc Id] = @TextBoxl.Text”

Using conn As New OleDb.0OleDbConnection
(con.ConnectionString)

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 141

Lab: Visual Basic
Programming

NOTES

Self-Instructional
142 Material

Using cmd As New OleDb.OleDbCommand (SglString, con)
cmd .CommandType = CommandType.Text

cmd. Parameters.AddWithvValue (“column”, TextBox2.Text)
cmd. Parameters.AddWithValue (“column”, TextBoxl.Text)
con.Open ()

MsgBox (“Amount Withdrawn Successfully”)

cmd . ExecuteNonQuery ()

Me.DataGridvViewl .Refresh ()

TextBox2.Text = V"

TextBoxl.Text = V"

End Using

End Using

End Sub

End Class

[withdraweot, [ETETNSESROE TERSSEL IR ficxjintor.vis | Design] ermployees v [Geugn]™ [Bepostwis [Besign]

Withdraw Accounts

Ao _id Ace_Hams [T

Enter Account Numbear

Enter Amount to Withdraw

7. Payroll Processing

Login:
Imports System.Data.OleDb
Public Class frmloginA

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

Dim con As New System.Data.0OleDb.OleDbConnection (“Provider
= Microsoft.jet.0leDB.4.0;Data Source = “ & Application.
StartupPath & “\datastorage.mdb;”)

Dim cmd As OleDbCommand = New OleDbCommand(_

“SELECT * FROM logininfo WHERE Username = ‘% &

TextBoxl.Text & “' AND [Password] = 'V & txtPassword.Text
& ANTIY \\, Con)

con.Open ()

Dim sdr As OleDbDataReader = cmd.ExecuteReader ()

If (sdr.Read() = True) Then
MessageBox.Show (“You are Now Logged In”)
frmMainA.Show ()

TextBoxl.Focus ()

TextBoxl.Clear ()

txtPassword.Clear ()

Me.Hide ()

Else

MessageBox.Show (“Invalid Username or Password!”)
End If

End Sub

Private Sub Button2 Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button2.Click

If MsgBox(“Do you want to switch user?”, vbYesNo +

vbQuestion) = vbYes Then

Me.Hide ()
TextBoxl.Clear ()
txtPassword.Clear ()
Frmchoose. Show ()
End If

End Sub

Private Sub txtUsername TextChanged (ByVal sender As

System.Object, ByVal e As System.EventArgs)

End Sub

Private Sub CheckBoxl CheckedChanged (ByVal sender As

System.Object, ByVal e As System.EventArgs) Handles
CheckBox1 .CheckedChanged

If CheckBoxl.Checked = True Then

txtPassword.PasswordChar = ™"
Else

txtPassword.PasswordChar = “e”
End If

End Sub

Private Sub txtPassword TextChanged(ByVal sender As

System.Object, ByVal e As System.EventArgs)

End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 143

Lab: Visual Basic
Programming

NOTES

Self-Instructional
144 Material

Private Sub log Load(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub GroupBoxl Enter (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles GroupBoxl.Enter

End Sub

Private Sub PictureBoxl Click 1(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub
End Class
Login Panel
[PAYROLL SYSTEM |
Log-in
Username
Pas=sword
Showw posswewond
= Logan :L - =

Form Main:

Imports System.IO
Public Class frmMainA

Private Sub Timerl Tick (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Timerl.Tick

1blTime.Text = DateTime.Now.ToString (“hh:mm:ss tt”)
1blDate.Text
End Sub

DateTime.Now.ToString (“MMMM dd yyyy”)

Private Sub frmmainuser Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

Label2.Text = frmloginA.TextBoxl.Text
Timerl.Start ()
End Sub

Private Sub btnMaintenance Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnMaintenance.Click

Try
Dim fbd As New FolderBrowserDialog

If fbd.ShowDialog () = vbOK Then

File.Copy (“GenerallPayroll.accdb”, fbd.SelectedPath &
“\GenerallPayroll.accdb”)

MsgBox (“Done...”)

End If

Catch ex As Exception
MsgBox (ex.Message)
End Try

End Sub

Private Sub btnMini Click (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnMini.Click

Me.WindowState = FormWindowState.Minimized

End Sub

Private Sub btnLogout Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnLogout.Click

btnLogout.BackColor = Color.White
btnLogout.ForeColor = Color.Black

If MsgBox (“Do you want to switch user?”, vbYesNo +
vbQuestion) = vbYes Then

Me.Hide ()
Frmchoose.Show ()
End If

End Sub

Private Sub NotePadToolStripMenultem Click(ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
NotePadToolStripMenultem.Click

Try
System.Diagnostics.Process.Start (“Notepad.exe”)

Catch ex As Exception

MessageBox.Show (ex.Message, “Error”,
MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try
End Sub

Private Sub CalculatorToolStripMenultem Click (ByVal
sender As System.Object, ByVal e As System.EventArgs) Handles
CalculatorToolStripMenultem.Click

