Sub. Code	
541101	

M.C.A. DEGREE EXAMINATION, NOVEMBER - 2023

First Semester

Computer Applications

COMPUTER ARCHITECTURE AND ORGANIZATION

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following questions by choosing the correct option.

- 1. What is the binary representation of the decimal number 42? (CO1, K5)
 - (a) 101010 (b) 101001
 - (c) 110100 (d) 100100
- 2. In the binary number system, what is the value of the leftmost bit in a signed integer representation? (CO1, K2)
 - (a) Positive sign
 - (b) Negative sign
 - (c) Most significant bit
 - (d) Least significant bit

- 3. The CPU's clock speed is measured in: (CO2, K2)
 - (a) Hertz (Hz) (b) Kilobytes (KB)
 - (c) Megabits (Mb) (d) Gigabytes (GB)
- 4. What is the primary function of the CPU in a computer system? (CO2, K2)
 - (a) Input data from peripherals
 - (b) Execute program instructions
 - (c) Store long-term data
 - (d) Manage power supply
- 5. Which CPU component holds the memory address of the data that is currently being accessed or modified?

(CO3, K2)

- (a) Program Counter (PC)
- (b) Stack Pointer (SP)
- (c) Memory Address Register (MAR)
- (d) Accumulator (ACC)
- 6. Which of the following is NOT a primary function of the CPU? (CO3, K2)
 - (a) Arithmetic and Logic Operations
 - (b) Input/Output Operations
 - (c) Control Unit Operations
 - (d) Data Storage

 $\mathbf{2}$

7.	Whi that	ich CPU component t is ready to be proce	t is ssed	responsib by the Al	le for l LU?	nolding data (CO4, K2)
	(a)	Program Counter	(PC)			
	(b)	Accumulator				
	(c)	Stack Pointer (SP)				
	(d)	Memory Address F	Regis	ster (MAR)	
8.	Wha	at does the Control U	Jnit	(CU) do in	n the CH	2U? (CO4, K2)
	(a)	Executes program	inst	ructions		
	(b)	Performs arithmet	ic ca	lculations	8	
	(c)	Manages data stor	age			
	(d)	Coordinates the ac	tivit	ies of all (CPU cor	nponents
9.	The	small extremely fas	st, R	AM's all o	called a	s (CO5, K2)
	(a)	Heaps	(b)	Accumu	lators	
	(c)	Stacks	(d)	Cache		
10.	Whi syst	ile using the direct cem the higher orde	maj er 5	pping tec bits are	hnique, used fo	in a 16 bit r (CO5, K2)
	(a)	Id	(b)	Word		
	(c)	Tag	(d)	Block		
			3		[R0282

3

Part B $(5 \times 5 = 25)$

Answer all the questions not more than 500 words each.

- 11. (a) Using DeMorgan's theorem, show that :
 - (i) (A+B)' (A'+B')' = 0
 - (ii) A + A' B + A' B' = 1 (CO1, K3)

 \mathbf{Or}

- (b) Describe the fixed point and floating point representation. (CO1, K2)
- 12. (a) Bring out the difference between combinational logic and sequential logic. (CO2, K6)

Or

- (b) With a neat logic diagram explain the operation of D and T flip-flops. (CO2, K3)
- 13. (a) Illustrate the major phases involved in processing an instruction with a flowchart. (CO3, K3)

Or

- (b) Explain the Interrupt-Initiated I/O in detail. (CO3, K2)
- 14. (a) Briefly describe the various program control instructions. (CO4, K2)

Or

4

(b) Identify any two applications of stack organization. (CO4, K5)

15. (a) Elaborate the design of interfacing I/O devices with a block diagram. (CO5, K6)

Or

(b`) Describe Asynchronous data transfer.	(CO5.	K2))
V	Υ,		(000,		٢.

Part C $(5 \times 8 = 40)$

Answer all the questions not more than 1000 words each.

16. (a) Describe the two level implementation of combinational circuit. (CO1, K1)

Or

- (b) Simplify the following Boolean function in sum-of-products form by means of a four-variable F(A,B,C,D) =Karnaugh map. (CO1, K3) $\Sigma(0,2,8,9,10,11,14,15)$.
- 17. (a) Design a half adder as a two-level AND-OR circuit and show how to implement a full adder using two half adders and a external logic gate. (CO2, K6)

Or

- (b) Design an adder to perform arithmetic addition of two decimal bits in BCD. (CO2, K6)
- 18. (a) Bring out the complete control sequence for executing the instruction ADD R1, (R2) for the single bus processor. (CO3, K5)

Or

(b) Draw Timing and Control unit of basic computer and Explain. (CO3, K3)

 $\mathbf{5}$

19. (a) Explain the different type of addressing modes with suitable example. (CO4, K2)

Or

(b) Identify the various Data transfer and manipulation instruction to perform operations on computer.

(CO4, K5)

20. (a) With a neat sketch bring out the data driven techniques adopted in DMA. (CO5, K2)

Or

(b) Discuss the concept of virtual memory and explain how a virtual memory system is implemented, pointing out the hardware and software support.

(CO5, K2)

6

Sub. Code	
541102	

M.C.A. DEGREE EXAMINATION, NOVEMBER - 2023

First Semester

Computer Applications

OBJECT ORIENTED PROGRAMMING AND C++

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

$\mathbf{Part}\,\mathbf{A} \qquad (10\times 1=10)$

Answer **all** the following questions by choosing the correct option.

