Sub. Code 421201

M.Phil. DEGREE EXAMINATION, NOVEMBER - 2024

Second Semester

Tamil

தமிழ் ஆராய்ச்சியின் வளர்ச்சி

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

ஐந்து வினாக்களுக்கு விடையளிக்க.

 $(5 \times 15 = 75)$

1. (அ) தமிழில் யாப்பிலக்கண ஆய்வுகள் குறித்து விவரி.

(அல்லது)

- (ஆ) குறிப்பு வரைக :
 - (i) நிகண்டுகள் குறித்த ஆய்வுகள்
 - (ii) இலக்கண உரைகள் குறித்த ஆய்வுகள்
- 2. (அ) தமிழில் திணை, துறை பற்றிய ஆய்வுகளின் வளர்ச்சி வரலாற்றை எழுதுக.

(அல்லது)

- (ஆ) தமிழில் அற இலக்கிய ஆய்வுகள் பற்றி விவரி.
- 3. (அ) தமிழில் காப்பிய ஆய்வுகள் பற்றி விவரி.

(அல்லது)

(ஆ) தமிழில் சித்தரிய ஆய்வுகள் குறித்து விளக்குக.

4. (அ) தமிழில் நவீன இலக்கிய ஆய்வுகளின் செல்நெறிகளை விவரி.

(அல்லது)

- (ஆ) தமிழில் நாட்டார் வழக்காற்றியல் ஆய்வுகள் பற்றி விவரி.
- 5. (அ) தமிழாராய்ச்சி வளர்ச்சிக்குத் துணை நிற்கும் நிறுவனங்களையும் அவற்றின் பணிகளையும் விவரி.

(அல்லது)

- (ஆ) குறிப்பு வரைக :
 - (i) எஸ். வையாபுரிப்பிள்ளை
 - (ii) அ.ச. ஞானசம்பந்தன்
 - $({
 m iii})$ நா. வானமாமாலை

R2531

Sub. Code 456201

M.Phil. DEGREE EXAMINATION, NOVEMBER - 2024

Second Semester

Economics

CONTEMPORARY ISSUES IN INDIAN ECONOMIC DEVELOPMENT

(CBCS - 2022 onwards)

Time: 3 Hours Maximum: 75 Marks

Part A $(5 \times 5 = 25)$

Answer any **five** questions.

- 1. We need fiscal reforms in India Discuss.
- 2. Explain the globalization and its impact on agriculture sector.
- 3. Sketch the significance of IT sector in Indian economic development
- 4. Write in detail about the disinvestments made by the Union government recently.
- 5. Elucidate the agricultural price policy in India.
- 6. Describe the trends in poverty after the launching of economic reforms in India.
- 7. Show the major rural development programmes implemented by the Government of India.
- 8. Explain the main objectives of rural water supply programme.

Part B $(5 \times 10 = 50)$

Answer any five questions.

- 9. Narrate the impact of WTO on India's foreign trade.
- 10. Apprise the trend and growth of the Indian industry during the post liberalization era.
- 11. Investment in infrastructure is essential for rapid economic growth Discuss.
- 12. Analyze the economics of GM crops and its recent controversy.
- 13. Explain the zero-budget farming method and explain how it is the way for sustainable agriculture.
- 14. Assess the recent watershed development programme in India.
- 15. Describe the role of Primary Health Centre in rural area.
- 16. Analyze the youth educated unemployment trends in India.

R2594

Sub.Code

821121

M.Phil. DEGREE EXAMINATION, NOVEMBER - 2024

Second Semester

Physical Education AREA OF DISSERTATION

(CBCS – 2022 onwards)

Time: 3 hrs Maximum: 75 marks

Answer all questions, choosing either (a) or (b)

 $(5 \times 15 = 75)$

1. (a) What is the aim of your topic? Explain the objectives and scope of your study.

(or)

- (b) What is the meaning of Hypothesis? List out the hypothesis of your study and explain the various types of hypotheses.
- 2. (a) What are the procedures to be followed in selection of subject? Explain.

(or)

- (b) List out the name of test used in your study and explain the method of that testing procedures.
- 3. (a) What is meaning of research design? Explain experimental design.