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 145

Lab: Visual Basic
Programming

NOTES

Self-Instructional
146 Material

Try
System.Diagnostics.Process.Start (“Calc.exe”)
Catch ex As Exception

MessageBox.Show (ex.Message, “Error”,
MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try
End Sub

Private Sub SystemInfoToolStripMenultem Click (ByVal
sender As System.Object, ByVal e As System.EventArgs) Handles
SystemInfoToolStripMenultem.Click

End Sub

Private Sub btnCataloging Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCataloging.Click

frmregister.Show ()

End Sub

Private Sub btnCirculation Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnCirculation.Click

frmpayslip.Show ()
End Sub

Private Sub AddStaffToolStripMenultem Click (ByVal sender
As System.Object, ByVal e As System.EventArgs) Handles
AddStaffToolStripMenultem.Click

frmaddstaff.Show ()
End Sub

Private Sub RemoveStaffToolStripMenultem Click (ByVal
sender As System.Object, ByVal e As System.EventArgs) Handles
RemoveStaffToolStripMenultem.Click

frmremovestaff.Show ()

End Sub

Private Sub ToolStripMenulteml Click (ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
ToolStripMenulteml.Click

About.Show ()
End Sub

Private Sub EmployeeToolStripMenultem Click(ByVal sender
As System.Object, ByVal e As System.EventArgs)

End Sub

Private Sub SearchRecordsToolStripMenultem Click (ByVal
sender As System.Object, ByVal e As System.EventArgs)

End Sub
End Class
Dashbosrd
% MNote Ped B Caloulstor JL Mansge Statt B About !
- -
OO0 00
Logged As
f'..-..::'; Ragiitar
| i "(;.'._}[mployes |
:.;:'1 l -'I':I:-i..!:;l.:;:- <?r\:-”r i
Print Slip:

Public Class frmpayslip

Private Sub GenPayFinalBindingNavigatorSaveItem

Click (ByVal sender As System.Object,

ByVal e As System.
EventArgs)

Me.Validate ()
Me.GenPayFinalBindingSource.EndEdit ()

Me.TableAdapterManager.UpdateAll (Me.GenerallPayrollDataSet)
End Sub

Private Sub frmpayslip Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load

‘*TODO: This 1line of code 1loads data into the
‘GenerallPayrollDataSet.GenPayFinal’ table. You can move, or
remove it, as needed.

Me.GenPayFinalTableAdapter.Fill (Me.GenerallPayrollDataSet.
GenPayFinal)

End Sub

Private Sub FacultyUnionLabel Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material

147

Lab: Visual Basic
Programming

NOTES

Self-Instructional
148 Material

Private Sub TuitionLabel Click(ByVal sender As
System.Object, ByVal e As System.EventArgs)

End Sub

Private Sub Button5 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonb5.Click

Me.Validate ()

Me.GenPayFinalBindingSource.EndEdit ()
Me.TableAdapterManager.UpdateAll (Me.GenerallPayrollDataSet)
MessageBox.Show (“"Successfully Added”)

End Sub

Private Sub btnLogin Click(ByVal sender As System.Object,
ByVal e As System.EventArgs)

End Sub

Private Sub btnDeleteJHS Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnDeleteJHS.Click

Try
If PlantIDTextBox.Text = %" Then
MessageBox.Show (“Please select employee id”, “Entry”,

MessageBoxButtons.OK, MessageBoxIcon.Warning)
Exit Sub
End If
If PlantIDTextBox.Text.Count > 0 Then

If MessageBox.Show (“Do you really want to delete the
record?” & vbCrLf & “You can not restore the record” & vbCrLf
& "It will delete record permanently” & vbCrLf & “related to
selected employee”, “Warning!!!”, MessageBoxButtons.YesNo,
MessageBoxIcon.Warning) = Windows.Forms.DialogResult.Yes Then

GenPayFinalBindingSource.RemoveCurrent ()
Me.TableAdapterManager.UpdateAll (Me.GenerallPayrollDataSet)
End If

End If

Catch ex As Exception

MessageBox.Show (ex.Message, “Error”, MessageBoxButtons.

OK, MessageBoxIcon.Error)
End Try
End Sub

Private Sub Button2 Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button2.Click
txtReceipt.Text = V7
txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)

(\\ ”

txtReceipt.AppendText vbNewLine)

W74

vbNewLine)

+
+

txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (+
+

(\\ ”

txtReceipt.AppendText vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (vbTab + vbTab + vbTab + vbTab
vbTab + vbTab & “PAY-SLIP” + vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (“Plantilla Number: “ + vbTab
PlantIDTextBox.Text + vbTab + vbTab + vbTab + vbNewLine)

txtReceipt.AppendText ("Employee Name: “ + vbTab
EmployeeNameTextBox.Text + vbTab + vbTab + vbNewLine)

txtReceipt.AppendText (“Number: “ + vbTab + vbTab
NoTextBox.Text + vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (“Basic Salary: “ + vbTab
BasicTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Pera: “ + vbTab + vbTab
PERATextBox.Text + vbNewLine)

txtReceipt.AppendText (“Gross Amount: “ + vbTab
GrossAmountTextBox.Text + vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (vbTab + vbTab & “Deductions”