1.	Whic reus	ch of these featur ability?	res of	f OOP would in	dicate code (CO1, K2)
	(a)	Polymorphism	(b)	Abstraction	
	(c)	Inheritance	(d)	Encapsulation	
2.	Obje prog	ct oriented progr ramming approach	amm	ing employs —	(CO1, K2)
	(a)	top-down	(b)	procedural	
	(c)	bottom-up	(d)	all of these	
3.	Defa	ult return type of f	unctio	ons in CPP is	(CO2, K3)
	(a)	void	(b)	long	
	(c)	char	(d)	Int	
4.	Wha	t is an object in c++	-?		(CO2, K2)
	(a)	It is a function of o	class		
	(b)	It is an instance of	f the o	class	
	(c)	It is the data type	of cla	iss	

(d) It is part of the syntax of class

5.	Why	r is a virtual fu	nctio	n mainly used	to achieve? (CO3, K1)
	(a)	Function code pol	ymor	phism	× / /
	(b)	Interpreter polym	orph	ism	
	(c)	Compile-time poly	ymorp	ohism	
	(d)	Runtime polymor	phisn	ı	
6.	Virt	ual functions shoul	d be o	lefined in.	(CO3, K1)
	(a)	Derived class			
	(b)	Base class			
	(c)	Both base and der	rived	class	
	(d)	None			
7.	Wha	t is a template?			(CO4, K1)
	(a)	A template is a fo	rmula	a for creating a g	eneric class
	(b)	A template is use	d to n	nanipulate the cl	ass
	(c)	A template is use	d for	creating the attri	butes
	(d)	None of the above	;		
8.	Wha	t are Iterators?			(CO4, K1)
	(a)	Iterators are used	l to it	erate over C-like	arrays
	(b)	Iterators are used	l to it	erate over pointe	rs
	(c)	Iterators are use STL containers	ed to	point memory	addresses of
	(d)	Iterators are used	l to it	erate over function	on
9.	Whi	ch keyword is used	to ha	ndle the expection	on?(CO5, K1)
	(a)	Try	(b)	Throw	
	(c)	Catch	(d)	None of the abo	ove
10.	Whie C++	ch of the following program?	excer	otions can be gen	erated in the (CO5, K1)
	(a)	Divide by zero	(b)	File not found	
	(c)	Index out of boun	d (d)	Buffer overflow	
			2		R0283

 $\mathbf{2}$

Part B $(5 \times 5 = 25)$

Answer all the questions not more than 500 words each.

11. (a) Write down the is program structure of C++. (CO1, K2)

Or

(b)	Narrate the features of OOPS.	(CO1, K2)
-----	-------------------------------	-----------

12.Explain the principles of function overloading. (a) (CO2, K2)

Or

- (b) Illustrate the Recursive Functions with an example. (CO2, K3)
- 13.(a) What are the rules for virtual functions? (CO3, K1)

Or

- Write the significance of pure virtual functions in (b) C++. (CO3, K2)
- 14. Explain the different forms of File Opening Modes. (a) (CO4, K2)

Or

- (b) Explain the role of seekg(), seekp(), tellg() and tellp() functions in the process of random. (CO4, K5)
- Write a program in C++ to handle "divide by zero" 15.(a) exception. (CO5, K6)

Or

What are the tasks that are performed by the error (b) handling mechanism?

3

(CO5, K2)
R0283	

Part C $(5 \times 8 = 40)$

Answer all the questions not more than 1000 words each.

16. (a) Define Object-oriented programming and Explain feature of Object oriented programming. How it is different than procedure oriented programming? (CO1, K3)

Or

(b) Inustrate C^{++} Data Types. (CO1, K	(b)	Illustrate C++ Data Types.	(CO1, K2
--	-----	----------------------------	----------

17. (a) What is Constructor? Explain types of Constructor with example. (CO2, K2)

Or

- (b) What is object and how to implement in C++ program? (CO2, K2)
- 18. (a) Classify the types of Inheritance with an example. (CO3, K3)

Or

- (b) With a suitable example explain Abstract Base Class. (CO3, K2)
- 19. (a) Write a C++ program using function template to find the product of two integer or floating point type of data. (CO4, K6)

Or

- (b) Explain the Standard Template Library and how it is working principles. (CO4, K2)
- 20. (a) Draw a neat and clean diagram to show exception handling model in C++. (CO5, K6)

Or

(b) Write down a detailed C++ program to demonstrate the use of try, catch, throw and nested try. (CO5, K6)

4

Sub. Code	
541103	

M.C.A. DEGREE EXAMINATION, NOVEMBER - 2023

First Semester

Computer Applications

RELATIONAL DATABASE MANAGEMENT SYSTEM

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct answer.

- 1. The ———— of a database describes its overall structure. (CO1, K1)
 - (a) Schema (b) Instance
 - (c) Design (d) Structure
- 2. _____ offers the ability to query the data and insert, alter, and delete tuples. (CO1, K2)
 - (a) Transaction Control Language (TCL)
 - (b) Data Control Language (DCL)
 - (c) Data Definition Language (DDL)
 - (d) Data Manipulation Language (DML)
- 3. Which of the following is used to denote the selection operation in relational algebra? (CO2, K1)
 - (a) Pi (b) Sigma
 - (c) Lambda (d) Omega

4.		is fun	dame	ntal operation	in relational
	alge	bra			(CO2, K2)
	(a)	Set intersection	(b)	Natural join	
	(c)	Select	(d)	None of the me	ntioned
5.	Whie list o	ch operator is used of values?	l to co	ompare a value	to a specified (CO3, K1)
	(a)	ANY	(b)	BETWEEN	
	(c)	ALL	(d)	IN	
6.	4NF	is designed to cope	e with	:	(CO3, K1)
	(a)	Transitive depend	lency		
	(b)	Join dependency			
	(c)	Multi valued depe	enden	cy	
	(d)	None of these			
7.	Whi in th	ch of the following ne database?	make	es the transactio	n permanent (CO4, K1)
	(a)	View	(b)	Commit	
	(c)	Rollback	(d)	Flashback	
8.	In o: data	rder to maintain th base provides	ne cor	nsistency during	transactions (CO4, K1)
	(a)	Commit	(b)	Atomic	
	(c)	Flashback	(d)	Retain	
9.	Hasl orde	h files are stored r.	in n	nemory in a —	(CO5, K1)
	(a)	Consecutive	(b)	Random	
	(c)	Simultaneous	(d)	Line by line	
10.	tree.	is used	to li	nk the leaf nod	es in the B+ (CO5, K1)
	(a)	Stack	(b)	Queue	
	(c)	Linked List	(d)	None	
			2		R0284
					-

Part B $(5 \times 5 = 25)$

Answer all the questions not more than 500 words each.