(or)

- (b) Write short notes on sample. Explain the chrematistic and various types of sampling technique.
- 4. (a) Give the meaning of data. Explain the various methods of data collection.

(or

- (b) Describe the mechanics of research report.
- 5. (a) Explain the location and criteria for selecting a research problem.

(or

(b) What is research proposal? Explain the preparation of research proposal.

Sub.Code

R2595

571201

M.Phil. DEGREE EXAMINATION, NOVEMBER - 2024

Second Semester

Mathematics

FUNCTIONAL ANALYSIS

(CBCS – 2022 onwards)

Time: 3 hrs Maximum: 75 marks

PART A

Answer ALL questions (10	
1.	A sequence $\{x_n\}$ is said to be a Cauchy sequence if to every $V \in \mathfrak{B}$ corresponds an such that $x_n - x_m \in V$ if
	A. $n > N$ and $m > M$
	B. $n < N$ and $m < M$
	C. $n \ge N$ and $m \ge M$
	D. $n \le N$ and $m \le M$
2.	A topological vector space X is normable if and only if its origin has origin has
	neighborhood.
	A. Closed bounded
	B. Convex bounded
	C. Convex
	D. Closed
3.	The set of the in S are those that are countable unions of nowhere dense set
	A. Second category
	B. Complete metric space
	C. Dense sets
	D. First category
4.	If X is a topological space, Y is a Hausdorff space, and $f: X \to Y$ is continuous, the
	the graph G of f is
	A. Closed
	B. Bounded
	C. Continuous
	D. Closed bounded.
5.	If $\tau_1 \subset \tau_2$ are topologies on a set X, if τ_1 is a Hausdorff topology, and if τ_2
	compact, then
	A. $\tau_1 = \tau_2$
	B. $\tau_1 \leq \tau_2$
	C. $\tau_1 \ge \tau_2$
	D. $\tau_1 > \tau_2$

6.	If X is a locally convex topological vector space and $E \subset X$ is totally bounded, then $co(E)$ is
	<i>co(E)</i> is A. Bounded
	B. Compact
	C. Totally bounded
	D. Closure
7	$(^{\perp}N)^{\perp}$ is the of N in X^* .
/.	A. Weak*-closure.
	B. Norm-closure.
	C. Weak closure .
	D. Weak*-topology.
0	
٥.	If $T \in \mathfrak{B}(X,Y)$, T is compact, and $\mathfrak{R}(T)$ is closed, then
	A. $dim\Re(T) < \infty$
	B. $dim\Re(T) > \infty$
	C. $dim\Re(T) \leq \infty$
0	D. $dim\Re(T) \ge \infty$
9.	A subspace A of C(S) is an if $fg \in A$ whenever $f \in A$ and $g \in A$.
	A. Anti–symmetric
	B. Interior
	C. Algebra
1.0	D. Separates
10	If X is an F-space and if $X = A \oplus B$, then the projection P with range A and null
	space B is
	A. Closed
	B. Algebra
	C. Bounded
	D. Continuous
	Part B
An	swer ALL questions, choosing either (a) or (b). $(5 \times 7 = 35)$
11	(a) In a topological vector space X, then prove that
	(i) Every neighborhood of 0 contains a balanced neighborhood of 0, and
	(ii) Every convex neighborhood of 0 contains a balanced convex neighborhood of 0.
	(OR)
(b)	Prove that every locally compact topological vector space X has finite dimension.
12.	(a) Suppose $B: X \times Y \to Z$ is bilinear and separately continuous, X is an F- space, and Y and Z are topological vector spaces. Then prove that $B(x_n, y_n) \to B(x_0, y_0)$ in Z whenever $x_n \to x_0$ in X and $y_n \to y_0$ in Y.

- (b)State and prove the closed graph theorem.
- 13. (a) Suppose M is a subspace of a vector space X, p is a semi-norm on X, and f is a linear functional on M such that $|f(x)| \le p(x)$ $(x \in M)$. Then prove that f extends to a linear functional Λ on X that satisfies $|\Lambda x| \le p(x)$ $(x \in M)$.