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 149

Lab: Visual Basic
Programming

NOTES

Self-Instructional
150 Material

vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (“W/ Tax: “ + vbTab + vbTab + vbTab
& WtaxTextBox.Text + vbNewLine)

txtReceipt.AppendText (V"GSIS Premium: “ + vbTab + vbTab
& GSISPremiumTextBox.Text + vbNewLine)

txtReceipt.AppendText ("GSIS Salary Loan: “ + vbTab &
GSISSalaryLoanTextBox.Text + vbNewLine)

txtReceipt.AppendText ("GSIS EL: “ + vbTab + vbTab &
GSISELTextBox.Text + vbNewLine)

txtReceipt.AppendText (“"GSIS EMRGL: “ + vbTab + vbTab &
GSISEMRGLTextBox.Text + vbNewLine)

txtReceipt.AppendText ("GSIS PL: “ + vbTab + vbTab &
GSISPLTextBox.Text + vbNewLine)

txtReceipt.AppendText (YPag-Ibig Premium: “ + vbTab &
PagIbigPremTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Pag-Ibig ML: “ + vbTab + vbTab &
PagIbigMLTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Pag-Ibig 2: “ + vbTab + vbTab &
PagIbig2TextBox.Text + vbNewLine)

txtReceipt.AppendText ("Phil Health Premium: “ + vbTab &
PhilHealthPremiunTextBox.Text + vbNewLine)

txtReceipt.AppendText ("LEAP: “ + vbTab + vbTab + vbTab
& LEAPTextBox.Text + vbNewLine)

txtReceipt.AppendText (VIGP: “ + vbTab + vbTab + vbTab &
IGPTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Faculty Union: “ + vbTab + vbTab
& FacultyUnionTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Refund Disallow: “ + vbTab &
RefundDisallowTextBox.Text + vbNewLine)

txtReceipt.AppendText (“Tuition: “ + vbTab + vbTab +
vbTab & TuitionTextBox.Text + vbNewLine)

txtReceipt.AppendText (“LBP Payment: “ + vbTab + vbTab &
LBPPaymentTextBox.Text + vbNewLine)

txtReceipt.AppendText ("City Savings: “ + vbTab + vbTab
& CitySavingsTextBox.Text + vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (V“Total Deductions: “ + vbTab &
TotalDeductionTextBox.Text + vbTab + vbTab & “NET Amount: “ +
vbTab & NETAmountTextBox.Text + vbNewLine)

txtReceipt.AppendText (vbTab & “Due Date: “ + Today &
vbTab + vbTab + vbTab + vbTab + vbTab + vbTab & “Time: “ &
TimeOfDay + vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (vbTab + “Recieve by:” + vbNewLine)

txtReceipt.AppendText (vbTab + vbTab + vbTab +
W ” + vbNewLine)

txtReceipt.AppendText (vbTab + vbTab + vbTab +
EmployeeNameTextBox.Text + vbNewLine)

txtReceipt.AppendText (vbTab + vbTab + vbTab + “ Employee”
+ vbNewLine)

txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)
txtReceipt.AppendText (V" + vbNewLine)

txtReceipt.AppendText (“ Need Help? Contact Us: 09096510899
" + vbNewLine)

txtReceipt.AppendText (vbTab + vbTab + vbTab +
PictureBoxl.Text + vbNewLine)

PrintPreviewDialogl.ShowDialog ()

End Sub

Private Sub PrintDocumentl PrintPage (ByVal sender As
System.Object, ByVal e As System.Drawing.Printing.
PrintPageEventArgs) Handles PrintDocumentl.PrintPage

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 151

Lab: Visual Basic
Programming

NOTES

Self-Instructional
152 Material

e.Graphics.DrawString(txtReceipt.Text, Font,
Brushes.Black, 140, 140)

e.Graphics.DrawImage (Me.PictureBoxl.Image, 120, 130,
PictureBoxl.Width - 15, PictureBoxl.Height - 25)

e.Graphics.DrawImage (Me.PictureBox2.Image, 300, 130,
PictureBox2.Width - 15, PictureBox2.Height - 25)

End Sub

Private Sub Buttonl Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Buttonl.Click