11.	(a)	Enumerate	the	problems	in	file	system	data
	management.						(CO)	1, K3)

Or

- (b) What are the levels of data abstraction? Explain. (CO1, K2)
- 12. (a) State about PROJECT operation in Relational algebra. (CO2, K2)

Or

(0) Explain the set operations. $(002, \mathbf{R})$	(b)	Explain the set operations.	(CO2, K3)
---	-----	-----------------------------	-----------

13. (a) List and explain various DML, DDL commands in SQL. (CO3, K3)

Or

- (b) Explain various Data types used in SQL. (CO3, K3)
- 14. (a) Define a Transaction. List the properties of transaction. (CO4, K2)

Or

- (b) What is timestamp? Explain different timestamps used by a transaction. (CO4, K3)
- 15. (a) Explain the structure of B^+ tree. (CO5, K3)

Or

(b) Compare I/O costs for all file organizations.

(CO5, K3)

3

Part C $(3 \times 8 = 40)$

Answer **all** the questions not more than 1000 words each.

16.	(a)	Explain E-R model in detail. (CO1, K3)
		Or
	(b)	Draw an ER diagram for the relations Student and Department with relevant relationships. (CO1, K4)
17.	(a)	Define join operation. Explain different join operations in detail. (CO2, K3)
		Or
	(b)	Explain Aggregate Functions with suitable examples. (CO2, K3)
18.	(a)	Explain about 1NF, 2NF with relevant examples. (CO3, K3)
		Or
	(b)	Define Functional Dependencies. Discuss about different functional dependencies. (CO3, K3)
19.	(a)	Discuss different phases (states) of transaction. (CO4, K3)
		Or
	(b)	Illustrate Concurrent execution of transaction with examples. (CO4, K5)
20.	(a)	Explain in detail about ISAM. (CO5, K3)
		Or
	(b)	With suitable example explain the insertion and deletion operations which are performed in B ⁺ tree (CO5, K4)
		4 R0284

Sub. Code	
541104	

M.C.A. DEGREE EXAMINATION, NOVEMBER - 2023

First Semester

Computer Applications

DISCRETE MATHEMATICS

(CBCS - 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

1. $\exists P \lor Q \Leftrightarrow$ _____. (CO1, K1) (a) $P \to Q$ (b) $Q \to P$ (c) $P \to P$ (d) $Q \to Q$

2. A formula which is equivalent to a given formula and which consists of product of elementary sums is called _______ of the given formula (CO1, K1)

(a)	DNF	(b)	CNF
(c)	NOR	(d)	NAND

3. Commutative law is

(CO2, K1)

- (a) A = B (b) A' = B
- (c) $A \cap B = B \cap A$ (d) A B = 0

4.	A re	elation R is a set X	is call	ed if it reflexive,
	sym	metric and transit	cive.	(CO2, K2)
	(a)	coset	(b)	poset
	(c)	well ordered	(d)	equivalence relation
5.	For posi	the semigroup (N, tive m, then (T, x)	x), let is a	the T be set of multiples of a of (N, x). (CO3, K2)
	(a)	subsemigroup	(b)	subgroup
	(c)	group	(d)	monoid
6.	Any	one-to-one mapp of S.	oing of	a set S onto S is called a (CO3, K1)
	(a)	group	(b)	composition
	(c)	permutation	(d)	function
7.	The is ca	number of alled the length of	appear the pa	ring in the sequence of a path th. (CO4, K1)
	(a)	vertexes	(b)	edges
	(c)	walks	(d)	graphs
8.	A gr calle	raph in which we ed a	ights a	are assigned to every edge is (CO4, K1)
	(a)	null graph	(b)	point graph
	(c)	digraph	(d)	weighted graph
9.	Let	S be the sample sp	pace th	en P(S) =
				(CO5, K2)
	(a)	0	(b)	1
	(c)	0.5	(d)	None of these
			2	R0285

10.	The	mean	of binomial	distri	bution	n is 8 and variance is 6
	ther	n q =	·			(CO5, K2)
	(a)	4/3		(b)	3/4	
	(c)	3/2		(d)	2/3	
			Pa	rt B		$(5 \times 5 = 25)$

Answer all the questions not more than 500 words each.

11. (a) Show that (CO1, K3)

$$P \to (Q \to R) \Leftrightarrow P \to (\exists Q \lor R) \Leftrightarrow (P \land Q) \to R$$

Or

- (b) Does P follow from $P \lor Q$. (CO1, K3)
- 12. (a) Show that for any two sets A and B, $A - (A \cap B) = A - B$. (CO2, K4)

 \mathbf{Or}

(b) If $A = \{\alpha, \beta\}$ and $B = \{1, 2, 3\}$ what are $A \times B$, $B \times B$, $A \times A$, $B \times B$ and $(A \times B) \cap (B \times A)$?

(CO2, K3)

13. (a) Given the algebraic system (N, +) and $(Z_4, +_4)$, Where N is the set of natural numbers and + is the operation of addition on N, Show that there exists a homomorphism from (N, +) to $(Z_4, +_4)$. (CO3, K3)

Or

(b) Let (S, *) and (T, Δ) be two semigroups and g be the semi-group homomorphism from (S, *) to (T, Δ). Prove that the corresponding to the homomorphism g, there exists a congruence relation R on (S, *) is defined by x R y iff g(x) = g(y) for x, y ∈ S (CO3, K3)

3

14. (a) In a simple digraph, the length of any elementary path is less than or equal to n-1, where n is the number of nodes in the graph. Prove. (CO4, K4)

 \mathbf{Or}

- (b) Show that every graph has at least 2 vertices that are NOT cut vertices. (CO4, K3)
- 15. (a) An integer is chosen at random out of the integers from 1 to 100. What is the probability that, it is
 (i) multiple of 5 (ii) divisible by 7 (iii) greater than 70? (CO5, K3)

Or

(b) If a pair of dice is thrown find the probability that the sum is neither 7 nor 11. (CO5, K3)

Part C $(5 \times 8 = 40)$

Answer all questions not more than 1000 words each.