(OR)

- (b). State and Prove Milman's theorem.
- 14. (a) Prove that suppose X and Y are normal spaces. To each $T \in \mathfrak{B}(X,Y)$ corresponds a unique $T^* \in \mathfrak{B}(Y^*,X^*)$ that satisfies $\langle Tx,y^* \rangle = \langle x,T^*y^* \rangle$ for all $x \in X$ and $y^* \in Y^*$. Moreover, T^* satisfies $||T^*|| = ||T||$.

(OR)

- (b). If X is Banach space, $T \in \mathfrak{B}(X)$, T is compact, and $\lambda \neq 0$, then prove that $T \lambda I$ has closed range.
- 15. (a) Suppose 0 , and
 - (i) μ is a probability measure on a measure space Ω
 - (ii) S is a closed subspace of $L^p(\mu)$.
 - (iii) $S \subset L^{\infty}(\mu)$.

Then prove that S is finite – dimensional.

(OR)

- (b). Let G be a compact group, suppose $f \in C(G)$, and define $H_L(f)$ to be the convex hull of the set of all left translates of f. Then prove that the following:
 - (i)s $\rightarrow L_s f$ is a continuous map from G into C(G), and
 - (ii) The closure of $H_L(f)$ is compact in C(G).

Part C

Answer any THREE questions

 $(3 \times 10 = 30)$

- 16. If X is a topological vector space with a countable local base, then prove that there is a metric d on X such that
 - (i) d is compatible with topology of X,
 - (ii) The open balls centered at 0 are balanced, and
 - (iii) d is invariant : d(x + z, y + z) = d(x, y) for $x, y, z \in X$.

If, in addition, X is locally convex, then prove that d can be chosen so as to satisfy (i), (ii), (iii) and also

- (iv) All open balls are convex.
- 17. State and Prove the Banach- Steinhaus theorem.
- 18. State and Prove the Krein-Milmantheorm.

- 19. Suppose X and Y are Banach spaces and $T \in \mathfrak{B}(X, Y)$. Then prove that T is compact if and only if T^* is compact.
- 20. Prove that suppose $\mu_1, ..., \mu_n$ are real-valued nonatomic measures on a σ algebra \mathfrak{M} . Define $\mu(E) = (\mu_1(E), ..., \mu_n(E))(E \in \mathfrak{M})$. Then μ is a function with domain \mathfrak{M} whose range is a compact convex subset of \mathbb{R}^n .
- 21. State and Prove the Open mapping theorem.
- 22. Prove that in a locally convex space X, every weakly bounded set is originally bounded, and vice versa.
- 23. Let N be a closed subspace of a topological vector space X. Let τ be the topology of X and define τ_N . Then prove the following:
 - (i). τ_N is a vector topology on X/N; the quotient map $\pi: X \to X/N$ is linear, Continuous, and open.
 - (ii). If \mathfrak{B} is a local base for τ , then the collection of all sets $\pi(V)$ with $V \in \mathfrak{B}$ is a local base for τ_N .
 - (iii) Each of the following properties of X is inherited by X/N: local convexity, local boundedness, mertizability, normability.
 - (iv) If X is an F- space, or a Frechet space, or a Banach space, so is X/N.

Sub.Code 552201

M.Phil DEGREE EXAMINATION, NOVEMBER - 2024 Second Semester Computer Science ADVANCED CLOUD COMPUTING (CBCS- 2022 onwards)

Time: 3 Hours Max. Marks: 75

Answer all questions either (a) or (b)

 $(5 \times 15 = 75 \text{ marks})$

1. (a) Illustrate the Components of Cloud Computing in detail

(Or)

- (b) Write in detail about Microsoft Azure Service provider in Cloud Computing
- 2. (a) Compare SOAP and REST web services in detail

(Or)

- (b) How to configure and manage Virtual Storage in networking? Explain
- 3. (a) Explain in detail about GFS and HDFS

(Or)

- (b) What are the relational operations used in MAP Reduce? Explain
- 4. (a) Illustrate the Security architecture on Cloud Computing

(Or)

- (b) Discuss the techniques of VM -Specific Security
- 5. (a) Explain in detail about QoS issues in Cloud

(Or)

(b) Discuss the resource dynamic reconfiguration in Cloud