TotalDeductionTextBox.Text = Val (WtaxTextBox.Text) +
Val (GSISPremiumTextBox.Text) + Val (GSISSalaryLoanTextBox.Text)
+ Val (GSISELTextBox.Text) + Val (GSISEMRGLTextBox.Text)
Val (GSISPLTextBox.Text) + Val (PaglbigPremTextBox.Text)
Val (PagIbigMLTextBox.Text) + Val (Paglbig2TextBox.Text)
Val (PhilHealthPremiunTextBox.Text) + Val (LEAPTextBox.Text)
Val (IGPTextBox.Text) + Val (FacultyUnionTextBox.Text)
Val (RefundDisallowTextBox.Text) + Val (TuitionTextBox.Text)
Val (LBPPaymentTextBox.Text) + Val (CitySavingsTextBox.Text)

+ + + + + +

GrossAmountTextBox.Text = Val (BasicTextBox.Text)
Val (PERATextBox.Text)

+

NETAmountTextBox.Text = Val (GrossAmountTextBox.Text) -
Val (TotalDeductionTextBox.Text)

NETAmountTextBox.Text = FormatCurrency (NETAmountTextBox.
Text)

TotalDeductionTextBox.Text = FormatCurrency(Total
DeductionTextBox.Text)

GrossAmountTextBox.Text = FormatCurrency (Gross
AmountTextBox.Text)

MessageBox.Show (“Successfully Computed”)

End Sub

Private Sub Button9 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button9.Click

Me.TableAdapterManager.UpdateAll (Me.GenerallPayrollDataSet)
Me.Close()
End Sub

Private Sub Button8 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button8.Click

GenPayFinalBindingSource.MovePrevious ()

End Sub

Private Sub Button7 Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button7.Click

GenPayFinalBindingSource.MoveNext ()

End Sub

Private Sub TextBoxl4 TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
TextBox1l4.TextChanged

Me.GenPayFinalBindingSource.Filter = “PlantID LIKE ‘% &
TextBoxl4.Text & “%'”

End Sub
End Class
Due Date: Thursday , November 26, 2020 - | Dambase Print Preview
PlanmiD EmployeaiNam
Daductions
Flant 1D Wit
*Emplayne Nama GSIS Pramium:
Mo GSIS Salary Loan

GSIS EL
GSISEMRGL

GSIS PL:

Pag Ibig Pram:

Biasic
PERA
Paig Ibig ML:

Gross Amount
Prg Mig2:

Phil Haalth Pramiin

8. Personal Information System
Main:
Imports System.Data.OleDb
Public Class frmmain
Dim Oledr As OleDbDataReader
Dim Item As New ListViewItem()
Dim ItemSearch As New ListViewItem

Private Sub frmmain Load (ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Call ListStudentColumns (lststudent)

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 153

Lab: Visual Basic
Programming

NOTES

Self-Instructional
154 Material

Call openconnection ()

Call Initialized()

Call LoadListView ()

Call closeconnection ()

End Sub

Public Sub LoadListView ()
lststudent.Items.Clear ()

Call Initialized()

Oledr = OleDa.SelectCommand.ExecuteReader ()

Do While Oledr.Read()

Item = lststudent.Items.Add (Oledr (“studentno”) .ToString())
Item.SubItems.Add (Oledr (V“firstname”) .ToString())
Item.SubItems.Add (Oledr (“lastname”) .ToString())
Item.SubItems.Add (Oledr (“course”) .ToString())

Loop
Oledr.Close ()
End Sub

Private Sub btnAdd Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnAdd.Click

frmadd.ShowDialog ()

End Sub

Private Function UpdateValidateStudent () As Boolean
If lststudent.Items.Count = 0 Then

MsgBox (“No records.”, MsgBoxStyle.Information, “No
Records”)

Return True

Exit Function

End If

If 1lststudent.SelectedItems.Count > 1 Then

MsgBox (“Double click the record”,
MsgBoxStyle.Information)

lststudent.SelectedItems.Clear ()
Return True
Exit Function

End If

If 1lststudent.SelectedItems.Count = 0 Then

MsgBox (“Please choose the record you want to edit”,

MsgBoxStyle.Information)

ByVal

ByVval

MsgBoxStyle.YesNo + MsgBoxStyle.Question, “Delete?”)

Return True
Exit Function
End If

End Function

Private Sub btnEdit Click(ByVal sender As System.Object,

e As System.EventArgs) Handles btnEdit.Click
If UpdateValidateStudent () = True Then
Return

End If

frmedit.ShowDialog ()

End Sub

Private Function DeleteStudentValidate () As Boolean
If 1ststudent.Items.Count = 0 Then

MsgBox (“No Records to delete”)

Return True

Exit Function

End If

If 1lststudent.SelectedItems.Count = 0 Then

MsgBox (“Please choose the record you want to delete.”)
Return True

Exit Function

End If

End Function

Private Sub btnDelete Click(ByVal sender As System.Object,

e As System.EventArgs) Handles btnDelete.Click
If DeleteStudentValidate () = True Then

Return

End If

If MsgBox (“Do you really want to delete this record?”,

MsgBoxResult.No Then

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 155

Lab: Visual Basic
Programming

NOTES

Self-Instructional
156 Material

MsgBox (“Delete Cancelled.”, MsgBoxStyle.Information)
lststudent.SelectedItems.Clear ()