16. (a) Show that $R \land (P \lor Q)$ is a valid conclusion from the premises $P \lor Q, Q \to R, P \to M$ and $\exists M. (CO1, K4)$

 \mathbf{Or}

(b) Show that
$$(x)(P(x) \lor Q(x)) \Rightarrow (x)P(x) \lor (\exists x)Q(x).$$

4

(CO1, K4)

- 17. (a) (i) Let $X = \{1, 2, 3, 4\}$. (CO2, K4) If $R = \{(x, y) | x \in X \land y \in X \land ((x - y)) \text{ in an integral nonzero multiple of } 2\}$; $S = \{(x, y) | x \in X \land y \in X \land ((x - y)) \text{ is an integral nonzero multiple of } 3\}$. Find $R \cup S$, $R \cap S$, R - S, S - R.
 - (ii) If X = {1, 2, 3,...}, Find $R \cup S$, $R \cap S$, R - S, S - R.

Or

- (b) Let R and S be two relations on a set of positive integers I : R = $\{(x, 2x) | x \in I\}$, $S = \{(x, 7x) | x \in I\}$. Find R o S, R o R, R o R o R and R o S o R. (CO2, K4)
- 18. (a) The subset $H = \{[0], [1]\}$ is a subgroup of $(Z_4, +_4)$. Show that the left cosets of H in G determined by the elements of G are $\{[1], [3]\}$ and $\{[0], [2]\}$, which is a partition of Z_4 . (CO3, K4)

Or

(b) Prove that every finite group of order n is isomorphic to a permutation group f degree n.

(CO3, K4)

19. (a) Narrate the steps of WARSHALL algorithm.

(CO4, K5)

Or

- (b) Let the (T, v) be a rooted tree. Then prove that
 - (i) There is no cycles in T
 - (ii) v is the only root of T
 - (iii) Each vertex in t, other than v, has in-degree one, and v has in- degree zero. (CO4, K4)

 $\mathbf{5}$

20. (a) The results of examinations in two papers A and B for 20 candidates were as follows:

8 candidates passed in paper A; 7 candidates passed in paper 8; 8 candidates passed in both paper A and paper B.

If out of these candidates one is selected, what is the probability that he / she (i) passed in both the papers (ii) failed only in A (iii) failed in A or B.

(CO5, K5)

Or

(b) The screws are produced by a certain machine were checked by examining number of defectives in a sample of 8. The following table shows the distribution of 128 samples according to the number of defective items they contained:

No. of defective 0 1 2 3 4 5 6 7 Total sample of 8

No. of sample 7 6 19 35 30 23 7 1 128

- (i) Fit a binomial distribution and find the expected frequencies if the chance of machine being defective is 1/2.
- (ii) Find the mean and standard deviation of the fined distribution. (CO5, K5)

6

Sub. Code
541551

M.C.A. DEGREE EXAMINATION, NOVEMBER - 2023

First Semester

Computer Applications

Elective - COMPUTER NETWORKS

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

- 1. Some broadcast systems support transmission to a subnet of the machines. (CO1, K1)
 - (a) Multi casting
 - (b) Bras casting
 - (c) Subnet casting
 - (d) Support casting
- 2. Give the expansion for UDP

(CO1, K1)

- (a) User Data Protocol
- (b) User Datagram Protocol
- (c) User Durable Protocol
- (d) User Dummy Protocol

- 3. Mention the loss of energy as the signal propagates outward (CO2, K2)
 - (a) Lossy Signal
 - (b) Outward Signal
 - (c) Attenuation
 - (d) Lossination
- 4. When the telephone is acquired by the new base station before the previous one signs off, it is called as any one of the following (CO2, K2)
 - (a) Hard Handoff
 - (b) Medium Handoff
 - (c) Tele Handoff
 - (d) Soft Handoff
- 5. Number of bit positions in which two codewords differ

(CO3, K3)

- (a) Hamming Distance
- (b) Hamming Code
- (c) Hamming Position
- (d) Hamming Numbers
- 6. Write the expansion for PAR

(CO3, K3)

- (a) Positive Acknowledgement with Rotation
- (b) Positive Acknowledgement with Retransmission
- (c) Positive Acknowledgement with Readiness
- (d) Positive Acknowledgement with Reply

2

- 7. The variation in the packet arrival times called (CO4, K4)
 - (a) Jammer
 - (b) Jimmer
 - (c) Jitter
 - (d) Jumper
- 8. Service access point (SAP) between the transport layer and the communication control layer is a (CO4, K4)
 - (a) Transport Service Access Position
 - (b) Transport Service Access Control
 - (c) Transport Service Access Layer
 - (d) Transport Service Access Point
- 9. They are strings of Text that can are links to other pages (CO5, K5)
 - (a) Hyperlinks
 - (b) Hypertext
 - (c) Hyperpage
 - (d) Hyperstrings
- 10. What is the art of devising ciphers and breaking them (COT = VT)

 $(\mathrm{CO5},\,\mathrm{K5})$

- (a) Crypanalysis
- (b) Cryptography
- (c) Cryptcipers
- (d) Cryptart

3

Answer ${\bf all}$ the questions not more than 500 words each.

11.	(a)	Write short note on MAN and WAN. (CO1, K2)
		Or
	(b)	Compare TCP/IP and OSI Reference Models. (CO1, K2)
12.	(a)	Explain any two unguided transmission media used in Computer Networks. (CO2, K2)
		Or
	(b)	Write short note on First Generation Mobile Phones. (CO2, K2)
13.	(a)	Discuss in detail about the Error Correcting Codes. (CO3, K3)
		Or
	(b)	Explain about Simplex Stop and Wait Protocol.
		(CO3, K1)
14.	(a)	Briefly describe about Flooding with an example. (CO4, K2)
		Or
	(b)	Explain the Leaky bucket Algorithm. (CO4, K5)
15.	(a)	Write short note on Basic Functions of Email. (CO5, K2)
		Or
	(b)	Give detailed note on Transposition Ciphers. (CO5, K2)

4

Part C $(5 \times 8 = 40)$

Answer **all** the questions not more than 1000 words each.

16. (a) Explain the OSI Reference Model with a neat diagram. (CO1, K1)

Or

- (b) Describe the different types of Topologies in Computer Networks. (CO1, K1)
- 17. (a) Explain in detail about Communication Satellites. (CO2, K2)

Or

- (b) Discuss about the following in detail: (CO2, K2)
 - (i) VRC
 - (ii) LRC
 - (iii) CRC
- 18. (a) Describe the different types of Switching with examples. (CO3, K1)

Or

(b) Explain Link State Routing with an example.

(CO3, K5)

19. (a) Discuss about SMTP, POP3 and MIME with examples. (CO4, K1)

Or

(b) Explain about DNS and SNMP with examples.

 $\mathbf{5}$

(CO4, K5)
R0286

20. (a) Describe about the DES and Triple DES with examples. (CO5, K5)

Or

(b) Explain the RSA algorithm with an example.

(CO5, K5)

6

Sub. Code
541301

M.C.A. DEGREE EXAMINATION, NOVEMBER - 2023

Third Semester

Computer Applications

DATA SCIENCE AND BIG DATA ANALYTICS

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective questions by choosing the correct option.

- 1. Data in ——— bytes size is called Big Data.(CO1, K1)
 - (a) Tera (b) Giga
 - (c) Peta (d) Meta
- 2. How many V's of Big Data? (CO1, K1)
 - (a) 2 (b) 3
 - (c) 4 (d) 5
- 3. Data that does not conform to a data model or data schema is known as ————. (CO2, K2)
 - (a) Structured data
 - (b) Unstructured data
 - (c) Semi-structured data
 - (d) All

4.	Amo: Tech	ngst which of the nologies?	e foll	lowing is/are not	Big Data (CO2, K2)
	(a)	Apache Hadoop	(b)	Apache Spark	
	(c)	Apache Kafka	(d)	Apache Pytarch	
5.		—— programmin	g lan	guage is a dialect o	of S. (CO3, K3)
	(a)	В	(b)	С	
	(c)	R	(d)	Κ	
6.	Fina publi	lly, in ——— F ic.	R vers	sion 1.0.0 was relea	ased to the (CO3, K3)
	(a)	2000	(b)	2005	
	(c)	2010	(d)	2012	
7.	The activ	R-help and ——— e for over a decade	— n now.	nailing lists have b	een highly (CO4, K3)
	(a)	R-mail	(b)	R-devel	
	(c)	R-dev	(d)	R-del	
8.		——— partitions th	ie obj	ects into different g	groups. (CO4, K4)
	(a)	Mapping	(b)	Clustering	
	(c)	Classification	(d)	Prediction	
9.	Clus	tering is ———			(CO5, K4)
	(a)	Supervised learning	ng		
	(b)	Unsupervised lear	ning		
	(c)	(a) and (b) both			
	(d)	None of the above			
10.	Data	Analytics uses —		— to get insights f	from data. (CO5, K5)
	(a)	Statistical figures			
	(b)	Numerical aspects	8		
	(c)	Statistical method	s		
	(d)	None of the above]
			2		R0287

Answer **all** the questions not more than 500 words each.

11. (a) List the important uses of Data Analytics. (CO1, K1)

		Or	
	(b)	Explain in detail about the chara Hadoop.	cteristics of (CO1, K1)
	<i>.</i>	-	
12.	(a)	Explain about (i) Data Collection (ii) Da	ta Cleaning.
			(002, K2)
		Or	
	(b)	Summaries the applications of R progra	imming.
			(CO2, K2)
13	(9)	List out the differences between K	Means and
10.	(a)	Hierarchical Clustering	(CO3 K3)
			(000,110)
		Or	
	(b)	With suitable example explain. Apriori	algorithm.
			(CO3, K3)
14.	(a)	Explain in detail about Information Gai	in. (CO4, K5)
		Or	
	(b)	List areas where the genetic algorithms	is utilized.
			(CO4, K5)
15.	(a)	Compare Hadoop verses MapReduce.	(CO5, K4)
	()		(, ,
		Or	
	(b)	Classify the important usage of Mongol	DB.(CO5, K4)
		3	R0287

Part C $(5 \times 8 = 40)$

Answer all the questions not more than 1000 words each.

16. (a) Explain in detail about the four types of data analytics. (CO1, K1)

Or

- (b) Explain about (i) Data Identification (ii) Data Extraction. (CO1, K1)
- 17. (a) Discuss various types of Dirty data in detail. (CO2, K2)

Or

- (b) Summarize the types of ANOVA tests in detail. (CO2, K2)
- 18. (a) Describe in detail about different types of Clustering Algorithms. (CO3, K3)

Or

- (b) Explain number of clusters in a data set and explain it. (CO3, K3)
- 19. (a) Describe Time Series analysis with suitable example. (CO4, K5)

Or

- (b) Explain briefly about Autoregressive Integrated Moving Average. (CO4, K5)
- 20. (a) Categorize the characteristics and applications of HBase. (CO5, K4)

Or

(b) Discuss important advantage and disadvantages of Data Visualization. (CO5, K1)

4

Sub. Code	
541302	

M.C.A. DEGREE EXAMINATION, NOVEMBER - 2023

Third Semester

Computer Applications

PYTHON PROGRAMMING

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A	$(10 \times 1 = 10)$

Answer ALL the following objective questions by choosing the correct option.