Exit Sub

End If

For Each Item As ListViewItem In lststudent.SelectedItems
Item.Remove ()

OleDa.DeleteCommand = New OleDbCommand ()

Call openconnection ()

OleDa.DeleteCommand.CommandText = “DELETE FROM tblstudent
WHERE studentno = @studentno”

OleDa.DeleteCommand.Connection = 0leCn

OleDa.DeleteCommand.Parameters.Add (“@studentno”,
OleDbType.VarChar, 50, “studentno”) .Value =
Item.Text.ToString ()

OleDa.DeleteCommand.ExecuteNonQuery ()
Call LoadListView ()

Call closeconnection ()

Next

MsgBox (“Record Deleted”)
lststudent.SelectedItems.Clear ()

End Sub

Private Sub btnRefresh Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btnRefresh.Click

Call openconnection ()
Call Initialized()
Call LoadListView ()
Call closeconnection ()

txtSearch.Clear ()

MsgBox ("Total Records = Y & lststudent.Items.Count,
MsgBoxStyle.Information, “Record”)
End Sub

Private Sub SearchStudent ()
lststudent.Items.Clear ()
Call Initialized()

OleDa.SelectCommand.CommandText = "“SELECT * FROM
tblstudent WHERE studentno Like '%%” & txtSearch.Text.
Trim.ToString() & “%%'”

OleDa.SelectCommand.Connection = OleCn
Oledr = OleDa.SelectCommand.ExecuteReader ()
Do While Oledr.Read()

ItemSearch = lststudent.Items.Add(Oledr (“studentno”).
ToString())

ItemSearch.SubItems.Add (Oledr (“firstname”) .ToString())
ItemSearch.SubItems.Add (Oledr (“lastname”) .ToString())
ItemSearch.SubItems.Add (Oledr (“course”) .ToString())

Loop
Oledr.Close ()
End Sub

Private Sub txtSearch TextChanged(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
txtSearch.TextChanged

OleDa.SelectCommand = New OleDbCommand ()

OleDa.SelectCommand.CommandText = “SELECT * FROM
tblstudent WHERE studentno Like '%%’”

OleDa.SelectCommand.Connection = OleCn
Call openconnection ()
OleDa.SelectCommand.ExecuteNonQuery ()
Call SearchStudent ()

Call closeconnection ()

End Sub
End Class
oyl Student Information System =
[oy Add Student E]
! SEARCH [1
n | Sudentho 1234 |
12345 | BSIT
7% | [First Name PREETY BSCS
| 2314 | BSEM
| 43 | BSCS
| 1835 | Last Name KHATRI BSIT
|
! Coursa BSIT | -
I 00| | ReFRESH

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 157

Lab: Visual Basic
Programming

NOTES

Self-Instructional
158 Material

Add Information:
Imports System.Data.OleDb

Public Class frmadd

Private Sub frmadd FormClosing (ByVal sender As Object,
ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles

Me.FormClosing
Call cleartext ()
txtsn.Focus ()

frmmain.lststudent.SelectedItems.Clear ()

End Sub

Private Sub frmadd Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Private Sub cleartext ()

Me.txtsn.Clear ()

Me.txtfn.Clear ()

Me.txtln.Clear ()

End Sub

Private Sub btnCancel Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnCancel.Click
Me.Close()

End Sub

Private Sub btnSave Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnSave.Click
If txtsn.Text =V Or txtfn.Text = % Or cmbcourse.Text

= “” Then
MsgBox (“Please don’t leave blank textfields”,

MsgBoxStyle.Information, “Missing data”)

Exit Sub
End If
Try

Call openconnection ()
OleDa.InsertCommand = New OleDbCommand ()

OleDa.InsertCommand.CommandText = “INSERT INTO tblstudent
(studentno, firstname, lastname, course)” & _

“WALUES (@studentno , @firstname, @lastname, @course)”
OleDa.InsertCommand.Connection = 0leCn

OleDa.InsertCommand.Parameters.Add (Y@studentno”,
OleDbType.VarWChar, 50, “studentno”) .Value = txtsn.Text

OleDa.InsertCommand.Parameters.Add (Y@firstname”,
OleDbType.VarWChar, 50, “firstname”) .Value = txtfn.Text

OleDa.InsertCommand.Parameters.Add (“@lastname”,
OleDbType.VarWChar, 50, “lastname”) .Value = txtln.Text

OleDa.InsertCommand.Parameters.Add (“@course”,
OleDbType.VarWChar, 50, “course”) .Value = cmbcourse.Text

OleDa.InsertCommand.ExecuteNonQuery ()

Call frmmain.LoadListView ()

Call closeconnection ()

MsgBox (“Records Saved”, MsgBoxStyle.Information, “Saved”)
Me.Close()