- 1. Which type of Programming does Python support? (CO1, K2)
 - (a) object-oriented programming
 - (b) structured programming
 - (c) functional programming
 - (d) all of the mentioned
- 2. What will be the output of the following Python expression? (CO1, K2)

>>>round(4.576)

- (a) 4 (b) 4.6
- (c) 5 (d) 4.5

3.	What	will be	e the	output	of	the	followi	ng progra (CO2,	am? K3)
	for i in	range(10, 2, -	-2):					
		pri	nt(i, er	nd="")					
	print()							
	(a) 2	24681	0						
	(b) 1	0864	2						
	(c) 1	0864							
	(d) N	None							
4	The o	utput of	the f	ollowing	r pr	ogra	m is —		
	1110 0	atput of		0110 (01112	, p-	ogra		(CO2,	K4)
	nameI	List = ['S	uresh	, 'Karth	ik', '	'Balu	ı', 'Dura	i']	
	print(r	nameLis	t[1] [–	1]					
	(a) h	1		(b)	u				
	(c) i			(d)	k				
5.	What	will be	the o	utput of	f th	e fol	lowing	Python co (CO3,	de? K3)
	print("	ʻabc. DE	F".cap	italize()))				
	(a) A	Abc. def		(b)	ab	c. de	f		
	(c) A	Abc. Def		(d)	AI	BC. E)EF		
6.	Which	of the	follo	wing co	mm	ands	s will c	reate a l (CO3,	ist? K2)
	(a) l	ist1 = lis	st()						
	(b) l	ist1 =[]							
	(c) l:	ist1 = lis	st([1, 2	l, 3])					
	(d) a	ll of the	ment	ioned					
				2				R0288	3

7.	Whi prog	ch of the following is not a core data type ramming?	in Python (CO4, K2)
	(a)	Tuples	
	(b)	Lists	
	(c)	Class	
	(d)	Dictionary	
8.		is used to create an object.	(CO4, K1)
	(a)	Class	
	(b)	Constructor	
	(c)	User-defined functions	
	(d)	In-built functions	
9.	CSV	stands for ———.	(CO5, K1)
	(a)	Comma Separated Value	
	(b)	Common Shell Value	
	(c)	Comma Seperated Variable	
	(d)	Common Structure Variable	
10.	SQL	ite is a ———.	(CO5, K5)
	(a)	Data Structure (b) Database	
	(c)	Cursor (d) None	
		Part B	$(5 \times 5 = 25)$
A	Answe	er all the questions not more than 500 word	ls each.
11.	(a)	What is identifier? Also list the rules identifier.	s to name (CO1, K1)
		Or	

(b) Write short notes on membership operator and identity operators with suitable example. (CO1, K4)

3	R0288

12. (a) Explain the concept of strings in Python, including immutability and the use of string slices. (CO2, K2)

Or

- (b) Define Module. Elaborate different ways to import modules in python. (CO2, K1)
- 13. (a) When to use break and continue statement in python? Discuss its differences with suitable example. (CO3, K3)

Or

- (b) Write a program to do matrix addition and multiplication using for loop with two input value a=[[1, 1],[1, 1]] and b=[[2, 2], [2, 2]]. (CO3, K4)
- 14. (a) What is python constructor? Explain its types. (CO4, K2)

Or

(b) What is single inheritance? Explain. (CO4, K1)

15. (a) Discuss the steps to connect the python applications to the database. (CO5, K3)

Or

(b) Create a table named 'Employee' will have the four columns, i.e., name, id, salary, and department_id initially. Write a query to create table and insert 2 rows.
 (CO5, K5)

 $(5 \times 8 = 40)$

Answer **all** the questions not more than 1000 words each.

16. (a) Explain in detail about datatypes in python. (CO1, K1)

Or

- (b) Write any eight string operations in python with example. (CO1, K5)
- 17. (a) Explain the concept of functions and their importance in Python programming. Also, discuss the difference between parameters and arguments with example. (CO2, K3)

Or

- (b) What are tuples in Python? How they can be used for tuple assignment. (CO2, K3)
- 18. (a) Write brief note on python if-else statement. Give Example. (CO3, K2)

Or

- (b) Write a program to implement the concept of 'while' loop. (CO3, K2)
- 19. (a) Create two classes i.e. Person (parent class) and Employee (Child Class). The Employee class inherits from the Person class. Use the methods of the person class through the employee class to display the name id-number and other details. A child class can also modify the behavior of the parent class. Write a python code to demonstrate how parent constructors are called. (CO4, K4)

Or

(b) Develop a CSV to search an element in a database. (CO4, K3)

5	R0288

20. (a) How to import CSV file into python using pandas? Write the stops with suitable example. (CO5, K5)

Or

(b) Explain database operations in python and also discuss the python – MySQL connectivity. (CO5, K2)

6

Sub. Code	
541303	

M.C.A. DEGREE EXAMINATION, NOVEMBER - 2023

Third Semester

Computer Applications

SOFTWARE ENGINEERING

(CBCS - 2022 onwards)

Time : 3 Hours Maximum : 75 Marks Section A $(10 \times 1 = 10)$ Answer all the following objective questions by choosing the correct option What are the features of Software Code? (CO1, K1) 1. (a) Simplicity (b) Accessibility (d) (c) Modularity All is a software development activity that $\mathbf{2}$. is not a part of software processes. (CO1, K1) Validation (b) Specification (a) (c) Development (d) Dependence 3. Attributes of good software is _____ (CO2, K2) Development (a) (b) Maintainability and functionality Functionality (c) Maintainability (d) 4. The Cleanroom philosophy was proposed by _ (CO2, K2) (a) Linger (b) Mills (c) Dyer (d) All of the mentioned above

5.	Who	proposed the spir	(CO3, K3)		
	(a)	Barry Boehm	(b)	Pressman	
	(c)	Royce	(d)	IBM	
6.	Whi	ch of the following	are C	ASE tools?	(CO3, K3)
	(a)	Central Repositor	ry		
	(b)	Integrated Case '	Tools		
	(c)	Upper Case Tools	3		
	(d)	All of the mention	ned		
7.	Soft	ware patch is defir	ned as		(CO4, K3)
	(a)	Daily or routine	Fix		
	(b)	Required or Criti	cal Fi	x	
	(c)	Emergency Fix			
	(d)	None of the ment	ioned		
8.	proc	is not a esses in software of	funda levelo	amental activity pment.	for software (CO4, K4)
	(a)	Evolution	(b)	Design and imp	lementation
	(c)	Validation	(d)	Verification	
9.	4GT	Model is a set of _			(CO5, K4)
	(a)	Programs	(b)	CASE Tools	
	(c)	Software tools	(d)	None of the mer	ntioned
10.	char	is not s	suitab	le for accommo	dating any (CO5, K5)
	(a)	RAD Model			
	(b)	Waterfall Model			
	(c)	Build and Fix Mo	odel		
	(d)	Prototyping Mode	el		
			2		R0289

Section B $(5 \times 5 = 25)$

Answer **all** the questions not more than 500 words each

11.	(a)	Show the different types of Software My	ths.
			(CO1, K2)
		Or	
	(b)	Summaries the characteristics of the levels in Software Engineering.	ne Maturity (CO1, K2)
12.	(a)	Describe various types of Feasibility Engineering.	in Software (CO2, K4)
		Or	
	(b)	Classify the important concept o Requirement Validation.	f Software (CO2, K4)
13.	(a)	List some important objectives of Softwa	are Design. (CO3, K1)
		Or	
	(b)	Explain in detail about the Interface De	sign.
			(CO3, K1)
14.	(a)	Discuss different types of approach Testing.	in Software (CO4, K4)
		Or	
	(b)	Explain about Software quality attribute	e approach. (CO4, K2)
15.	(a)	List some benefits of Software Quality A	ssurance. (CO5, K1)
		Or	
	(b)	Explain about the Agile Methodology in	detail.
			(CO5, K4)
		3	R0289

3

Section C $(5 \times 8 = 40)$

Answer all the questions not more than 1000 words each

16. (a) Explain in detail about Layered technology in Software Engineering. (CO1, K2)

 \mathbf{Or}

- (b) Illustrate with neat diagram about the sequential phase in waterfall model. (CO1, K2)
- 17. (a) Classify the importance of Software requirement specification. (CO2, K4)

Or

- (b) Generate the important key benefits of Data Modeling. (CO2, K4)
- 18. (a) Explain in detail about the Software Design Process. (CO3, K2)

Or

- (b) Discuss in detail about different Software Architecture Patterns. (CO3, K4)
- 19. (a) Explain in detail about (i) Unit Testing (ii) Integration Testing. (CO4, K2)

Or

- (b) Outline some of the other important Software metrics. (CO4, K2)
- 20. (a) Compare the difference between Agile model and Non-Agile model. (CO5, K4)

Or

(b) Determine some important Agile project management principles. (CO5, K1)

4

M.C.A. DEGREE EXAMINATION, NOVEMBER - 2023

Third Semester

Computer Applications

INFORMATION AND CYBER SECURITY

(CBCS – 2022 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 1 = 10)$

Answer **all** the following objective by choosing the correct option questions.

- 1. What is the meaning of cipher in cryptography? (CO1, K1)
 - (a) an algorithm that performs encryption
 - (b) an algorithm that generates a secret code
 - (c) an algorithm that performs encryption or decryption
 - (d) a secret code
- 2. Vigenere table consists of _____ (CO1, K2)
 - (a) 26 rows and 26 columns
 - (b) 26 rows and 1 column
 - (c) 1 row and 26 columns
 - (d) 27 rows and 27 columns
- 3. Conventional cryptography also known as ______ encryption. (CO2, K2)
 - (a) logical-key (b) symmetric-key
 - (c) asymmetric-key (d) none of these

4.	sequ	uses uses	the	concept of pseudo random (CO2, K3)				
	(a)	Stram cipher	(b)	DES encryption				
	(c)	Casear cipher	(d)	Block cipher				
5.	The or o	main motive for us other users can h	ing s ide a	teganography is that hackers a secret message behind a (CO3, K3)				
	(a)	special file	(b)	ordinary file				
	(c)	program file	(d)	encrypted file				
6.	Whe auth	When a hash function is used to provide message authentication, the hash function value is called to as. (CO3, K3)						
	(a)	Message Field	(b)	Message Score				
	(c)	Message Digest	(d)	Message Leap				
7.	Veri	ification of electro	onic	record is possible through (CO4, K3)				
	(a)	public key	(b)	private Key				
	(c)	e-governance	(d)	digital Signature				
8.	Wha reco	What type of environment is best suited for iris recognition technology? (CO4, K3)						
	(a)	Indoor, controlled	light	ing				
	(b)	(b) Natural lighting						
	(c)	(c) Dark environments						
	(d)	All environments						
9.	Whi app envi	ch of the follow ropriate, ethical b ronment and digita	wing behav l mec	refers to exploring the iors related to the online lia platform? (CO5, K5)				
	(a)	Cyber low	(b)	Cyber ethics				
	(c)	Cyber security	(d)	Cyber safety				
			2	R0290				

(a)	Antivirus	(b)	Cookies	(000, 110)				
(a) (c)	Malware	(b) (d)	Firewall					
		Part B		$(5 \times 5 = 25)$				
Answ	er all the questi	ons not n	nore than 500 wo	rds each.				
1. (a)	Explain short	note abo	ut vernam cipher.	. (CO1, K2)				
		Or						
(b)	Explain the co Cipher with e	oncept of xample.	Monoalphabetic	Substitution (CO1, K2)				
2. (a)	Write short no	ote on Syn	mmetric cipher m	odel. (CO2, K2)				
		Or						
(b)	Discuss about cryptography.	The Ch	inese Remainder	Theorem in (CO2, K2)				
3. (a)	What is Stega	nography	? Explain any of	two types. (CO3, K3)				
		Or						
(b)	Explain the e	ssential	properties of Has	h functions (CO3, K3)				
4. (a)	Explain in det	ail about	authentication.	(CO4, K3)				
	Or							
(b)	Write short no	ote on X.5	609 Protocol.	(CO4, K3)				
5. (a)	Explain: Disk	forensics		(CO5, K5)				
		Or						
(b)	What are the	classifica	tions of cybercrim	ne? Explain (CO5, K5				
			Г	DANA				

Part C $(5 \times 8 = 40)$

Answer ALL the questions not more than 1000 words each.