Catch ex As Exception

MsgBox (“Cannot Save this record, Existing Student Number”,
MsgBoxStyle.Information, “Error”)

Call closeconnection ()
txtsn.Focus ()
txtsn.SelectAll ()

End Try

End Sub

End Class

Delete Record:

oyl Student Information System

SEARCH

| sudertng Delete? “ b o]

|
12345 I SIT
8796 | 5CS
24 | 9 Do you really want to delete this record? SBM
N 505
36385 SIT

—_— 3
its | Mo
H ADD) EDIT | DELETE | [ReFrESH | '

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 159

Lab: Visual Basic
Programming

NOTES

Self-Instructional
160 Material

Edit Record:
Imports System.Data.OleDb
Public Class frmedit

Private Sub frmedit FormClosing(ByVal sender As Object,
ByVal e As System.Windows.Forms.FormClosingEventArgs) Handles
Me.FormClosing

Call cleartext ()
txtsn.Focus ()
frmmain.lststudent.SelectedItems.Clear ()

End Sub

Private Sub frmedit Load(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles MyBase.Load

Call openconnection ()
Call Initialized()

txtsn.Text = CStr (frmmain.lststudent.SelectedItems (0) .
Text)

Call Fill ()

Call closeconnection ()

End Sub

Private Sub cleartext ()
Me.txtsn.Clear ()
Me.txtfn.Clear ()
Me.txtln.Clear ()

End Sub

Private Sub Fill ()

Dim OleDr As OleDbDataReader
OleDa.SelectCommand = New OleDbCommand ()

OleDa.SelectCommand.CommandText = W“SELECT * From
tblstudent WHERE studentno = @studentno”

OleDa.SelectCommand.Parameters.Add (“@studentno”,
OleDbType.VarWChar, 50, “studentno”) .Value = txtsn.Text

OleDa.SelectCommand.Connection = OleCn

OleDr = OleDa.SelectCommand.ExecuteReader ()

If OleDr.HasRows () Then

OleDr.Read()

txtsn.Text = OleDr (“studentno”) .ToString ()
txtfn.Text = OleDr (“firstname”) .ToString /()
txtln.Text = OleDr (“lastname”) .ToString()
cmbcourse.Text = OleDr (“course”) .ToString ()
End If

OleDr.Close ()

End Sub

Private Sub btnCancel Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnCancel.Click

Me.Close ()
End Sub

Private Sub btnSave Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnSave.Click

If txtsn.Text =V Or txtfn.Text = V" Or txtln.Text = %"
Or cmbcourse.Text = “” Then

MsgBox (“Dont leave blank textfields”)

Exit Sub
End If
Try

Call openconnection ()
OleDa.UpdateCommand = New OleDbCommand ()

OleDa.UpdateCommand.CommandText = “UPDATE tblstudent SET
studentno = @studentno, firstname = @firstname, lastname =
@lastname, course = @course WHERE studentno = 2"

OleDa.UpdateCommand.Connection = OleCn

OleDa.UpdateCommand.Parameters.Add (“@studentno”,
OleDbType.VarWChar, 50, “studentno”) .Value = txtsn.Text

OleDa.UpdateCommand.Parameters.Add (“"@firstname”,
OleDbType.VarWChar, 50, “firstname”) .Value = txtfn.Text

OleDa.UpdateCommand.Parameters.Add(“@lastName”,
OleDbType.VarWChar, 50, “lastName”) .Value = txtln.Text

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 161

Lab: Visual Basic
Programming

NOTES

Self-Instructional
162 Material

OleDa.UpdateCommand.Parameters.Add (“@Course”,
OleDbType.VarWChar, 50, “Course”) .Value = cmbcourse.Text

OleDa.UpdateCommand.Parameters.Add (New
System.Data.OleDb.OleDbParameter ("“EmpID”,
System.Data.OleDb.OleDbType.VarWChar, 50,

System.Data.ParameterDirection.Input, False, CType (0,
Byte), CType (0, Byte), “studentno”, _

System.Data.DataRowVersion.Original, Nothing)) .Value =
frmmain.lststudent.SelectedItems (0) .Text

OleDa.UpdateCommand.ExecuteNonQuery ()
Call frmmain.LoadListView ()

Call closeconnection ()

MsgBox (“Records Updated”)

Me.Close()

Catch ex As Exception

MsgBox (“Cannot Update StudentNo is present”)
Call closeconnection ()

txtsn.Focus ()

txtsn.SelectAll ()

End Try

End Sub

End Class

oy Student Information System B

' .
i oe Edit Student E F

SEARCH —)
A Student No 1234
studentng | | =1
12345 BSIT
First 1 PREETY |
| 875 | st Nome: EE | B5Cs
| 2314 | | BSEM
34N | LastMame KHATRI | B5CS
3636 | | BSIT
124 | | BSIT
|

i | g A |
L J

9. Question Database and Conducting Quiz

T

| REFRESH |

Register:
Public Class Form2

Private Sub Form2 Load(sender As Object, e As EventArgs)
Handles MyBase.Load

End Sub

Private Sub LinkLabell LinkClicked(sender As Object, e
As LinkLabelLinkClickedEventArgs)