16. (a) Explain the concept of Playfair cipher with example. (CO1, K2)

 \mathbf{Or}

(b)	Explain	the	concept	of	Vigenère	Cipher	with
	suitable	exam	ple.			(CO)	1, K2)

17. (a) Describe the working principle of DES Algorithm. (CO2, K2)

Or

- (b) Discuss about the Knapsack Public Key Encryption. (CO2, K2)
- 18. (a) Explain in detail about audio video steganography. (CO3, K3)

Or

- (b) Discuss about various applications of steganography. (CO3, K3)
- 19. (a) Discuss about the technological issues in biometric systems. (CO4, K3)

Or

- (b) Explain in detail about digital signature with example. (CO4, K3)
- 20. (a) Elaborate network forensics with example. (CO5, K5)

Or

(b) Explain the concept of Incident and Incident handling with example. (CO5, K5)

4

Sub. Code	
541558	

M.C.A. DEGREE EXAMINATION, NOVEMBER - 2023

Third Semester

Computer Applications

Elective : VIRTUAL REALITY AND AUGMENTED REALITY

(CBCS - 2022 onwards)

Time : 3 Hours

Section A $(10 \times 1 = 10)$

Maximum: 75 Marks

Answer **all** the following objective questions by choosing the correct option.

- 1. What does VR stand for? (CO1, K1)
 - (a) Very Right (b) Vertal Reality
 - (c) Virtual Reality (d) Virtual Realty
- 2. What are the three types of virtual reality? (CO1, K1)
 - (a) 3D, Non-Immersive, Digital
 - (b) Immersive, 3D, Non-Immersive
 - (c) Digital, Semi-Immersive, Projective
 - (d) Immersive, Semi-Immersive, Non-immersive
- 3. Which one of the senses does not applied in virtual Reality? (CO2, K2)
 - (a) Vision (b) Sound
 - (c) Taste (d) Touch

4. A im	A term for Illusion of immersion by projecting stereo images on the walls and floor of a room (CO2, K2)						
(a)	GUI	(b)	HMD				
(c)	BOOM	(d)	CAVE				
5. Ge	Geometric modeling includes (CO3, K3)						
(a)	(a) Graphical information						
(b)	Non-Graphical information						
(c)	Both						
(d)	None of the abo	ve					
6. W He	What kind of tracking technology is used on the Head-Mounted Display? (CO3, K3)						
(a)	Electromagneti	c (b)	Mechanical				
(c)	Optical	(d)	Neural				
7. W	Which definition best fits "Augmented Reality"? (CO4, K2)						
(a)	Technology tha objects	t turns.	physical object	s into digital			
(b)	Technology th understanding	nat car of imag	n achieve a es	human-level			
(c)	Technology that overlays digital information on top of real world items						
(d)	Technology that new digital envi	at comp ironme	oletely immerses nt	s users in a			
8. W	Which is caused by Augmented Reality? (CO4, K1)						
(a)	Holocaust	(b)	Hologram				
(c)	Holophrastic	(d)	Screen saver				
9. X3	X3D has evolved from its beginnings as the ——? (CO5, K2)						
(a)	XML	(b)	XRML				
(c)	VRML	(d)	HTML				
		2		R0291			

10.	0. Applications of virtual Reality in Digital Entertainme (CO5				
	(a)	Videos games	(b)	Virtual museur	ns
	(c)	Theatre	(d)	All the above	
		Sec	etion I	3	$(5 \times 5 = 25)$
A	Answe	er all the question	s, not i	more than 500 wo	ords each.
11.	(a)	Explain the prir examples.	nary fe	eatures of Virtua	l reality with (CO1, K2)
			Or		
	(b)	Write short no virtual reality.	ote or	n Development	Features of (CO1, K2)
12.	(a)	Discuss about th	ne 3d S	scanner.	(CO2, K3)
			Or		
	(b)	Explain the co stereoscopic Dis	ncept play.	of hardware te	echnology on (CO2, K3)
13.	(a)	Explain about I Based Simulatio	Behavi on.	or Simulation ar	nd Physically (CO3, K4)
			Or		
	(b)	What is the difference virtual reality?	ferent	modeling techni	ques used in (CO3, K3)
14.	(a)	Explain the syst	tem sti	ructure of Augme	ented reality? (CO4, K3)
			Or		
	(b)	Write short Development of	note AR tec	on Customi chnologies.	zation and (CO4, K3)
15.	(a)	Explain any two	devel	opment tools in V	R. (CO5, K5)
			Or		
	(b)	How the VR Tec and Games?	hnolog	gy works in Physi	cal Exercises (CO5, K5)
			3		R0291
			0		

Section C $(5 \times 8 = 40)$

Answer all the questions not more than 1000 words each.

16. (a) Write notes on fundamental Concept and Components of typical VR system. (CO1, K2)

Or

- (b) Explain about Features and Present Development on Virtual Reality. (CO1, K2)
- 17. (a) Write detail note on Multiple Modals of Input and Output Interface in Virtual Reality. (CO2, K3)

 \mathbf{Or}

- (b) Explain about Management of Large-Scale Environments & Real Time Rendering. (CO2, K3)
- 18. (a) What is the significance of Interactive Techniques in Virtual Reality? (CO3, K4)

Or

- (b) Explain about commonly used body parts and techniques of body tracking in VR. (CO3, K4)
- 19. (a) Write short note on augmented Reality with example. (CO4, K3)

Or

- (b) Brief explain about major issues in AR application development. (CO4, K3)
- 20. (a) Describe about frameworks of software and development tools in VR. (CO5, K5)

Or

(b) List out and explain about application of VR in Digital entertainment. (CO5, K5)

4