SIGN IN.Show ()
Me.Close ()
End Sub

Private Sub Buttonl Click(sender As Object, e As
EventArgs)

Home . Show ()
Me.Close ()
End Sub

Private Sub Button2 Click(sender As Object, e As
EventArgs)

End Sub

Private Sub GroupBoxl Enter (sender As Object, e As
EventArgs)

End Sub

Private Sub Button3 Click(sender As Object, e As
EventArgs)

quest6.Show ()
End Sub

Private Sub Buttonl Click 1(sender As Object, e As
EventArgs) Handles Buttonl.Click

My.Settings.Username = usernamel.Text

My.Settings.Password = passwordl.Text
My.Settings. Save ()
MsgBox (“Your Account Has Been Created”)

SIGN IN.Show ()

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 163

Lab: Visual Basic
Programming

NOTES

Self-Instructional
164 Material

Me.Close ()
End Sub

Private Sub LinkLabell LinkClicked 1 (sender As Object,
e As LinkLabelLinkClickedEventArgs) Handles
LinkLabell.LinkClicked

SIGN_IN.Show()
Me.Close ()
End Sub

Private Sub Button2 Click 1(sender As Object, e As
EventArgs) Handles Button2.Click

Forml.Show ()
End Sub

Private Sub CheckBoxl CheckedChanged (sender As Object,
e As EventArgs) Handles CheckBoxl.CheckedChanged

If CheckBoxl.Checked Then

False

passwordl .UseSystemPasswordChar

Else

passwordl .UseSystemPasswordChar = True
End If
End Sub

End Class

Sign In:
Public Class SIGN IN

Private Sub Buttonl Click(sender As Object, e As
EventArgs) Handles Buttonl.Click

If username2?2.Text = My.Settings.Username And
password2.Text = My.Settings.Password = True Then
Home . Show ()

Me.Close()

Else

MsgBox (“Incorrect Username Or Password”)
username?2.Clear ()

password2.Clear ()

End If

End Sub

Private Sub Button2 Click(sender As Object, e As
EventArgs) Handles Button2.Click

Forml.Show ()
Me.Close ()
End Sub

Private Sub Button3 Click(sender As Object, e As
EventArgs)

End Sub

Private Sub SIGN IN Load(sender As Object, e As EventArgs)
Handles MyBase.Load

End Sub

Private Sub CheckBoxl CheckedChanged(sender As Object,
e As EventArgs) Handles CheckBoxl.CheckedChanged

If CheckBoxl.Checked Then
password?2.UseSystemPasswordChar = False

Else

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 165

Lab: Visual Basic
Programming

NOTES

Self-Instructional
166 Material

password?.UseSystemPasswordChar = True
End If

End Sub

End Class

ul SIGMN_IN

Username: Preety Khatri

Question:

Public Class quest2

Private Sub Button2 Click(sender As Object, e As
EventArgs) Handles Button2.Click

Button2.Invalidate ()

If RadioButton3.Checked Then

MsgBox (“You are correct”)

quest8.LBLRIGHT.Text = quest8.LBLRIGHT.Text + 1
Else

MsgBox (“You are wrong”)

quest8.LBLWRONG.Text = quest8.LBLWRONG.Text + 1
End If

Dim quest6 As New quest2

Dim quest2 As New questi4

quest4.Show ()

Me.Hide ()

End Sub

Private Sub Label2 Click(sender As Object, e As EventArgs)
Handles Label2.Click

End Sub

Private Sub RadioButton4 CheckedChanged (sender As Object,
e As EventArgs) Handles RadioButton4.CheckedChanged

End Sub

Private Sub RadioButton3 CheckedChanged (sender As Object,
e As EventArgs) Handles RadioButton3.CheckedChanged

End Sub

End Class
e b T R S . L i —)

10. Personal Diary
Main:

Class clsEntry

Public Property dtDateOfentry As DateTime
Public Property strContent As String

Public Sub New(ByVal dtDate As DateTime,
ByVal strText As String)

dtDateOfentry = dtDate

strContent = strText

End Sub

Public Overrides Function ToString() As String
Return dtDateOfentry & “ % & strContent
End Function

End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 167

Lab: Visual Basic Module Modulel
Programming

Sub Main (ByVal args As String())

Dim objDiary As clsDiary = New clsDiary ()

NOTES Dim cSelection As Char = “0”c

While cSelection <> “4”c
objDiary.Welcome ()
Console.Writeline ()
Console.WritelLine (“"MAIN MENU")
Console.WriteLine (“1 — ADD RECORD"”)
Console.WriteLine (Y2 — VIEW RECORD”)
Console.WriteLine (“3 — EDIT RECORD”)
Console.WritelLine (“4 - DELETE RECORD”)
Console.WriteLine ("5 — EDIT PASSWORD"”)
Console.WriteLine (“6 — EXIT")
Console.WriteLine (“ENTER YOUR CHOICE”)

cSelection = Console.ReadKey () .KeyChar
Console.WriteLine ()

Select Case cSelection

Case “1”c

objDiary.Add()

Case “2"c

objDiary.View ()

Case “3”c

objDiary.Edit ()

Case “4"c

objDiary.Delete ()

Case “5"c

objDiary.Edit ()

Case “6”c

Console.WritelLine (“Press any key to exit.”)
Case Else

Console.WriteLine (“Error.”)

Self-Instructional
168 Material

End Select Lab: Visual Basic
Programming

Console.ReadKey ()
End While

End Sub NOTES
End Module

MAIN MEMNU:

ADD RECORD
UIEW RECORD
EDIT RECORD
DELETE RECORD

EDIT PASSWORD
EXIT

ENTER YOUR CHOICE:

Add/Delete or Search Items:
Public Sub Add(ByVal dtDate As DateTime, ByVal strText _
As String)
lstEntries.Add (New clsEntry(dtDate, strText))
End Sub

Public Sub Delete (ByVal dtDate As DateTime)

Dim lstResults As List (Of clsEntry) = Find(dtDate, True)
For Each Entry As clsEntry In lstResults
1stEntries.Remove (Entry)

Next

End Sub

Public Function Find(ByVal dtDate As DateTime, ByVal
blnTime

As Boolean) As List (Of clsEntry)

Dim lstResults As List(Of clsEntry) = New List (Of
clsEntry) ()

For Each Entry As clsEntry In lstEntries

If ((blnTime) AndAlso (Entry.dtDateOfentry =
dtDate)) OrElse ((Not blnTime) AndAlso
(Entry.dtDateOfentry.Date = dtDate.Date))

Then lstResults.Add (Entry)

Self-Instructional
Material 169

Lab: Visual Basic
Programming

NOTES

Self-Instructional
170 Material

Next
Return lstResults

End Function

Class clsDiary

Private dbData As clsDatabase
Public Sub New ()

dbData = New clsDatabase ()
End Sub

Private Function GetDate () As DateTime

Dim dtDate As DateTime

While Not DateTime.TryParse (Console.ReadLine (), dtDate)
Console.WriteLine (“Error. Try again:”)

End While

Return dtDate

End Function

Public Sub Print (ByVal dtDay As DateTime)
Dim lstResults As List (Of clsEntry) = dbData.Find(dtDay,

False)

For Each Entry As clsEntry In lstResults
Console.WritelLine (Entry)

Next

End Sub

Public Sub Add ()

Dim dtDate As DateTime = GetDate ()
Console.WritelLine (“Enter the entry text:”)
Dim strText As String = Console.ReadLine ()
dbData.Add (dtDate, strText)

End Sub

Public Sub Search ()
Dim dtDate As DateTime = GetDate ()
Dim lstResults As List (Of clsEntry) = dbData.Find(dtDate,

_ False)

dd]

If IstResults.Count() > 0 Then
Console.WritelLine (“Found:"”)

For Each Entry As clsEntry In lstResults
Console.WriteLine (Entry)

Next

Else

Console.WriteLine (“Nothing found.”)

End If

End Sub

Public Sub Delete()

Dim dtDate As DateTime = GetDate ()
dbData.Delete (dtDate)

End Sub

Public Sub Welcome ()
Console.Clear ()

Console.WriteLine (“"ENTER DATE OF YOUR RECORD: [yyyy-mm-

:”, DateTime.Now))

Console.WriteLine (“ENTER TIME:"”)
Console.WriteLine (“ENTER NAME:”)
Console.WritelLine ("ENTER PLACE:”)
Console.WriteLine ("ENTER DURATION:")
Console.WriteLine ("NOTE:”)
Console.WriteLine (“"ADD ANOTHER RECORD..<Y/N>"
Print (DateTime.Today)
Console.WriteLine ()

Print (DateTime.Now.AddDays (1))
Console.WriteLine ()

End Sub

End Class

Lab: Visual Basic
Programming

NOTES

Self-Instructional
Material 171

Lab: Visual Basic
Programming

NOTES

Self-Instructional
172 Material

ENTER

ENTER
ENTER
ENTER
ENTER

DATE OF ¥YOUR RECORD: [yyyy—mm—dd]

TIME:-Lhh:mml1:=-18:-85%
NHNAME =z Fr»ank

PLACE : Kat hmandu
DURAT IOHN:=2Zh»

HOTE:-zOff ice meeting

OUR RECORD IS ADDED. ..

ADD AMOTHER RECORD. . . <Y.“HN>

	Prelims.pdf
	Block.pdf

